
student

Playing with AI
Konstantinos Sfikas

B y 2017, AI had advanced far enough for AlphaGo,
a specialised AI that can play the highly complex

board game Go, to beat the major Go players in the world
and be awarded professional 9-dan by the Chinese Weiqi
Association. Go, however, is a fully deterministic game like
Chess, with no random elements. Probabilistic games like
Pandemic, on the other hand, are even trickier for AI to play
efficiently, as the randomness of dice rolls or shuffled cards
makes it much harder for computers to crack them. This
problem inspired me (Konstantinos Sfikas) to attempt to
create an AI that can play the Pandemic board game.

In the summer of 2018, I started working on this problem
as part of my thesis for the M.Sc. in Digital Games (Institute
of Digital Games, University of Malta), under the supervision
of Dr Antonios Liapis.

At the core of our methodology lies Rolling Horizon
Evolution (RHE), a planning algorithm that makes decisions
by optimising action sequences through artificial evolution
(introduced by University of Essex researchers in 2013).
In order to make a single decision, RHE initially composes a
population of random action sequences and evaluates them
by simulating their potential result. Then an iterative
process of optimisation takes place: the action sequences
are randomly mutated, generating a set of offspring. The
offspring will either replace their parents or be discarded
based on a quality comparison. While this process repeats,
the overall quality of the population tends to increase.
After a predefined number of iterations, the agent simply
selects the first action of the best-found sequence and
applies it to the actual game.

Based on RHE, we designed the Policy-Based Rolling
Horizon Evolution Agent (PB-RHEA), which operates on a
higher level of abstraction, using a set of 'policies' (artificial
behaviours) as an indirect encoding of action sequences.
When composing or mutating sequences, PB-RHEA does
not consider the full amount of potential single actions (as

RHE does), but rather selects among a much smaller set of
possible behaviours that translate into specific actions and
approximates their probable outcome through repeated
randomised simulations. Through this technique, the agent’s
operation was greatly enhanced in terms of computational
efficiency and overall performance.

During my thesis and the two publications that followed
(both co-authored with my supervisor Dr Antonios Liapis),
we performed a large number of computational experiments,
analysing the agent’s behaviour and optimising its
performance. One of the most challenging aspects of our
research was to design a set of heuristics that approximate
the quality of any given game state, thus allowing the agent
to evaluate the outcome of an action-sequence. Another
challenge was to define the set of policies that the agent
would use as building blocks in such a way that they are
both efficient and expressive. Finally, fine-tuning the
algorithm’s parameters through trial and error was another
critical aspect of the agent’s degree of success. The results
overall showcase that our proposed methodology exhibits
a good performance against a hard problem and leaves
clear avenues for further improvement.

From an academic perspective, the main contribution
of our research is that it clearly expanded the knowledge
on planning algorithms like RHE and, more precisely, their
applicability on complex problems like Pandemic. Agents like
the PB-RHEA can be used to play alongside human players
in the digital versions of board games or even be used in the
context of automated playtesting during the development
phase of board games. Although gamers have been playing
alongside AI for a long time, will game developers also
adopt AI as a partner when designing their games?

This research was carried out as part of an M.Sc. in Digital
Games at the Institute of Digital Games, University of Malta,
under the supervision of Dr Antonios Liapis.

st
ud

en
ts

13

