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“He that breaks a thing to find out what it is
has left the path of wisdom."

Gandalf (to Saruman)
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Abstract

We introduce a new problem on local v. global majority in graphs, con-
cerning edge-colourings. In particular, we ask for which positive integers
b and r, such that b < r, does a b + r regular graph G exist with an edge
colouring f : E(G) ! {blue, red} satisfying the following:

i. The subgraphs induced by the blue and red edges are b and r regular
respectively, resulting in a global majority ordering since b < r, where
across the entire graph ‘red’ wins against ‘blue’.

ii. On the other-hand, for every vertex v, the number of blue edges in
the closed neighbourhood of v is greater than the number of red edges,
resulting in a locally opposite majority ordering where locally ‘blue’
wins against ‘red’.

We term such a graph as a (b, r)-flip graph, due to the local v. global
majority flip they demonstrate. We show that such edge-coloured graphs
do exist, namely for when the difference between b and r is not too great, as
intuition would suggest. In particular we show that a (b, r)-flip graph exists
if, and only if, 3  b < r < (b+1

2 ).
We also establish a number of bounds on the number of vertices h(b, r)

of the smallest (b, r)-flip graph. Somewhat surprisingly we establish that
such graphs can be very small, illustrating cases where h(b, r) is Q(b + r).

To establish these results, we provide a number of different construc-
tion techniques using: edge-coloured graph products, graph packings and
Cayley graphs.

Two natural extensions of this problem are considered: extending the
local flip up to the closed neighbourhood at a distance t from each vertex,
and extending to more than two colours.

The extension to the closed t-neighbourhood is considered briefly, offer-
ing two distinct techniques of constructing such graphs. The extension to
more than two colours is considered more exhaustively. Given a colour-
degree sequence (a1, . . . , ak) such that a1 < a2 < · · · < ak, analogous
to (b, r) in the two colour case, then if a1 is sufficiently large and ak 

a1 +

�
1
4
�
a2

1 � 10a
3
2
1
�⌫

, it is shown that an (a1, . . . , ak)-flip graph exists.
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The proof is constructive, and relates to another (existence) problem of
interest which we briefly consider. We show that for every integer r � 1
and integer c, 0  c  r2

2 � 5r3/2, there exists an r regular graph with
the property that for every vertex v, the open neighbourhood of v con-
tains precisely c edges. Here we outline a number of connections with other
well-known families of graphs, such as those with constant link and (r, b)-
regular graphs.

We conclude with a somewhat surprising result, namely that unlike the
case of two colours, for k � 4 colours, ak need not necessarily be bounded
in a1. Formally, there is some positive integer m = m(k) such that for every
positive integer N, there exists a k-flip sequence (m, a2, . . . , ak) such that
ak > N. Consequently, when considering four or more colours, there exists
constructions where the first colour can locally win against the kth colour,
no matter how big of a majority the kth colour has across the entire graph.
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Introduction

The study of local v. global phenomena in graphs has been a fruitful and active
area of research for decades. Whilst outlining the significant contributions in
this area, we will introduce a new variation concerning local v. global majority
in the edge-colourings of graphs.

1.1 | Local v. global phenomena in graphs
Many variations on local-global phenomena in graphs have been studied over
the past 80 years, where typically some global graph parameter is studied in
terms of a local parameter (eg. on some smaller induced subgraph). These vari-
ations include problems on vertex colouring, cliques, et cetera.

One simple example of such phenomena is as follows. Recall that a graph
is said to be Eulerian if every component has a trail starting and ending at the
same vertex, such that each edge is visited exactly once. A classical result is
Euler’s theorem, which states that a graph is Eulerian if, and only if, every vertex
has even degree. The property that the graph is Eulerian is a property of the
graph and hence a global property, whilst the property that every vertex has
even degree is a local property.

A survey on local-global phenomena is given in Linial (1997), as well as an
outline to various applications in distributed computing. Throughout the years,
another variation which cropped up was related to majority problems.
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1.2. De�nitions and nomenclature

In one of the earliest papers on local v. global majority, dating back to almost
40 years ago, Fishburn et al. (1986) study chains of white and black coloured
beads on a necklace. In particular they demonstrate that for certain arrange-
ments of beads, if certain sub-chains of fixed length have more white beads than
black beads (a local majority), then the entire necklace has more white beads
than black beads (a global majority). Different variations and applications of
such majority problems have been explored throughout the years; we highlight a
number of these here in chronological order: Woodall (1992), Broere et al. (1995),
Peleg (2002), Abdullah and Draief (2015), Caro and Yuster (2018), and Gärtner
and Zehmakan (2021).

Problems of local v. global majority in graphs concerning edge-colourings are
of notable interest, such as in voting problems. Consider a graph G where the
edges of G are coloured from the set {�1, 1} and therefore are being assigned a
weighting. The weight w(G) of the graph G is the sum of all the weights assigned
to the edges of G. Caro and Yuster (2018) consider the following (binary) voting
problem: Let k 2 N. Suppose that for every connected k-edge subgraph H of G,
we have that w(H) > 0. When is w(G) > 0?

Observe that the requirement that w(H) > 0 is a local majority (namely since
it is restricted to connected subgraphs of given size), whilst w(G) > 0 establishes
a global property. The local v. global majority problems considered in this thesis
follow a similar flavour to the aforementioned, with surprising consequences.

1.2 | De�nitions and nomenclature
By Z and N we will denote the set of integers and naturals (positive integers),
respectively. The set difference of two sets A and B shall be denoted by A � B,
while their intersection, union and Cartesian product shall be denoted by A \
B, A [ B and A ⇥ B, respectively. To emphasise that A and B are disjoint, we
shall sometimes denote their union by A[̇B. The cardinality of a set A shall be
denoted by |A|.

By an increasing positive-integer sequence (a1, . . . , ak) we mean that the in-
tegers a1, . . . , ak satisfy the inequalities 1  a1 < a2 < · · · < ak�1 < ak.

2



1.2. De�nitions and nomenclature

A graph G = (V(G), E(G)) is a pair of sets V(G), a non-empty set termed
as the vertex set, and E(G), a set of 2-element subsets of V(G) termed as the edge
set. Our graphs shall be simple, meaning without repeated edges and loops.

Two vertices u and v in V(G) belonging to the same edge in E(G) are said
to be adjacent, which we sometimes denote by u ⇠ v. Similarly, if a vertex v in
V(G) belongs to an edge e in E(G), then e is said to be incident to v. The degree of
a vertex v in V(G), denoted by degG(v), is the number of edges in E(G) incident
to v. A graph is said to be r regular if for every vertex v in V(G), degG(v) = r.
The minimum and maximum degree of a graph are denoted by d(G) and D(G),
respectively.

The line graph L(G) of a graph G is the graph with vertex set E(G), such that
two vertices in L(G) are adjacent if the corresponding edges in G are incident at
a common vertex.

A path is a sequence of distinct vertices v1, v2, . . . , vs and edges {vi, vi+1} for
1  i < s. If we include the additional edge {v1, vs}, we get a cycle. We say that
a graph is connected if, and only if, there exists a path between every pair of
vertices. Moreover, a graph is acyclic if it contains no cycles. A tree is a connected
acyclic graph. A forest is an acyclic graph which is not necessarily connected.

Given two vertices u and v in V(G), the distance between u and v, denoted by
dG(u, v), is the length of the shortest path between u and v in G. If G is discon-
nected and the vertices belong to distinct components, then we let dG(u, v) = •.
The diameter of a graph, written as diam(G), is the length of the longest shortest-
path between any two vertices. On the other-hand, the girth of a graph, denoted
by g(G), is the length of the shortest cycle in G.

For a vertex v 2 V(G) and t 2 N, NG
t (v) = {u 2 V(G) : 1  dG(u, v)  t}

is the open t-neighbourhood of v, whilst NG
t [v] = NG

t (v) [ {v} is its closed t-
neighbourhood. In the case when t = 1 we shall simply write NG(v) and NG[v].

By eG[v] and eG(v) we will denote, respectively, the number of edges in the
closed and open neighbourhoods of a vertex v 2 V(G).

Let S be a subset of V(G). The vertex-induced subgraph of G induced by S
is the graph with vertex set S and with an edge set being exactly all those edges
in E(G) incident to two vertices in S. By E(S) we will denote the set of edges in
the subgraph of G induced by the vertices in S.

3



1.2. De�nitions and nomenclature

Let k 2 N and let f : E(G) ! {1, . . . , k} be an edge-colouring1 of G. Under
this edge-colouring, for 1  j  k,

i. Given a subset S of V(G), Ej(S) is the set of edges coloured j in the vertex-
induced subgraph of G by S, and eG

j (S) = |Ej(S)|.

ii. Moreover, Ej(G) is the set of edges coloured j in G, and ej(G) =
��Ej(G)

��.

iii. For a vertex v 2 V(G), let eG
j [v] = eG

j
�

NG[v]
�

and eG
j (v) = eG

j
�

NG(v)
�
.

iv. Lastly, for a vertex v 2 V(G), the colour degree degG
j (v) is the number of

edges coloured j incident to v.

The colour degree sequence of a vertex v in G is the sequence of colour degrees
degG

1 (v), degG
2 (v), . . . , degG

k (v), where k is the number of colours.
Whenever there is no room for ambiguity, we shall simplify our notation

by removing any symbolic reference to a graph (such as sub-scripts and super-
scripts). In other-words, we will write V instead of V(G), d(u, v) instead of
dG(u, v), ej[v] instead of eG

j [v], et cetera.
Let G be a group. We shall denote the identity of a group G by 1G. We say that

a group is Abelian if it is endowed with a commutative group operation. Unless
stated otherwise, all groups are assumed to be finite. By Zn we denote the group
of integers under addition modulo n.

Let G be an Abelian group and let A, B ✓ G. The sum-set A + B is the set
{a + b : a 2 A, b 2 B}. By 2A we denote the set A + A whilst by A�1 we denote
the set of inverses of A. We say that A is sum-free if 2A \ A = ∆, and inverse-
closed if A = A�1.

Let S be a subset of a group G such that S is inverse-closed and does not
contain the identity element. The Cayley graph Cay (G; S) is a graph with vertex
set G and edge set {{g, gs} : s 2 S, g 2 G}. The set S is termed as the connecting set
of the Cayley graph. Cayley graphs enjoy a number of properties, most notably
that they are vertex-transitive.

Occasionally we shall use the Bachmann–Landau family of notations to de-
scribe asymptotics, namely Big-O, Big-W and Big-Q.

1Not necessarily proper - indeed this will not be the case throughout this thesis.
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1.3. Local v. global majority in edge-colourings

1.3 | Local v. globalmajority in edge-colourings
We are now in a position to introduce a new variant of local v. global problems,
concerning majorities in edge colourings of graphs, which we refer to as the
k-flip-colouring problem.

Problem 1.3.1 (k-flip-colouring problem). Given k � 2, a d regular graph G and
an increasing positive-integer sequence (a1, . . . , ak) such that d = Âk

j=1 aj, does
there exists an edge-colouring f : E ! {1, . . . , k} such that:

i. Ej spans an aj regular subgraph, namely degj(v) = aj for every v 2 V,
resulting in a global majority ordering,

ii. and for every vertex v 2 V, ek[v] < ek�1[v] < . . . < e1[v], resulting in a
locally opposite majority ordering.

If such an edge-colouring exists then G is said to be an (a1, . . . , ak)-flip graph,
or more simply a k-flip graph, and (a1, . . . , ak) is called a k-flip sequence of G.
Figure 1.1 is an example of a (3, 4)-flip graph.

v

N[v]

Figure 1.1: Smallest known (3, 4)-flip graph having 16 vertices, with the sub-
graph induced by N[v] for any vertex v illustrated on the right.
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1.3. Local v. global majority in edge-colourings

1.3.1 | Major problems concerning k-�ip graphs and se-
quences

In introducing this new kind of local v. global majority problem, as in Problem
1.3.1, a potpourri of other problems naturally crops up. We shall take the oppor-
tunity to chart out this landscape, highlighting the motivating problems behind
the work carried out in this thesis.

We have already seen an example of a (3, 4)-flip graph. Given an increasing
positive integer sequence (a1, . . . , ak), a natural question to pose is whether there
is an (a1, . . . , ak)-flip graph which realises the sequence as a k-flip sequence.

Problem 1.3.2 (Recognising k-flip sequences). Given an increasing positive inte-
ger sequence (a1, . . . , ak), determine if there exists an (a1, . . . , ak)-flip graph.

The (3, 4)-flip graph given in Figure 1.1 transpires to be the smallest known
example of a graph which realises the 2-flip sequence (3, 4). An interesting prob-
lem is to determine, or at least bound, the smallest order of a graph which re-
alises a given k-flip sequence.

Problem 1.3.3 (Smallest order of graphs realising a k-flip sequence). For a given
k-flip sequence (a1, . . . , ak), estimate

h(a1, . . . , ak) = min {|V(G)| : G is an (a1, . . . , ak)-flip graph}

It would be useful to devise systematic constructions of k-flip graphs, both
for solving the aforementioned two problems, and for the purposes of demon-
strating existence.

Problem 1.3.4. Devise constructions for flip graphs with two or more colours.

More so, in conjunction to devising constructions, it is of interest to find nec-
essary and/or sufficient conditions for k-flip sequences.

Problem 1.3.5. Find necessary and/or sufficient conditions for an increasing
positive-integer sequence (a1, . . . , ak) to be a k-flip sequence of some graph.

6



1.4. Overview

A special case of the previous problem is the case when the sequences under
consideration form an integral interval. The importance of interval flipping will
become all the more apparent in Chapter 5.

Problem 1.3.6 (Interval flipping). Find long k-flip sequences (a1, . . . , ak), that
form an interval, namely aj = a1 + j � 1, for 1  j  k.

Lastly, it is only natural to consider whether these problems can be gener-
alised to the t-distance closed neighbourhoods in a graph.

Problem 1.3.7 (Extension to t-neighbourhood flipping). Extend the flipping prob-
lem to the t-distance closed neighbourhood Nt[v].

1.4 | Overview
We begin by introducing, in Chapter 2, the toolset required to construct edge-
coloured graphs and in particular flip graphs from graphs satisfying particular
properties. Here we consider a number of graph products and packing argu-
ments in order to construct ‘new’ graphs from ‘old’. Chapter 2 therefore lays
down the foundations for all the subsequent chapters.

In Chapter 3 we then proceed to answer Problems 1.3.2, 1.3.4 and 1.3.5 for the
case when k = 2. Intuitively one expects that for a sequence (a1, a2) to be a 2-flip
sequence, the difference between a1 and a2 must not be too large for the flip to be
possible. We show that this intuition is correct, namely that a2 is quadratically
bound in a1. More so, we provide an in-depth treatment of Problem 1.3.3, where
for certain 2-flip sequences we illustrate constructions which asymptotically use
the smallest number of vertices.

Chapter 4 continues the work for the case when k = 2, by considering Prob-
lem 1.3.7 and extending our work to the t-distance closed neighbourhoods of a
graph. We only concern ourselves with the problem of existence, providing two
distinct and contrasting constructions.

In Chapter 5 we consider Problems 1.3.2, 1.3.4, 1.3.5 and 1.3.6 for the case
when k � 3. For the case when k = 3 we give a necessary condition for
(a1, a2, a3) to be a 3-flip sequence, namely that a3 is quadratically bound in a1. In

7



1.4. Overview

other words, the largest colour degree must be quadratically bound in terms of
the smallest colour degree, just as in the case when k = 2. Indeed for the case
when k � 4 we go on to show that such a condition is sufficient for (a1, . . . , ak) to
be a k-flip sequence, but is it necessary?

We also introduce a new class of graphs called (r, c)-constant graphs, which
are r regular graphs such that every open neighbourhood has exactly c edges.
We discuss the motivation behind the introduction of such graphs as well as
their relationship with numerous other well-studied families of graphs. We then
proceed to consider the problem for which parameters r and c do these (r, c)-
constant graphs exist.

The aforementioned results tantalisingly suggest that it is. We answer this
question, with a somewhat surprising conclusion.

We conclude with a short discussion in Chapter 6, outlining a number of
open problems to extend the landscape of what is currently known on the flip-
colourings of graphs.

8



2

New edge-coloured graphs from old

We begin by a short exposition into a number of graph operations and their
extension to edge-coloured graphs, allowing us to obtain new ones from old. In
particular, we shall consider the Cartesian and strong product of edge-coloured
graphs, as well as the union of edge-coloured graphs with identified vertex-sets.

Of interest will be the resulting colour degrees after applying these opera-
tions, and the number of edges of a given colour in the closed neighbourhoods.

Such operations will be a powerful constructive tool in many of our proofs,
which we demonstrate towards the end of this chapter.

2.1 | Cartesian products of graphs
The Cartesian product of graphs enjoys a number of properties, which we will
summarise below. We begin however by formally defining the Cartesian prod-
uct of two graphs and a means of inheriting an edge-colouring from its factors.

Definition 2.1.1 (Cartesian product). The Cartesian product G ⇤ H of the graphs
G and H is the graph such that V (G ⇤ H) = V(G)⇥ V(H) and there is an edge
{(u, v), (u0, v0)} in G ⇤ H if, and only if, either u = u0 and v ⇠ v0 in H, or v = v0

and u ⇠ u0 in G.

We extend the edge-colourings of G and H to an edge-colouring of G ⇤ H
as follows. Consider the edge e = {(u, v), (u0, v0)} in G ⇤ H; if u = u0 then e

9



2.1. Cartesian products of graphs

inherits the colouring of the edge {v, v0} in H, otherwise if v = v0 the colouring
of the edge {u, u0} in G is inherited. This colouring inheritance is illustrated in
Figure 2.1, with its properties summarised in Lemma 2.1.2. We refer to G ⇤ H
with its inherited edge-colouring as the coloured Cartesian product of G and H.

Figure 2.1: Illustration of Lemma 2.1.2, with the closed neighbourhood of w =
(u, v) in K3 ⇤ P3 highlighted.

Lemma 2.1.2. Let G and H be edge-coloured from {1, . . . , k}. Then in the coloured
Cartesian product G ⇤ H, for any 1  j  k and (u, v) 2 V(G ⇤ H),

i. degj
�
(u, v)

�
= degG

j (u) + degH
j (v)

ii. ej [(u, v)] = eG
j [u] + eH

j [v]

Proof. Given any u 2 V(G), let Hu be the subgraph of G ⇤ H induced by the
vertices (u, w) for w 2 V(H), which is isomorphic to H. Let v 2 V(H).

Clearly (u, v) has degH
j (v) incident edges coloured j in Hu. Moreover, for

every edge {u, x} coloured j in G, the edge {(u, v), (x, v)} is coloured j. Hence
there are a further degG

j (u) incident edges to (u, v) coloured j.
Therefore (i) follows, and by a similar argument so does (ii).

Since the Cartesian products of graphs is commutative and associative, one
can easily observe that Lemma 2.1.2 naturally extends to the product of s � 2
factors H1, . . . , Hs.

10



2.1. Cartesian products of graphs

2.1.1 | The coloured Cartesian product lemmas
The coloured Cartesian product (CCP) of graphs shall be an important tool
throughout this thesis. As a hint at its utility, we consider the following results,
which we collectively refer to as the CCP Lemmas.

The first CCP Lemma (Lemma 2.1.3) describes how to construct a k-flip graph
from a family of regular graphs satisfying certain prescribed conditions.

Lemma 2.1.3 (CCP Lemma I). Let k 2 N, k � 2. Suppose H1, . . . , Hk are a1, . . . , ak

regular graphs respectively, with ai < aj for 1  i < j  k. Furthermore, suppose that
for 1  i < k,

max
u2V(Hi+1)

eHi+1 [u] < min
v2V(Hi)

eHi [v] .

Then G = ⇤k
j=1Hj is an (a1, . . . , ak)-flip graph.

Proof. Colour the edges of Hj using colour j, for 1  j  k. Let G = ⇤k
j=1Hj be

the corresponding CCP. Clearly for every vertex w in G, given any 1  i < k, we
have that degi(w) = ai < ai+1 = degi+1(w) and

ei+1[w]  max
u2V(Hi+1)

eHi+1 [u] < min
v2V(Hi)

eHi [v]  ei[w].

Consequently G is an (a1, . . . , ak)-flip graph.

The second CCP Lemma (Lemma 2.1.4) describes how to construct k-flip
graphs (sequences) from other k-flip graphs (sequences).

Lemma 2.1.4 (CCP Lemma II). Let k 2 N, k � 2. If, for 1  j  q, (aj,1, . . . , aj,k)

are k-flip sequences then (a1, . . . , ak) is a k-flip sequence where ai = Âq
j=1 aj,i.

Proof. For 1  j  q, let Hj be a k-flip graph that realises the k-flip sequence
(aj,1, . . . , aj,k). Consider the CCP graph G = ⇤q

j=1Hj.
By Lemma 2.1.2, for 1  i1 < i2  k and a vertex v = (v1, . . . , vq), we have

degi2(v) =
q

Â
j=1

deg
Hj
i2 (vj) >

q

Â
j=1

deg
Hj
i1
(vj) = degi1(v)

and

ei2 [v] =
q

Â
j=1

e
Hj
i2 [vj] <

q

Â
j=1

e
Hj
i1
[vj] = ei1 [v]

11



2.1. Cartesian products of graphs

since the Hj’s are k-flip graphs. Hence G is a (a1, . . . , ak)-flip graph.

The third and final CCP Lemma (Lemma 2.1.5) illustrates how, for certain
constructions which realise a k-flip sequence and make use of the Cartesian
product, any sub-sequence of length s � 2 is also a flip-sequence. Therefore
from a single construction we may realise many different flip-sequences.

Lemma 2.1.5 (CCP Lemma III). Let k, s 2 N such that 2  s  k. Let G be some
k-coloured Cartesian product of graphs, where each factor is either monochromatic or
triangle-free. If a k-flip sequence (a1, . . . , ak) is realised by G, then any sub-sequence
(aj1 , . . . , ajs) is an s-flip sequence realised by the subgraph in G induced by the edges
coloured j1, . . . , js.

Proof. Let H1, . . . , Ht be triangle-free graphs with edges coloured from {1, . . . , k}
and let Ht+1, . . . , Hr be graphs monochromatically edge-coloured from {1, . . . , k}.

Consider the coloured Cartesian product G = ⇤r
i=1Hi, and let (aj1 , . . . , ajs) be

a sub-sequence of (a1, . . . , ak). By Lemma 2.1.2, we have that for 1  j  k and
v = (v1, . . . , vr) 2 V(G),

degG
j (v) =

r

Â
i=1

degHi
j (vi) and eG

j
⇥
v
⇤
=

r

Â
i=1

eHi
j (vi)

Without loss of generality, let H1, . . . , Ht0 and Ht+1, . . . , Ht+r0 be all the fac-
tors which have some edge coloured from {j1, . . . , js}. In particular, for 1 
i  t0, let H⇤

i be the subgraph of Hi induced by the edges coloured using
j1, . . . , js. Since each Hi is triangle-free, it follows that eH⇤

i
j (u) = eHi

j (u) and

degH⇤
i

j (u) = degHi
j (u), for 1  i  t0 and j 2 {j1, . . . , js}.

From the definition of the Cartesian product, the subgraph of G induced by
the edges coloured j1, . . . , js is G⇤ =

⇣
⇤t0

i=1H⇤
i

⌘
⇤

�
⇤r0

i=1Ht+i
�
.

Every vertex v0 = (v1, . . . , vt0 , vt+1, . . . , vt+r0) of V(G⇤) is a sub-sequence of
some vertex v = (v1, . . . , vt+r) in V(G), where for vi in v but not in v0 we have
that vi is in a factor Hi of G not coloured using any one of the colours j1, . . . , js
and hence degHi

j (vi) = 0 = eHi
j [vi] for j 2 {j1, . . . , js}.

By Lemma 2.1.2, we have that for j 2 {j1, . . . , js} and v0 2 V(G⇤),

12



2.2. Strong products of graphs

degG⇤
j
�
v0
�
=

t0

Â
i=1

degH⇤
i

j (vi) +
r0

Â
i=1

degHt+i
j (vt+i)

=
t0

Â
i=1

degHi
j (vi) +

r0

Â
i=1

degHt+i
j (vt+i) * degH⇤

i
j (vi) = degHi

j (vi)

=
t

Â
i=1

degHi
j (vi) +

r

Â
i=1

degHt+i
j (vt+i) * degHi

j (vi) = 0, vi /2 v0

= degG
j (v) for some v 2 V(G)

By a similar argument, we have that eG⇤
j
⇥
v0
⇤
= eG

j [v]. Since G is an (a1, . . . , ak)-
flip graph, it follows that G⇤ is an

�
aj1 , . . . , ajs

�
-flip graph as required.

We briefly note the necessity for multi-coloured factors to be triangle-free
in Lemma 2.1.5: Consider a factor H such as in the proof of Lemma 2.1.5, and
suppose that we consider the subgraph H⇤ induced by the edges of some colour
j. Then there might be a vertex v such that eH

j [v] > eH⇤
j [v], as illustrated in

Figure 2.2 (where eH
j [v] = 2 > 1 = eH⇤

j [v]), potentially resulting in the flipping
constraint to not hold any longer in the graph G⇤ as constructed in the proof.

H H⇤
v v

Figure 2.2: Illustration of how the number of blue edges in a closed neighbour-
hood of a vertex v can decrease when considering a monochromatic subgraph.

2.2 | Strong products of graphs
Another useful graph product shall be the strong product, which we now define
and illustrate how an edge-colouring is inherited from its factors.

Definition 2.2.1 (Strong product). The strong product G ⇥ H of two graphs G
and H is the graph such that V (G ⇥ H) = V(G)⇥ V(H) and there is an edge

13



2.2. Strong products of graphs

{(u, v), (u0, v0)} in G ⇥ H if, and only if, either u = u0 and v ⇠ v0 in H, or v = v0

and u ⇠ u0 in G, or u ⇠ u0 in G and v ⇠ v0 in H.

We extend the edge-colourings of G and H to an edge-colouring of G ⇥ H
as follows. Consider the edge e = {(u, v), (u0, v0)} in G ⇥ H; if u = u0 then e
inherits the colouring of the edge {v, v0} in H, otherwise if u 6= u0 the colouring
of the edge {v, v0} in G is inherited. This colouring inheritance is illustrated in
Figure 2.3, with its properties summarised in Lemma 2.2.2. We refer to G ⇥ H
with its inherited edge-colouring as the coloured strong product of G and H.

Note that the inherited colourings of G ⇥ H and H ⇥ G are different, even
though the two uncoloured graphs are isomorphic.

Figure 2.3: Illustration of Lemma 2.2.2, with the closed neighbourhood of w =
(u, v) in K3 ⇥ P3 highlighted.

Lemma 2.2.2. Let G and H be edge-coloured from {1, . . . , k}. Then in the coloured
strong product G ⇥ H, for any 1  j  k and (u, v) 2 V(G ⇥ H),

i. degj
�
(u, v)

�
= degH

j (v) + degG
j (u)

⇣
1 + degH(v)

⌘

ii. ej
⇥
(u, v)

⇤
= eH

j [v]
⇣

1 + degG(u)
⌘
+ eG

j [u]
✓

1 + degH(v) + 2
k
Â

i=1
eH

i [v]
◆

Proof. Given any u 2 V(G), let Hu be the subgraph of G⇥ H induced by the ver-
tices (u, w) for w 2 V(H), which is isomorphic to H. Consider any vertex (u, v)

14



2.2. Strong products of graphs

in G ⇥ H. We will find the colour degrees and coloured closed neighbourhood
sizes of this vertex

Let {x, y} be an edge in G coloured j. By the definition of the strong product,
in G ⇥ H, the vertex (x, v) in Hx has

��NH[v]
�� edges incident to some vertex in

Hy which will be coloured j. Hence these contribute degG
j (u)

⇣
1 + degH(v)

⌘
to

degj
�
(u, v)

�
. More over, (u, v) has degH

j (u) additional edges coloured j incident
to it in Hu. Therefore (i) follows.

Let H⇤ be the vertex-induced subgraph of H by NH[v], inheriting its edge-
colouring. Between the closed neighbourhoods of (x, v) in Hx and (y, v) in Hy

there are Âw2V(H⇤) 1+degH⇤
(w) edges coloured j, by the definition of the strong

product. By the hand-shaking lemma and the fact that an edge-colouring is a
partition of the edge set, we have that

Â
w2V(H⇤)

1 + degH⇤
(w) = |V(H⇤)|+ 2 |E(H⇤)|

= |V(H⇤)|+ 2
k

Â
i=1

eH⇤
i [v]

= 1 + degH(v) + 2
k

Â
i=1

eH
i [v]

with the last equality following from the definition of H⇤. Hence the edges
coloured j in NG[u] contribute

eG
j [u]

 
1 + degH(v) + 2

k

Â
i=1

eH
i [v]

!

edges coloured j in ej
⇥
(u, v)

⇤
, between 1 + degG(u) copies of H in G ⇥ H.

Each of these 1 + degG(u) copies of H contribute an additional eH
j [v] edges

coloured j amongst the closed neighbourhood of (u, v). Hence (ii) follows.

For special classes of graphs, the expressions in Lemma 2.2.2 simplify greatly,
as illustrated in the following corollary.

Corollary 2.2.3. Let G be a r regular triangle-free graph and let H be the complete
graph on n vertices. Let G and H be edge-coloured from {1, . . . , k}. Then in the coloured
strong product G ⇥ H, for any 1  j  k and (u, v) 2 V(G ⇥ H),

15



2.3. Packing of edge-coloured graphs

i. degj
�
(u, v)

�
= degH

j (v) + n degG
j (u)

ii. ej
⇥
(u, v)

⇤
=

n degH
j (v) (1 + r)

2
+ n2 degG

j (u)

Proof. Since G is triangle-free then eG
j [u] = degG

j (u). Also, for the complete

graph H on n vertices we have that 1 + degH(v) = n and eH
j [v] =

n degH
j (v)

2
.

Substituting into Lemma 2.2.2, the result follows.

2.3 | Packing of edge-coloured graphs
Another useful operation that we will consider is the packing of graphs with an
identified vertex set, which we define next.

Definition 2.3.1 (Graph packing). Two graphs G and H are said to pack if there
exists bijections g : V(G) ! {1, . . . , n} and h : V(H) ! {1, . . . , n} such that the
images of E(G) and E(H) under g and h, respectively, do not intersect.

The packing of G and H is the graph with vertex set {1, . . . , n} and edge set
being union of the images of E(G) and E(H) under g and h, respectively.

An edge-colouring is naturally inherited by a packing of G and H, by keeping
the original colour of every single edge. Note that by the definition of a packing,
the inherited edge-colouring is well-defined.

2.3.1 | Packing of Cayley graphs
If S and T are two disjoint inverse-closed subsets of G not containing 1G, then the
Cayley graph Cay (G; S [ T) is a packing of Cay (G; S) and Cay (G; T). Counting
the colour-degree of every vertex in a packing of two graphs G and H, in terms
of the colour-degrees in G and H, is straight-forward. However counting the
coloured closed neighbourhood sizes in this manner is more difficult.

In certain cases, such as the case when G and H are monochromatically edge-
coloured Cayley graphs on an Abelian group, we can do such counting. This is
summarised in Proposition 2.3.2.
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2.3. Packing of edge-coloured graphs

1G

u = xv
x = uv�1

v
v�1

Figure 2.4: Illustration of the counting argument in the proof of Proposition 2.3.2,
where the red edge {u, x} between two blue neighbours of 1G corresponds to
two blue edges, each incident to a blue and red neighbour of 1G.

Proposition 2.3.2. Let G be an Abelian group and let R, B be disjoint inverse-closed
subsets of G which do not contain 1G. Let G = Cay (G; B) and H = Cay (G; R) be
monochromatically edge-coloured using colours 1 and 2, respectively.

Then in Cay (G; B [ R), for v 2 G,

i. deg1(v) = degG(v) and deg2(v) = degH(v)

ii. e1[v]� e2[v] =
�
eG

1 [v]� eH
2 [v]

�
+
�
eH

2
�

NG(v)
�
� eG

1
�

NH(v)
��

iii. Furthermore, if (R + B) \ R = ∆ and eG
1 [v] > eH

2 [v], then e1[v] > e2[v].

Proof. It suffices to consider a single vertex, say 1G, by virtue of the vertex-
transitivity of Cayley graphs. Note that B = NG(1G) and R = NH(1G). More
so, since R and B are disjoint, the edge-colouring of the packing is well-defined
and N(1G) = B [̇ R. Clearly an edge incident to 1G in the packing of G and
H must be incident to 1G in either G or H. Therefore deg1(v) = degG(v) and
deg2(v) = degH(v). We now count the number of edges coloured 1 in N(1G).
We have three cases for an edge {u, v} coloured 1:

i. Both u and v are in B, of which there are eG
1 (B) such edges.

ii. Both u and v are in R, of which there are eG
1 (R) such edges.

iii. The vertex u is in B and the vertex v is in R. We show that the number of
such edges is 2eH

2 (B), i.e. twice the number of edges coloured 2 amongst
the neighbours of 1G in G.

17



2.3. Packing of edge-coloured graphs

Since {u, v} is coloured 1 then it is an edge in the Cayley graph G. Therefore
there is some x 2 B such that u = xv. Since v�1 2 R, then {u, x} is an edge in H.
Hence x = uv�1 and since G is Abelian and u 2 B, {x, v�1} is an edge in G.

In other words, for every edge {u, x} in H, where u, x 2 B and u = xv for
some v 2 R, there are two edges {u, v} and {x, v�1} in G with one vertex in R
and one vertex in B. This counting argument is illustrated in Figure 2.4.

Hence, e1[1G] = eG
1 [1G] + eG

1 (R) + 2eH
2 (B). Repeating the argument for e2[1G]

and subtracting, we get (ii) as required.
Now, suppose that (R + B) \ R = ∆ and eG

1 [v] > eH
2 [v]. Then given any

u 2 R and v 2 B, we have uv /2 R and therefore {u, uv} is not an edge in the
subgraph of Cay (G; B [ R) induced by R. In other-words, this subgraph has no
edges coloured 1 and therefore eG

1 (R) = 0. Therefore (iii) follows from (ii).
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3

Existence and construction of 2-�ip
graphs

In this chapter we shall completely settle Problems 1.3.2, 1.3.4 and 1.3.5 for the
case when k = 2, whilst also exploring in depth Problem 1.3.3. In particular,
we ask for which positive integers b and r, such that b < r, does a b + r regular
graph G exist with edges coloured from {blue, red} satisfying the following:

i. The subgraphs induced by the blue and red edges are b and r regular respec-
tively, where across the entire graph ‘red’ wins against ‘blue’ since r > b.

ii. On the other-hand, for every vertex v, the number of blue edges in the closed
neighbourhood of v is greater than the number of red edges, and therefore
locally ‘blue’ wins against ‘red’.

Somewhat intuitively, one expects that for (b, r) to be a 2-flip sequence the
disparity between b and r must not be too large, as otherwise if r is much greater
than b then the more difficult it is to have a flip. We shall see that this intuition
is indeed correct — and that such flip graphs can be constructed using a small
number of vertices.

3.1 | Existence of 2-�ip graphs and sequences
Before proceeding any further, it is useful to define a vocabulary for describing
edge-coloured triangles rooted at some vertex.
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In a graph G with edges coloured from {1, 2} and X, Y, Z 2 {1, 2}, a triangle
rooted at a vertex v is said to be of type XYZ at v if the two edges incident to v
are coloured X and Y respectively, and the third edge is coloured Z. We wish to
count the triangles in G based on these types; since a triangle has three vertices,
each will be counted three times.

Let TXYZ(v) be the number of triangles of type XYZ rooted at v. Note that
the types XYZ and YXZ are indistinguishable, and thus we count only one of
them. We shall establish a simple convention, namely that the first two symbols
of the type are written in increasing order. Therefore a triangle rooted at v can
have one of six possible types, illustrated in Figure 3.1.

Type 111 Type 121 Type 221 Type 112 Type 122 Type 222

v v v v v v

Figure 3.1: All six possible triangle types rooted at a vertex v, with blue repre-
senting the colour 1 and red representing the colour 2.

We shall make use of the following two straightforward lemmas.

Lemma 3.1.1. In a graph G with edges coloured from {1, 2}, we have that

2 Â
v2V

T221(v) = Â
v2V

T122(v) and 2 Â
v2V

T112(v) = Â
v2V

T121(v)

Proof. Consider a triangle with two edges coloured 2 and a single edge coloured
1. Since the edges coloured 2 are incident to two vertices, call them u and w, then
rooted at these vertices the triangle must be of type 122 in both cases. Rooted at
the remaining vertex v, the triangle must be of type 221, since the blue edge is
not incident to v.

Consequently, every such triangle is counted once in the summation Â
v2V

T122(v)

and twice in the summation Â
v2V

T221(v). A similar argument follows for the re-

lation between types 112 and 121. The result follows.

20



3.1. Existence of 2-�ip graphs and sequences

Lemma 3.1.2. Let b 2 N and let G be a graph with edges coloured from {1, 2}. If v is
a vertex such that v is incident to b edges coloured using 1, then

T111(v) + T112(v) 
✓

b
2

◆

Proof. Consider the set N(1)(v) of neighbours of v via an edge coloured 1. For
any pair of distinct vertices u, w 2 N(1)(v), either {u, w} is in G or not. Since the
graph is simple, we have that

���N(1)(v)
��� = b and therefore there are at most (b

2)

edges amongst the vertices in N(1)(v).
Each of these edges is coloured using either 1 or 2; more so any triangle of

type 111 or 112 at v corresponds to one of these edges. The result follows.

Having well understood this vocabulary for describing edge-coloured trian-
gles, we are now in a position to establish a necessary condition for 2-flip graphs.

Proposition 3.1.3. Let r, b 2 N such that b < r. Let G be a graph with edges coloured
using {1, 2}, such that each vertex is incident to b and r edges coloured 1 and 2, respec-
tively. If r � (b+1

2 ), then G is not a (b, r)-flip graph.

Proof. Suppose, for contradiction, that G has a suitable edge colouring using
{1, 2} such that it is a (b, r)-flip graph. Note that in a (b, r)-flip graph, for every
vertex v 2 V, since e1[v] = e1(v) + b and e2[v] = e2(v) + r, we require that
e1(v) � e2(v) > r � b. It suffices to show, for contradiction, that there exists a
vertex u such that e1(u)� e2(u)  r � b.

Expressing the sizes of e1(v) and e2(v) in terms of the counts of the six trian-
gle types rooted at v, we obtain the inequality

Â
v2V

(e1(v)� e2(v)) (3.1)

= Â
v2V

⇣
T111(v) + T121(v) + T221(v)

⌘
� Â

v2V

⇣
T222(v) + T112(v) + T122(v)

⌘
(3.2)

= Â
v2V

⇣
T111(v)� T222(v)

⌘
+ Â

v2V

⇣
T121(v)� T112(v)

⌘
+ Â

v2V

⇣
T221(v)� T122(v)

⌘

(3.3)

 Â
v2V

T111(v) + Â
v2V

⇣
T121(v)� T112(v)

⌘
+ Â

v2V

⇣
T221(v)� T122(v)

⌘
(3.4)
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= Â
v2V

T111(v) + Â
v2V

T112(v)� Â
v2V

T221(v) (3.5)

 Â
v2V

T111(v) + T112(v) (3.6)

where (3.5) follows from Lemma 3.1.1.
Now, by Lemma 3.1.2 and the fact that r � (b+1

2 ), we have that for every
vertex v in G:

T111(v) + T112(v) 
✓

b
2

◆
=

✓
b + 1

2

◆
� b  r � b

and therefore by inequality (3.6) we get that

Â
v2V

(e1(v)� e2(v))  |V|(r � b).

By the pigeon-hole principle, it follows that there exists a vertex u 2 V such
that e1(v)� e2(v)  r � b, and therefore G is not a (b, r)-flip.

As an immediate consequence of this result comes the necessity that b � 3.

Corollary 3.1.4. If G is a (b, r)-flip graph, then b � 3.

Proof. Since G is a (b, r)-flip graph, then b < r. Suppose that b < 3. By Propo-
sition 3.1.3, when b is 1 it follows that r  0, which is a contradiction since
b < r. Likewise when b = 2, by Proposition 3.1.3 we have that r  2, which is a
contradiction once again. Therefore b � 3.

We are now in a position to prove our main result for this section, outlining
a full characterisation of 2-flip graphs and sequences.

Theorem 3.1.5. Let r, b 2 N. If 3  b < r  (b+1
2 )� 1 then there exists a (b, r)-flip

graph, and both the upper bound and lower bound are sharp

Proof. That 3  b < r  (b+1
2 )� 1 follows immediately from Proposition 3.1.3

and Corollary 3.1.4. We show that given such r and b, a (b, r)-flip graph exists.
Consider the coloured Cartesian product G = Kr,r ⇤ Kb+1, where the edges

of Kb+1 are coloured using 1 and the edges of Kr,r are coloured using 2.
By virtue of Lemma 2.1.2, it follows that every vertex v in G has deg1(v) = b

and deg2(v) = r. Moreover we have that e1[v] = (b+1
2 ) and e2[v] = r. Hence G is

a (b, r)-flip graph.
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3.1. Existence of 2-�ip graphs and sequences

Remark 3.1.6. Recall that h(b, r) is the number of vertices of the smallest (b, r)-
flip graph. The graph constructed in the proof of Theorem 3.1.5 is a (b, r)-flip
graph having 2r(b + 1) vertices. Hence h(b, r)  2r(b + 1).

3.1.1 | The cases b = 1 and b = 2
As a consequence of Corollary 3.1.4, it turns out that (2, r)-flip graphs do not
exist, and (3, 4) are the smallest parameters such that a (b, r)-flip graph exists.
However, weakening the flipping constraint from e1[v] > e2[v] to e1[v] � e2[v],
then an admissible colouring can be found such that the edges coloured 1 span
a b regular subgraph and the edges coloured 2 span an r regular subgraph. We
term such graphs as weak-flip graphs.

v

N[v]

Figure 3.2: Smallest known (2, 3)-weak-flip graph having 12 vertices, with the
subgraph induced by the closed neighbourhood of any vertex v illustrated on
the right. It is impossible to construct a (2, 3)-flip graph.

The coloured Cartesian product K3,3 ⇤ K3, with K3,3 coloured red and K3

coloured blue, is a (2, 3)-weak-flip graph on 18 vertices. Figure 3.2 illustrates
the existence of a smaller (2, 3)-weak-flip graph, having just 12 vertices.

Likewise, (1, r)-flip graphs do not exist. However, in this case, not even (1, r)-
weak-flip graphs exist.

Proposition 3.1.7. Let r 2 N such that r > 1. Neither a (1, r)-flip graph nor a
(1, r)-weak-flip graph exists.
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3.2. Constructing (small) 2-�ip graphs

Proof. From Corollary 3.1.4, a (1, r)-flip graph certainly does not exist. Consider
the case when r > 2. Suppose that a (1, r)-weak-flip graph G exists. Let v be a
vertex in such a graph. Since each vertex has a single incident edge coloured 1,
then e1[v]  1 + b r

2c < r  e2[v] since r > 2.
In the case when r = 2, suppose that a (1, 2)-weak-flip graph G exists. Then

by the above argument, it follows that e1[v] = e2[v] = 2.
Consider a vertex v with neighbours u, w and x such that {v, w} and {v, u}

are coloured 2 and {v, x} is coloured 1. Clearly {u, w} must be coloured 1 since
e1[v] = e2[v] = 2. But then u has some neighbour y different from v and w, such
that {u, y} is coloured 2. Hence e2[u] � 3, a contradiction.

3.2 | Constructing (small) 2-�ip graphs
For all valid parameters (b, r) for which a (b, r)-flip graph exists, as in Theorem
3.1.5, we have outlined a construction on 2r(b + 1) vertices as highlighted in
Remark 3.1.6. This raises the question of whether this bound is sharp — already
for h(3, 4) we have seen in Figure 1.1 an example of a (3, 4)-flip graph with 16
vertices, smaller than 2r(b + 1) = 32.

In light of this, this section shall be devoted to developing different construc-
tions for 2-flip graphs which significantly improve on this bound.

3.2.1 | Bounding h(b, r) using coloured products
We begin with a generalisation of our construction in the proof of Theorem 3.1.5.

Theorem 3.2.1. Let b, r 2 N such that b < r. Then,

h(b, r)  min
⇢

2(r + x)(b + 1 � x) : x 2 Z, 0  x  b, x +

✓
b + 1 � x

2

◆
> r

�

Proof. Suppose we are given (b, r). Clearly h(b, r)  2r(b + 1) and r < (b+1
2 ) by

Theorem 3.1.5. Let x be an integer for which x + (b+1�x
2 ) > r; by our previous

remark, at least one such x exists (namely x = 0). Consider an edge-colouring
of Kr+x,r+x such that an x-factor is coloured using colour 1 and an r-factor is
coloured using 2. Also consider Kb+1�x where all the edges are coloured by 1.
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3.2. Constructing (small) 2-�ip graphs

By Lemma 2.1.2, every vertex v in the coloured Cartesian product of Kr+x,r+x

and Kb+1�x has deg1(v) = b + x � x = b and deg2(v) = r.
Moreover, e1[v] = x + (b+1�x

2 ) and e2[v] = r (since Kr+x,r+x is bipartite). By
our choice of x, it follows that e1[v] > e2[v].

The upper-bound in Theorem 3.2.1 warrants further analysis. Considering
the case when r = b + 1, the coloured Cartesian product construction Kr,r ⇤ Kr

gave an upper bound on h(b, b + 1)  2(b + 1)2. Perhaps surprisingly, we
shall see that explicit analysis on Theorem 3.2.1 significantly improves the upper
bound to h(b, b + 1)  16(b � 1). We first require the following two lemmas.

Lemma 3.2.2. Let b, r 2 N such that b < r. Define f (x) = 2(r + x)(b + 1 � x).
Then, f (x) < f (x � 1) and, in particular, f (x) < 2r(b + 1).

Proof. Equating f (x) to f (x � 1), it suffices to show that r + 2x > b + 2. This
follows immediately since r > b and x � 1. Hence f (x) is monotonically de-
creasing on N. In particular, f (x)  f (1) < f (0) = 2r(b + 1).

As an immediate consequence of Lemma 3.2.2, we have that the upper bound
in Theorem 3.2.1 always improves upon or (at worst) is equal to the bound
2r(b + 1). We are now in a position to explicitly compute the minimum.

Lemma 3.2.3. Let b, r 2 N such that b < r. Let x0 =

&
b � 1 +

p
1 + 8(r � b)

2

'
� 1.

Then, 2(r + x0)(b + 1 � x0)

= min
⇢

2(r + x)(b + 1 � x) : x 2 Z, 0  x  b, x +

✓
b + 1 � x

2

◆
> r

�

Proof. Let g(z) = z + (b+1�z
2 )� r be a real-valued function. By Lemma 3.2.2 the

minimum, in integer value, is attained for the largest possible integer 0  x0 
b, such that g(x0) > 0. Re-arranging, g(z) can be written as a quadratic in z,

g(z) =
✓

b + 1
2

◆
� r +

✓
1
2
� b

◆
z +

z2

2

which has a minimum, as well as distinct roots z± = b � 1⌥
p

1+8(r�b)
2 .
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3.2. Constructing (small) 2-�ip graphs

Then g(z) > 0 whenever z < z� or z > z+. Since the integer x0 we are
seeking must satisfy x0  b, then the only admissible case when g(x0) > 0 is
when x0 < z�. Since we seek the largest such integer, then

x0 =

&
b � 1 +

p
1 + 8(r � b)

2

'
� 1

which we now show is non-negative.

It suffices to show that b >
1+
p

1+8(r�b)
2 . Re-arranging, we require that

(2b�1)2�1
8 > r � b. Indeed,

(2b � 1)2 � 1
8

=
b2

2
� b

2
=

✓
b + 1

2

◆
� b > r � b

by Theorem 3.1.5. Hence x0 as derived is the largest integer for which the mini-
mum is attained, as required.

Proposition 3.2.4. Let b, r 2 N such that 3  b < r. Then

h(b, r)  2

 
r + b + 1 �

$
5 +

p
1 + 8(r � b)

2

%!$
5 +

p
1 + 8(r � b)

2

%

Proof. Substituting in Theorem 3.2.1 for Lemmas 3.2.2 and 3.2.3, we get that

h(b, r)

 2

 
r � 1 +

&
b � 1 +

p
1 + 8(r � b)

2

'! 
b + 2 �

&
b � 1 +

p
1 + 8(r � b)

2

'!

= 2

 
r + b � 1 +

&
�1 +

p
1 + 8(r � b)

2

'! 
2 �

&
�1 +

p
1 + 8(r � b)

2

'!

= 2

 
r + b � 1 �

$
1 +

p
1 + 8(r � b)

2

%! 
2 +

$
1 +

p
1 + 8(r � b)

2

%!

= 2

 
r + b + 1 �

$
5 +

p
1 + 8(r � b)

2

%!$
5 +

p
1 + 8(r � b)

2

%

as required.

Indeed for the case when r = b + 1, the minimum is obtained at x0 = r � 4.
Then the flip graph G = K2r�4,2r�4 ⇤ K4 from Theorem 3.2.1 is a (b, b + 1)-flip
graph with 16r � 32 vertices, as per our introductory remarks.
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3.2. Constructing (small) 2-�ip graphs

3.2.2 | Bounding h(b, r) through Cayley �ip graphs
It transpires that our recurring example in Figure 1.1 is the packing of two
Cayley graphs for the dihedral group D8, resulting in Cay (D8; R [ B) where
the edges labelled in R = {ab, a�1b, a3b, a�3b} are coloured red whilst those in
B = {a, a�1, b} are coloured blue. With the toolset outlined in Section 2.3.1 on
Cayley graph packings, we shall construct a similar class of Cayley flip graphs
associated with cyclic groups.

Let b, r 2 N satisfy the conditions for (b, r) to be a flip sequence. Suppose that
for some Abelian group G we can construct two Cayley graphs G = Cay (G; B)
and H = Cay (G; R) satisfying the conditions in Proposition 2.3.2 (iii), |B| = b
and |R| = r. Then their packing is a (b, r)-flip graph (which in particular turns
out to be another Cayley graph).

For the case when G = Zn, finding such sets R and B entails finding suitably
large subsets of Zn which are both inverse-closed and sum-free. Sum-free sets
in Abelian groups have been studied vastly and are of interest in additive com-
binatorics and number theory, see Alon and Kleitman (1990); Green and Ruzsa
(2005); Tao and Vu (2016). We therefore begin with the following useful lemma.

Lemma 3.2.5. If A is a non-empty subset of the integer interval
�n

8 , n
4
�

in Zn, then
A [ A�1 is a set of order 2|A| which is sum-free and inverse-closed.

Proof. Let A be as above. Firstly note that A�1 ✓
� 3n

4 , 7n
8
�
, and therefore 2A ✓

�n
4 , n

2
�

and 2A�1 ✓
�n

2 , 3n
4
�
. Moreover, A + A�1 ✓

�7n
8 , n

�
[
�
0, n

8
�
.

Therefore we have that A [ A�1 is sum-free, since none of the sums intersect
the interval

�n
8 , n

4
�

containing A and the interval
�3n

4 , 7n
8
�

containing A�1.
More so, since A \ A�1 = ∆ and A contains no involutions, it follows that

A [ A�1 has order 2|A|.

Furthermore, we will also require the following lemma.

Lemma 3.2.6. Let A0, B0 be non-empty disjoint integer intervals of
�n

8 , n
4
�

in Zn, such
that max (A0) < min (B0). Let B1 ✓ B0 be an integer interval, A = A0 [ A�1

0
and B = B0 [ B�1

0 [ 2B1 [ 2B�1
1 . Then, (A + B) \ A = ∆. Moreover if n is even,

�
A +

�n
2
 �

\ A = ∆ and furthermore if min(B1) � 3n
16 then

��n
2
 
+ B

�
\ A = ∆.
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3.2. Constructing (small) 2-�ip graphs

Figure 3.3: Illustration of the sets and sum-sets of interest in Lemma 3.2.6. The
cyclic group Zn is represented as a ‘clock’ with its elements written in a ‘clock-
wise’ fashion. The outermost ring illustrates the sets composing A and B, whilst
the three inner rings highlight the possible sum-sets involving A and B. Ob-
serve that none of these sum-sets intersect the set A = A0 [ A�1

0 , and therefore
(A + B) \ A = ∆.

Proof. Since A0 and B0 are disjoint intervals of
�n

8 , n
4
�

such that max (A0) <

min (B0), then there exists integers m, l, M, L such that n
8 < m < l < L < M < n

4 ,
A0 = [m, l] and B0 = [L, M]. Observe that the sets A0, B0, 2B1 and their inverses
are all disjoint and, in the case when n is even, none include the involution n

2 .
We consider every possible summation across these sets, in order to show

that (A + B)\ A = ∆, as required. Figure 3.3 illustrates the sets and sum-sets of
interest, highlighting their non-intersection with A.

Firstly note that since A0 and B0 are disjoint subsets of
�n

8 , n
4
�

then any possi-
ble sum between them and their inverses does not intersect (in particular) A, as
a consequence of Lemma 3.2.5.
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3.2. Constructing (small) 2-�ip graphs

Also, A0 + 2B1 is a subset of
�3n

8 , 3n
4
�

whilst A�1
0 + 2B�1

1 is a subset of
�n

4 , 5n
8
�
,

and therefore they do not intersect A.
Now, min

⇣
A0 + 2B�1

0

⌘
= (m � 2M) mod n > max(A0) and

max
⇣

A0 + 2B�1
0

⌘
= l � 2L < �l = min

⇣
A�1

0

⌘
.

Hence
⇣

A0 + 2B�1
0

⌘
\ A = ∆. Since B1 ✓ B0 we have

⇣
A0 + 2B�1

1

⌘
\ A = ∆.

Similarly we have that
⇣

A�1
0 + 2B1

⌘
\ A = ∆. This covers all possible cases and

therefore we have that for our choice of A and B, (A + B) \ A = ∆ is satisfied.
We now consider the case when n is even. Since A+

�n
2
 
✓
⇥n

4 , 3n
8
⇤
[
⇥ 5n

8 , 3n
4
⇤

then
�

A +
�n

2
 �

\ A = ∆ as required. Also,
�n

2
 
+ B0 [ B�1

0 ✓
⇥n

4 , 3n
8
⇤
[
⇥ 5n

8 , 3n
4
⇤

and min
⇣�n

2
 
+ 2B�1

1

⌘
> 0. If min(B1) � 3n

16 , then

max
⇣nn

2

o
+ 2B�1

1

⌘
=

n
2
� 2 min(B1) 

n
8

and consequently
⇣�n

2
 
+ 2B�1

1

⌘
\ A = ∆. By a similar argument we obtain

that
��n

2
 
+ 2B1

�
\ A = ∆ and hence

��n
2
 
+ B

�
\ A = ∆, as required.

10 9 8

28

�8�9�10

22�22

1211�11�12
T�1

0 T0

2T22T�1
2

R�1
0

R0

Figure 3.4: Illustration of the closed neighbourhood of the identity in the Cayley
graph construction for (b, r) = (6, 7) and n = 56 in the proof of Theorem 3.2.7,
with the choice of R0, T0 and T2 highlighted.

Equipped with this lemma and Proposition 2.3.2 (iii), we are able to construct
small 2-flip graphs for a wide range of admissible 2-flip sequences. Figure 3.4 is
an illustration of the construction presented in the following theorem.
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3.2. Constructing (small) 2-�ip graphs

Theorem 3.2.7. Let b, r 2 N such that 4  b < r < b + 2
j

b+2
6

k2
. Then,

h(b, r)  8lb,r

✓
2 +

�
r
2

⌫
+

�
b + 2

2

⌫
� 2

�
b + 2

6

⌫◆

where lb,r = max{1, (b mod 2) + (r mod 2)}.

Proof. Let n 2 N such that n = 8
⇣

2 +
⌅ r

2
⇧
+
⌅ b+2

2
⇧
� 2

⌅ b+2
6
⇧⌘

and consider Zn,
the additive group modulo n. By this choice of n, the interval

�n
8 , n

4
�

has two
disjoint integer intervals R0 and T0 of sizes

⌅ r
2
⇧

and
⌅ b+2

2
⇧
� 2

⌅ b+2
6
⇧

respectively.
Choose these intervals such that max (R0) < min (T0). We have that
⌅ b+2

2
⇧
� 2

⌅ b+2
6
⇧
=
⌅ b+2

6
⇧
+
⌅ 1

2
�
b + 2 � 6

⌅ b+2
6
⇧�⇧

=
⌅ b+2

6
⇧
+
⌅ (b+2) mod 6

2
⇧

and therefore T0 has at least
⌅ b+2

6
⇧

integers. By our choice of n, we can choose
T0 such that it has a sub-interval T2 of size

⌅ b+2
6
⇧
, and min(T2) � 3n

16 since R0

contains at least half of the interval
�n

8 , n
4
�
.

Define the sets R1 = R0 [̇ R�1
0 and T1 = T0 [̇ T�1

0 , which are inverse-closed
and sum-free. Define B1 = T1 [̇ 2T2 [̇ 2T�1

2 . Since T2 is an integer interval and
2T2 is the sum-set of T2 with itself, then |2T2| = 2|T2|� 1. Moreover, |T2| = |T�1

2 |
and |T0| = |T�1

0 |. Therefore,

|T1|+ |2T2|+
���2T�1

2

��� = 2|T0|+ 4|T2|� 2 = 6
�

b + 2
6

⌫
+ 2

�
(b + 2) mod 6

2

⌫
� 2

and hence |B1| = b � (b mod 2).
The sets R1 and B1 have even size, and we may need to add some involutions

to them to get the size equal to r and b respectively (which may be odd). Three
cases may arise:

i. Both r and b are even and therefore |R1| = r and |B1| = b. In this case let
G = Zn, R = R1 and B = B1. Consequently, lb,r = 1.

ii. Either r is odd or b is odd, in which case we let G = Zn. If r is odd we
define R = R1 [ {n

2} and B = B1. Else if b is odd we define R = R1 and
B = B1 [ {n

2}. Consequently R and B are inverse-closed and have size r and
b respectively. Moreover, R is sum-free. In this case lb,r = 1.
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3.2. Constructing (small) 2-�ip graphs

iii. Both r and b are odd, in which case we let G = Z2 ⇥ Zn. Define B =

({0}⇥ B1) [ {(0, n
2 )} and R = ({0}⇥ R1) [ {(1, 0)}, noting that (0, n

2 ) and
(1, 0) are involutions in Z2 ⇥ Zn. Moreover, R is sum-free by choice of R1

and by the properties of the direct product. In this case lb,r = 2.

Consider H = Cay (G; R) coloured monochromatically using colour 2. Since
R is sum-free, then eH

2 [v] = r = degH
2 (v) for any v in G.

Now consider G = Cay (G; B) coloured monochromatically using colour 1.

For any v in G, degG
1 (v) = b. Moreover, there are at least 2

j
b+2

6

k2
edges in the

open neighbourhood of v, since the group is Abelian and therefore the
j

b+2
6

k2

sums from T2 to 2T2, and from T�1
2 to 2T�1

2 , all contribute an edge to the open
neighbourhood. Hence,

eG
1 [v] � b + 2

�
b + 2

6

⌫2
> r = eH

2 [v]

Finally observe that by construction, as a consequence of Lemma 3.2.6 and
properties of the direct product, (R + B) \ R = ∆. By Proposition 2.3.2 (iii),
Cay (G; R [ B) is a (b, r)-flip graph and by our choice of G, the bound on h(b, r)
follows.

It is worth comparing this bound to the bound given in Proposition 3.2.4. We
begin by noting that this bound is significantly better than the one in Proposition

3.2.4. This is illustrated in Figure 3.5, for fixed b and 1 < r � b < 2
j

b
6

k2
.
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200
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800
1000
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b = 25

Figure 3.5: Comparison of the bounds in 4 Theorem 3.2.4 and • Theorem 3.2.7
for b = 11 and b = 25 over the common range for r between the two bounds.
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3.2. Constructing (small) 2-�ip graphs

Observe, however, that the bound in Proposition 3.2.4 holds for a wider
range of values of b, suggesting that further work is to be done towards a uni-
fied bound. Over the range for which the bound in Theorem 3.2.7 holds, we
have that it is asymptotically the best possible.

Corollary 3.2.8. Let b, r 2 N, 4  b < r < b + 2
j

b+2
6

k2
. Then h(b, r) is Q(b + r).

Proof. That h(b, r) is O(b + r) follows immediately from Theorem 3.2.7. More-
over, since any graph realising the flip sequence (b, r) must be b+ r regular, then
b + r  h(b, r) and hence h(b, r) is W(b + r).
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4

Existence and construction of
t-neighbourhood �ip graphs

We have so far considered an in-depth treatment of the flip colouring of graphs
with regards to the immediate neighbourhood of a vertex. A natural exten-
sion of this problem, as outlined in Problem 1.3.7, is to consider not just a flip
in the immediate neighbourhood of a vertex v, but in all the neighbourhoods
N1[v], N2[v], . . . , Nt[v] for some 1  t < diam(G).

Before proceeding further, we require an adaptation of our existing notation.
Let k 2 N and let G be a graph with an edge-colouring from {1, . . . , k}. For a ver-
tex v and t 2 N, let ej,t(v) =

��Ej(G) \ E (Nt(v))
�� and ej,t[v] =

��Ej(G) \ E (Nt[v])
��.

Note that when t = 1 the above reconciles with our previous definitions. We
now extend our general flip colouring problem to t-neighbourhoods. Given a
graph G = (V, E), and k, t 2 N such that k � 2, we are interested in whether
there exists an edge-colouring f : E(G) ! {1, . . . , k} such that:

i. for every v 2 V, degj(v) > degi(v) for 1  i < j  k, forcing a global
majority ordering ej > ei,

ii. and for every v 2 V and 1  l  t, ej,l[v] < ei,l[v] for 1  i < j  k, resulting
in a local opposite majority ordering up to a distance t with respect to the
global ej and the local degj(v).

If such an edge-colouring exists then G is said to be a ([t], k)-flip graph. When
we do not concern ourselves with the number of colours used, we shall simply
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say that G is a [t]-flip graph.
As before, we shall consider a more restricted version of this problem, where

for every j 2 {1, . . . , k}, the edge-set Ej spans a regular subgraph of degree aj,
where a1 < a2 < · · · < ak. We term such graphs as ([t], (a1, . . . , ak))-flip graphs.

In this chapter we shall consider the existence of ([t], 2)-flip graphs, through
two different perspectives, namely through Cayley graphs and packing argu-
ments. The existence of [t]-flip graphs on three or more colours remains wide
open at the time of writing, and is a potentially interesting line of research.

An illustrative example of a ([t], 2)-flip graph is given in Figure 4.1. The
edges between the first and second neighbourhoods are illustrated on a separate
figure for clarity.
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Figure 4.1: The neighbourhoods N0(48), N1(48) and N2(48) of Cay (Z48; R [ B)
drawn layered left to right, where R = {4, 5, 6, 24, 42, 43, 44} and B =
{1, 2, 3, 45, 46, 47}. The graph is a ([2], (6, 7))-flip graph.
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4.1. Constructing ([t], 2)-�ip graphs through Cayley graphs

4.1 | Constructing ([t], 2)-�ip graphs through
Cayley graphs

This subsection shall be devoted to demonstrating the existence of ([t], 2)-flip
graphs through the perspective of algebraic graph theory, namely Cayley graphs.

By 0 we shall denote the all-zeros vector in Zn
2 . Given any i 2 {1, . . . , n}, let

ei be the vector in Zn
2 which is 1 at the ith position, and 0 everywhere else. Now,

given any 1  s  n and 0  l  n � s, we denote by Ws,l the set of all binary
vectors with the first s entries all zero and exactly l non-zero subsequent entries,
namely

Ws,l =

(
w 2 Zn

2 : w ·
 

s

Â
i=1

ei

!
= 0 ^ w ·

 
n

Â
i=s+1

ei

!
= l

)

Having established our working notation, we now proceed to prove our
main result for this section.

Theorem 4.1.1. Let s, t 2 N, t < s. There exists a ([t], (2s � 1, 2s))-flip graph.

Proof. Let n = 2s + s. Consider H = span{e1, . . . , es} and let B = H\{0}. Since
H is a sub-space of Zn

2 , we have that |B| = 2s � 1. Let R = {es+1, . . . , en};
by our choice of n, we have that |R| = 2s. Consider Cay (Zn

2 ; R [ B) with the
edge-colouring f : E ! {1, 2} such that given v 2 Zn

2 and a 2 R [ B:

f ({v, av}) =

8
<

:
1, a 2 B

2, a 2 R

Note here that |R [ B| = 2s+1 � 1 > 2s + s and therefore R [ B spans Zn
2 .

Moreover, each ei is an involution and therefore R [ B is inverse-closed. Clearly
also, R \ B = ∆ and therefore the edge-colouring f is well-defined.

Since a Cayley graph is vertex-transitive, it suffices to consider a single ver-
tex. Consider 0 2 Zn

2 ; by the edge-colouring f , we have that

deg1(0) = 2s � 1 < 2s = deg2(0)

and by vertex-transitivity the same holds for all v 2 Zn
2 .
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4.1. Constructing ([t], 2)-�ip graphs through Cayley graphs

Now, N1(0) = R [ B; we will add R and B to N1(0) so that we find the
vertices in N2(0). Since B [ {0} is a vector-space, then in particular B + B = B.
On the other-hand, adding B to R results in the set B + Ws,1. Hence, (R [ B) +
B = B + Ws,1. Since neither R nor B includes 0, it follows that (R [ B) \ (B +

Ws,1) = ∆ and therefore B + Ws,1 ✓ N2(0). Likewise, adding R to B gives
B + Ws,1 once more and R + R = Ws,2. Therefore,

N2(0) = (B + Ws,1) [̇ Ws,2

and repeating the above argument for 1  l < t, we get that:

Nl+1(0) = (B + Ws,l) [̇ Ws,l+1.

Note that for w 2 Ws,l, B + w is a clique isomorphic to K2s�1 since w is not
in the span of B. More so, for w1, w2 2 Ws,l such that w1 6= w2, we have that
(B+w1)\ (B+w2) = ∆. Therefore, (2s � 1)(n�s

l ) = (2s � 1)(2s

l ) edges coloured
1 arise between Ws,l and B + Ws,l. Observe also that (R + Nl(0)) \ Nl(0) = ∆,
and therefore the subgraph induced by Nl(0) contains no edges coloured 2.

K2s�1 K2s�1

B + w1 B + w
(2s

l )

w1 w
(2s

l )

K2s�1 K2s�1

( 2s

l�1) cliques

(2s

l ) blue cliques

(2s

l ) vertices

(2s � 1)(2s

l )

(2s � l + 1)( 2s

l�1)
red matchings

blue edges

(2s � l)(2s

l )
red edges

( 2s

l+1) vertices

B + Ws,l�1

B + Ws,l

Ws,l+1

Ws,l

Figure 4.2: Illustration of the edges between Nl(0) and Nl+1(0), with blue and
red representing the edge colours 1 and 2, respectively.
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4.1. Constructing ([t], 2)-�ip graphs through Cayley graphs

The edges coloured 1 between Nl(0) and Nl+1(0) arise by adding B to Ws,l

and therefore by our previous remark there are (2s � 1)(2s

l ) such edges. Mean-
while, the edges coloured 2 between Nl(0) and Nl+1(0) arise by adding R to
Nl(0). Adding R to Ws,l results in (2s � l)|Ws,l| = (2s � l)(2s

l ) edges coloured 2
between Nl(0) and Nl+1(0). On the other-hand, adding R to B + Ws,l�1 maps
each clique in B+Ws,l�1 to a total of 2s � l + 1 cliques in B +Ws,l, with a perfect-
matching between every such pair of cliques. Therefore, there are an additional
(2s � 1)(2s � l + 1)( 2s

l�1) edges coloured 2 between Nl(0) and Nl+1(0). These
edges between Nl(0) and Nl+1(0) are illustrated in Figure 4.2.

By our previous remark, the subgraph induced by Nl+1(0) contains no edges
coloured 2 and hence it follows that:

e2,l+1[0] = e2,l[0] + (2s � 1)(2s � l + 1)
✓

2s

l � 1

◆
+ (2s � l)

✓
2s

l

◆
(4.1)

while between the vertices in Nl+1(0) there are (n�s
l ) = (2s

l ) cliques coloured 1
which are isomorphic to K2s�1 and therefore:

e1,l+1[0] = e1,l[0] +

✓
2s � 1

2

◆✓
2s

l

◆
+ (2s � 1)

✓
2s

l

◆
= e1,l[0] +

✓
2s

2

◆✓
2s

l

◆
(4.2)

Now consider,

(2s � 1)(2s � l + 1)
✓

2s

l � 1

◆
+ (2s � l)

✓
2s

l

◆

= (2s � 1)l
✓

2s

l

◆
+ (2s � l)

✓
2s

l

◆

 (2s � 1)(l + 1)
✓

2s

l

◆
* 2s � l  2s � 1

<

✓
2s

2

◆✓
2s

l

◆
* l + 1  t  s � 1 <

2s

2

and consequently, from (4.1) and (4.2), if e2,l[0] < e1,l[0] then

e2,l+1[0] < e1,l+1[0] (4.3)

for 1  l < t.
We shall proceed by finite-induction on l. By choice of R and B, we have

that the vertices of B in Cay (Zn
2 ; R [ B) induce the complete graph K2s�1 and
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4.2. Constructing ([t], 2)-�ip graphs through packings

therefore
e1,1[0] = (2s � 1) +

✓
2s � 1

2

◆
=

✓
2s

2

◆

while the vertices in R are all linearly-independent and hence e2,1[0] = 2s. Clearly
the graph is ([1], (2s � 1, 2s))-flipping; hence the base-case holds. We now show
that the graph is ([l + 1], (2s � 1, 2s))-flipping for 1  l < t.

Indeed, suppose that the graph is ([l], (2s � 1, 2s)-flipping. Then the result
immediately follows by (4.3).

4.2 | Constructing ([t], 2)-�ip graphs through
packings

This subsection shall be devoted to demonstrating the existence of ([t], 2)-flip
graphs using two classical graph theoretic results, concerned with the existence
of r regular graphs with large girth, and with graph packings.

Theorem 4.2.1 (Erdős and Sachs (1963)). Given any r, k 2 N, there are infinitely
many connected r regular graphs with girth k.

Theorem 4.2.2 (Catlin (1976); Sauer and Spencer (1978)). Let G and H be two
graphs on n vertices, such that 2D(G)D(H) < n. Then there exists a packing of G
and H into an n vertex graph, with no overlapping edges.

A tree T rooted at a vertex v and of depth t + 1 is said to be perfect if every
vertex in Nl[v] has b neighbours in Nl+1[v], for 0  l  t, and every leaf has
depth t+ 1. We are now in a position to prove our main result for this subsection.

Theorem 4.2.3. Let t 2 N. There exists infinitely many ([t], 2)-flip graphs.

Proof. Let b, r 2 N such that for some q 2 N, q � 2, we have that (q + 1)b � r �
2b + 1 and b � 2(q + 3)t. We will construct a

�
[t], (2b, r)

�
-flip graph.

Suppose that G⇤ and H⇤ are connected graphs such that G⇤ is r regular with
girth g(G⇤) > 2((q + 3)b)t, and H⇤ is b + 1 regular with very large girth, and
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4.2. Constructing ([t], 2)-�ip graphs through packings

hence L(H⇤) is 2b regular. The existence of such graphs G⇤ and H⇤ with pre-
scribed degree and girth is guaranteed by Theorem 4.2.1. We shall assume sub-
sequently that G⇤ and H⇤ are as large as necessary.

Let p, p0 2 N such that 2D(G⇤)D(L(H⇤)) < p |V(G⇤)| = p0 |V (L(H⇤))|.
Then let G = pG⇤ and H = p0L(H⇤). Since G and H are the union of disjoint
copies of G⇤ and L(H⇤) respectively, we have that D(G⇤) = D(G) and D(H) =

D(L(H⇤)). Furthermore, g(G) = g(G⇤). We will colour all the edges of H using
1 and all the edges of G using 2.

Consider the vertex {x, y} in H. Since the girth of H⇤ is arbitrarily large, and
in particular much larger than t, it follows that in H⇤, x and y are roots of two
disjoint copies of a perfect tree T of depth l + 1, for 1  l  t. Joining these
two trees by the edge {x, y}, the line graph of the resulting graph is two copies
of some block graph with (b + 1)-cliques, coalesced at the vertex {x, y}. The
number of (b + 1)-cliques is, by virtue of T being a perfect tree,

2

 
l�1

Â
i=0

bi

!
= 2

 
bl � 1
b � 1

!

and consequently for any vertex v = {x, y} in H, noting that all the edges in H
are coloured 1, we have that

eH
1,l[v] = 2

 
bl � 1
b � 1

!✓
b + 1

2

◆
=

�
bl+1 � b

�
(b + 1)

b � 1
> bl+1 (4.4)

for 1  l  t.
Now, these two graphs G and H can be packed by Theorem 4.2.2 into a graph

Q with no overlapping edges, while preserving their edge colourings. By this
packing, Q is r + 2b regular, where every vertex has 2b incident edges coloured
1 and r incident edges coloured 2. We will show that for any vertex v, e1,l[v] >
e2,l[v] in Q for 1  l  t, and hence Q is a ([t], (2b, r))-flip graph.

We first compute an upper bound for the cardinality of |Nl[v]| for any v 2
V(Q), observing that as Q is r + 2b regular, and G⇤ and H⇤ are connected and
can be arbitrarily large, it follows that Nl�1[v] is strictly contained in Nl[v] for
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4.2. Constructing ([t], 2)-�ip graphs through packings

2  l  t. Firstly observe that for an s regular graph we have that

|Nl[v]|  1 + s + s(s � 1) + · · ·+ s(s � 1)l�1 = 1 + s
l�1

Â
i=0

(s � 1)i < 2sl

recognising that the last inequality arises from a geometric sum. Since Q is r+ 2b
regular and r  (q + 1)b, by the previous computation it follows that

|Nl[v]| < 2(r + 2b)l  2((q + 3)b)l (4.5)

for 1  l  t.
Due to the girth condition on G, we have that for 1  l  t, g(G) > |Nl[v]|.

Hence, the subgraph in Q induced by the edges coloured 2 in Nl[v] is acyclic,
and therefore

eQ
2,l[v] < |Nl[v]| < 2((q + 3)b)l

by (4.5). We also have, by (4.4), that

eQ
1,l[v] � eH

1,l[v] � bl+1

Therefore, for 1  l  t, to flip the majority in the lth neighbourhood of v we
require that 2((q + 3)b)l  bl+1, which simplifies to 2(q + 3)l  b, which is the
case since 2(q + 3)t  b and l  t. Hence Q is a ([t], (2b, r))-flip graph.

By the arbitrariness of q, it follows that for a given t there exists infinitely
many such constructions. The result follows.
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5

Existence and construction of k-�ip
graphs for k � 3

In this chapter we shall be concerned with Problems 1.3.2, 1.3.4 and 1.3.5 for the
case when k � 3, as well as Problem 1.3.6 on flipping-intervals. As it shall be-
come apparent, the case when k � 3 is astoundingly different and more difficult
than the case when k = 2.

We first begin by considering the case when k = 3, giving necessary condi-
tions for 3-flip sequences. We then introduce another technical tool, namely a
new class of graphs which will be useful for constructing flipping intervals in
subsequent sections.

Through the existence of flipping intervals, we then give sufficient conditions
for the recognition of k-flip sequences, namely that the largest colour degree
must be quadratically bound in terms of the smallest. We conclude by consid-
ering whether this condition is necessary for the recognition of a k-flip sequence
when k � 4.

5.1 | Necessary conditions for 3-�ip sequences
Unlike the case of two colours where (b, r)-flip sequences were completely char-
acterised by the relation 3  b < r < (b+1

2 ) in Theorem 3.1.5, for k � 3 colours we
don’t have a characterisation of k-flip sequences. Our first result, nonetheless,
establishes a necessary condition for 3-flip sequences.
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5.1. Necessary conditions for 3-�ip sequences

Theorem 5.1.1. Let a1, a2, a3 2 N. If (a1, a2, a3) is a 3-flip sequence, then a3  2(a1)2.

Proof. Suppose on the contrary that (a1, a2, a3) is a flip sequence realised by some
graph G, but that 2a2

1 < a3. We shall prove that for some vertex v of G, e1[v] 
e2[v] or e1[v]  e3[v]. For i 2 {1, 2, 3}, define the set N(i)(v) of neighbours u of v
such that the edge {v, u} is coloured i.

Since |N(1)(v)| = a1, there are at most (a1
2 ) edges in N(1)(v) coloured using

1, which leaves at least e1[v]� (a1)2 edges of N[v] coloured 1. We may assume
e1[v] � (a1)2 � 0, otherwise we are done. Every such ‘remaining’ edge {u, w}
must have both endpoints in either N(2)(v) or N(3)(v), and therefore {v, u, w} is
a triangle such that the edges {v, u} and {v, w} are coloured using either 2 or 3.

Hence each of the e1[v]� (a1)2 triangles contributes two edges coloured us-
ing either 2 or 3, to some open neighbourhood, and the number of edges coloured
using 2 or 3 in all open neighbourhoods is at least Âv2V 2

�
e1[v]� (a1)2�.

By a simple application of the pigeon-hole principle, there must be some
vertex v with at least 2

�
e1[v]� (a1)2� edges coloured using 2 or 3 in its open

neighbourhood. Thus,

e2[v] + e3[v] � a3 + a2 + 2e1[v]� 2(a1)
2

but a3 + a2 + 2e1[v]� 2(a1)2 � 2e1[v] since a3 + a2 � 2(a1)2 � a3 � 2(a1)2 � 0.
Hence e3[v] + e2[v] � 2e1[v]. But this means that e1[v]  e2[v] or e1[v]  e3[v],

which is a contradiction since G is a flip graph.

In view of Theorem 5.1.1, it is of interest to find constructions of 3-flip se-
quences (a1, a2, a3) with as large as possible a constant c such that a3 = c(a1)2.
As we have no characterisation of 3-flip sequences, it is also of interest to outline
some methods of construction, such as the following proposition.

Proposition 5.1.2. Let a1, a2, a3 2 N such that a1 < a2 < a3. If H is an (a2, a3)-flip
graph with e3[v] < e2[v] < (a1+1

2 ), then (a1, a2, a3) is a 3-flip sequence.

Proof. Consider the coloured Cartesian product G = H ⇤ Ka1+1 where H is
coloured using 2 and 3, and Ka1+1 is coloured using 1. Then G is a graph with
colour-degrees ai for colour i 2 {1, 2, 3}. Moreover, e3[v] < e2[v] < (a1+1

2 ) =

e1[v]. Hence G is an (a1, a2, a3)-flip graph and we are done.
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5.2. (r, c)-constant graphs

Constructing 3-flip sequences (a1, a2, a3) using Proposition 5.1.2 is feasible
when a2 and a3 are not too far apart. For example, through Theorem 3.2.1 and
the minimising value in Lemma 3.2.3, we have seen the existence of (b, b + 1)-
flip graphs with e1[v] = b + 3 and e2[v] = b + 1 for any b � 3.

Hence with a2 = b, a3 = b + 1 and a1 < a2 such that b + 3 < (a1+1
2 ), it follows

that (a1, a2, a3) is a 3-flip sequence. Indeed, b + 3 < (b
2) whenever b > 4.

Corollary 5.1.3. Let b 2 N, b > 4. Then (b � 1, b, b + 1) is a 3-flip sequence.

5.2 | (r, c)-constant graphs
Two very important and well-studied classes of graphs are graphs with constant
link and (r, b)-regular graphs. A graph G is said to be a constant link graph if
there exists a graph H such that for every vertex v 2 V, the subgraph induced
by N(v) is isomorphic to H. The graph H is called a link graph. The existence
of such graphs and the problem concerning which graphs H can be link graphs
in constant link graphs is an old and mostly unsolved problem, stated first by
Zykov (1964). This problem received much attention over the years, some of
which we highlight in chronological order: Blass et al. (1980), Hall (1985), Lar-
rión et al. (2011), and Conder et al. (2021).

On the other-hand, a graph G is said to be an (r, b)-regular graph if it is an r
regular graph such that for every vertex v 2 V, the subgraph induced by N(v)
is a b regular graph. Hence for such graphs, e[v] = r + br

2 . For a recent article
and further references, see Conder et al. (2021).

Generalising these two families of graphs, we introduce the family of (r, c)-
constant graphs, which are r regular graphs such that every vertex v 2 V has c
edges in its open neighbourhood, i.e. e(v) = c and consequently e[v] = r + c.

Observe that every constant link (respectively (r, b)-regular) graph is an (r, c)-
constant graph, but an (r, c)-constant graph need not be a constant link (respec-
tively (r, b)-regular) graph. Figure 5.1 illustrates the hierarchy of many impor-
tant families of graphs in relation to (r, c)-constant graphs.

Similar to flip graphs, we can construct ‘new’ (r, c)-constant graphs from
‘old’, using the Cartesian product. This is summarised in Proposition 5.2.1.
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5.2. (r, c)-constant graphs

Figure 5.1: Hierarchy of (r, c)-constant graphs and their sub-families of interest.

Proposition 5.2.1. If G and H are, respectively, (r1, c1)-constant and (r2, c2)-constant
graphs, then their Cartesian product G ⇤ H is an (r1 + r2, c1 + c2)-graph.

One can also define the spectrum of c, denoted by spec(c), which is the set of
all integers r such that an (r, c)-graph exists. We note that spec(c) is in fact deter-
mined by the smallest r for which an (r, c)-graph G exists, as by the proposition
above we have that G ⇤ K2 is an (r + 1, c)-graph.

Our treatment of (r, c)-constant graphs shall be limited in scope, namely with
regards to questions on their existence, however a more complete treatment is
given in Caro and Mifsud (2024a). A public database of several (r, c)-constant
graphs is also maintained by Caro and Mifsud (2024b).

Before proceeding any further, however, we provide some motivation for
the introduction of such graphs. Suppose that for some r1, r2, c1, c2 2 N such
that r1 < r2 but r1 + c1 > r2 + c2, (r1, c1)-constant and (r2, c2)-constant graphs
exist. Let these graphs be G and H respectively. Then not only is G ⇤ H an
(r, c)-constant graph by virtue of Proposition 5.2.1, but if we monochromatically
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5.2. (r, c)-constant graphs

colour the edges of G and H distinctly then by the CCP Lemma I (Lemma 2.1.3),
we have that G ⇤ H is an (r1, r2)-flip graph.

5.2.1 | Existence of (r, c)-constant graphs
A natural problem regarding (r, c)-constant graphs, given r 2 N, is that of find-
ing for which integers c, 0  c  (r

2), does an (r, c)-constant graph exist.
The spectrum of r, denoted by spec(r), is the set of all such integers c such that

an (r, c)-constant graph exists:

spec(r) =
⇢

c 2 Z : 0  c 
✓

r
2

◆
, an (r, c)-constant graph exists

�

The following theorem demonstrates that, in fact, spec(r) contains nearly all
of the integral interval

⇥
0, (r

2)
⇤
.

Theorem 5.2.2 (Existence of (r, c)-constant graphs). Let r 2 N.

i. For every integer c such that 0  c  r2

2
� 5r

3
2 , c 2 spec(r). Hence there exists

an (r, c)-constant graph.

ii. Suppose k 2 N and r � 3k. Then (r
2)� k /2 spec(r). Hence there does not exist an

�
r, (r

2)� k
�
-constant graph.

Before proceeding with the proof of Theorem 5.2.2, we recall a seemingly
unrelated theorem concerning the feasibility problem for line graphs. Let N, M
be integers such that N � 1 and 0  M  (N

2 ). Given a family of graphs F ,
we say that (N, M) is a feasible pair for F if there exists a graph G 2 F with N
vertices and M edges. Otherwise we say (N, M) is non-feasible pair for F .

Theorem 5.2.3 (Caro et al. (2023b), Lemma 3.4). The smallest value of M for which
(N, M) is a non-feasible pair for the line graphs of star-forests satisfies M > N2

2 � 5N
3
2 .

We now proceed to prove Theorem 5.2.2.

Proof. Let N 2 N. If M is an integer such that 0  M  N2

2 � 5N
3
2 , as a conse-

quence of Theorem 5.2.3, there exists a star-forest F =
sS

j=1
K1,aj such that its line

graph H = L(F) has N vertices and M edges.
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Observe that, since for a star K1,n we have L(K1,n) = Kn, then N = Âs
j=1 aj

and M = Âs
j=1 (

aj
2 ).

Consider the modified star-forest F⇤ =
sS

j=1
K1,aj+1. The line graph H⇤ =

L (F⇤) has components Kaj+1 for 1  j  s. In every component Kaj+1, for
1  j  s, every vertex u in the component has deg(u) = aj and e(u) = (aj

2 ).
Consider the Cartesian product G = ⇤s

j=1Kaj+1, which is well-defined since
for 1  j  s, aj + 1 � 2. Then G is a regular graph such that every vertex v has
degree N = Âs

j=1 aj, and e(v) = Âs
j=1 (

aj
2 ) = M. Setting N = r and M = c, (i)

follows immediately.
We now proceed to prove (ii). Suppose the contrary, and let H be an r regular

graph where each vertex v has e(v) = (r
2)� k. Then every vertex in N(v) has at

least r � k neighbours in N[v].
Let x be a vertex in N(v) with at most r � 1 neighbours in N[v]. Observe

that for k edges not in the subgraph induced by N[v], they must span at most 2k
vertices. Hence there are r + 1 � 2k � k + 1 vertices in N[v], including v, whose
r neighbours are all in N[v] and therefore they are all neighbours of x.

Now consider N[x], which contains some vertex w not in N[v], since x has
at most r � 1 neighbours in N[v]. Then this vertex w is not adjacent to at least
k + 1 vertices in N[x] \ N[v] (those having degree r in N[v]). Therefore w has at
most r � k � 1 neighbours in N[x]. Consequently, e(x)  (r

2)� k � 1, which is a
contradiction. The result follows.

5.3 | Flipping intervals and su�cient conditions
for k-�ip sequences

Through Theorem 3.1.5 and Corollary 5.1.3, we have seen the existence of small
flipping intervals of length 2 and 3. This naturally begs the question of how long
can an integral interval be such that it is flipping. This serves as the motivation
behind Problem 1.3.6.

The full strength and importance of (r, c)-constant graphs shall now become
apparent, as together with the coloured Cartesian product, they serve as the
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building blocks for such long flipping intervals. More so, by the nature of these
constructions, we shall obtain a sufficient condition for k-flip sequences.

Theorem 5.3.1. Let b 2 N.

i. If b � 101 then the interval
h
b, b +

j
1
4
�
b2 � 10b

3
2
�ki

is a flipping-interval.

ii. If b � 3 then the interval [b, 2b � 2] is also a flipping-interval.

Proof. Consider the interval [b, b + k] where k =
j

1
4
�
b2 � 10b

3
2
�k

. Since b � 101

it follows that k � 12. Set M1 =
j

b2

2 � 5b
3
2

k
. For 1  j  k, set Hj to be

a (b + j � 1, M1 � 2(j � 1))-constant graph which exists by Theorem 5.2.2 and
observe that M1 � 2k � 2(j � 1) for 1  j  k.

Consider the coloured Cartesian product G = ⇤k
j=1Hj, where Hj is coloured

using colour j. By CCP Lemma I (Lemma 2.1.3), G is a (b, b + 1, . . . , b + k)-flip
graph and therefore (i) follows.

We now prove (ii). Consider the triple (b + j, b + 1 � j, 2j) where 0  j 
b � 2. Consider a regular bipartite graph H of degree Âb�2

j=1 2j = (b � 1)(b � 2),
where a 2j-factor of H is coloured j for 1  j  b � 2.

We may take H to be Kn,n where n = (b � 1)(b � 2). Now consider the
coloured Cartesian product G = H ⇤

⇣
⇤b�2

j=1 Kb+1�j

⌘
where Kb+1�j is coloured j

for 1  j  b � 2.
In every vertex v of G, for 1  j  b � 2, degj(v) = b + j which is increasing

and ej[v] = (b+1�j
2 ) + 2j, which is decreasing. Hence G is a (b, b + 1, . . . , 2b � 2)-

flip graph. This concludes the proof.

Let k(b) =
j

1
4
�
b2 � 10b

3
2
�k

. We require b � 101 in (i) since for smaller values
of b, we have that k(b)  0. Moreover, for b � 108 we have that k(b) � b � 2.
This justifies the simple interval [b, 2b � 2] in (ii), as for 3  b  107, it allows
for longer intervals than (i).

We are now able to deduce a sufficient condition for k-flip sequences.

Corollary 5.3.2 (Sufficient condition for k-flip sequences). Suppose that k � 2. Let
3  a1 < a2 < · · · < ak be a sequence of k integers such that either ak  2a1 � 2 or
ak  a1 +

j
1
4

⇣
(a1)2 � 10(a1)

3
2

⌘k
, then (a1, . . . , ak) is a k-flip sequence.
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5.4. Constructing small k-�ip graphs

Proof. In both cases, the sequence (a1, . . . , ak) is a subsequence of a flipping inter-
val in Theorem 5.3.1. The result follows by CCP Lemma III (Lemma 2.1.5), not-
ing that all the factors in the construction of Theorem 5.3.1 are either monochro-
matic or triangle-free.

5.4 | Constructing small k-�ip graphs
Our constructions of k-flip graphs realising a sequence (a1, . . . , ak) in Corollary
5.3.2 involve the product of k graphs H1, . . . Hk which are a1, . . . , ak regular re-
spectively. Thus such constructions are very large, involving W(k!) vertices.

We introduce a special class of flip graphs: flip graphs with constant gaps. We
say that a flip graph has constant gaps with parameters (l, L) if there exists
l, L 2 N such that

degj+1(v)� degj(v) = l and ej[v]� ej+1[v] = L

for 1  j < k and v 2 V.
We outline here an infinite sub-family of these flip graphs with constant gaps

which can be constructed on a small number of vertices, and therefore are an
illustration of relatively small k-flip graphs.

Remark 5.4.1. Observe from the construction in Theorem 5.3.1 (i) that the graphs
constructed are flip graphs with constant gap parameters (l, L) = (1, 1), where
l = 1 follows since the graph realise a flipping interval, and L = 1 follows from
the choice of (r, c)-constant graphs.

Proposition 5.4.2. Let k, z 2 N, k � 2. For any t0 2 N such that t0 > k + 2, there
exists a flip graph G with constant gaps having parameters (l, L) where

l = 1 + z

✓
k(k + 1)

2
� 1

◆
and L = z � 1 + zk(t0 � k � 2)

and if z is even then |V(G)| is O
�
zt0k3�.

Proof. Let G be a sufficiently large finite group such that G has k disjoint and
inverse-closed subsets Sj where |Sj| = z(k � j + 1) for 1  j  k, and such
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5.4. Constructing small k-�ip graphs

that S =
kS

j=1
Sj is sum-free in G. Let µ =

zk(k + 1)
2

denote the degree of each

vertex in Cay(G; S). Consider Cay(G; S) with an edge-colouring such that the
edges labelled in Sj are coloured with j.

Hence the number of edges coloured j incident to a vertex is z(k � j + 1);
more so by the sum-free condition, this is also equal to the number of edges
coloured j in the closed neighbourhood of a vertex of Cay(G; S).

Such a group G exists, as it suffices to consider a sufficiently large cyclic group
by Lemma 3.2.5 with, if necessary, a number of direct products of Z2 to add a
number of involutions matching the number of odd colour degrees in Cay(G; S).

In particular we can choose Zn such that the integral interval
�n

8 , n
4
�

has at
least µ

2 integers. In the case that z is even then there are no odd colour degrees in
Cay(G; S) and therefore no involutions are necessary in G. Hence we can choose
G to be of order O

�
zk2� in this case.

Let r = kt0 + (k
2) and consider Kr,r such that for 1  j  k we have t0 + j � 1

matchings coloured j. Let G be the coloured strong product Kr,r ⇥ Cay(G; S).
By Lemma 2.2.2 and the properties of Cay(G; S), we have the following in G:

degj(v) = z(k � j + 1) + (t0 + j � 1)(1 + µ)

and
ej[v] = z(k � j + 1)(r + 1) + (t0 + j � 1)(1 + 3µ)

for v 2 V(G) and 1  j  h. Substituting for µ and r we get that:

degj+1(v)� degj(v) = 1 + µ � z = 1 + z

✓
k(k + 1)

2
� 1

◆
= l

and

ej[v]� ej+1[v] = z(r + 1)� 3µ � 1 = z � 1 + zk(t0 � k � 2) = L

as required.
Hence we have ‘constant gaps’. To satisfy the requirement that the graph is a

flip graph, all that remains is to show that L > 0. Re-arranging, we require that

t0 > (k + 2)� z � 1
zk

=
z(k2 + 2k � 1) + 1

zk

49



5.5. Unbounded gaps in k-�ip sequences

which is satisfied from our theorem statement.
Recall that if z is even then we can choose G to be of order O

�
zk2�. Moreover,

Kr,r has O(kt0) vertices, recalling that t0 > k + 2. Consequently the flip graph G
can be constructed on O

�
zt0k3� vertices whenever z is even.

The construction above depends on 3 parameters, namely the number of
colours k, a parameter z which controls l i.e. the gaps in the colour-degree
sequence, and a parameter t0 which controls L i.e. the gaps in the number of
coloured edges in a closed neighbourhood.

In the case when z is even, choosing t0 and z to be O(k), the k-flip graphs
constructed above are on O

�
k5� vertices, which is significantly smaller than the

W(k!) constructions obtained previously.

5.5 | Unbounded gaps in k-�ip sequences
We have seen that for k = 2 and k = 3 we have a necessary condition for flip
sequences, namely that the largest colour-degree ak is quadratically bound in
terms of the smallest colour-degree a1. We have also seen a sufficient condition
for k � 2 colours, where ak was also quadratically bound in terms of a1.

A natural question to ask is whether such a necessary condition, where ak is
quadratically bound in a1, exists for k � 4 colours. The intuition for k = 2 and
k = 3 was that for a flip to be possible, the differences in the colour-degrees must
not be too large as otherwise it would be impossible to have a flip.

Rather surprisingly however, this intuition completely breaks down for four
or more colours. The following proposition establishes that for k � 4 colours,
there exists some m(k) 2 N such that given any N 2 N, there is a k-flip sequence
(a1, . . . , ak) where a1 = m(k) and ak > N. In particular then, the largest colour-
degree is not bound in terms of the smallest colour-degree!

Proposition 5.5.1. Let k 2 N, k � 4. Then there is some constant m = m(k) 2 N

such that for all N 2 N, there exists a k-flip sequence (m, a2, . . . , ak) such that ak > N.

Proof. Let K be the complete graph K2n where n >
k(k2 � 2k + 1)

4(k � 3)
. Since K is

a complete graph on an even number of vertices, K has a 1-factorisation. For
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5.5. Unbounded gaps in k-�ip sequences

1 < j < k, let k � j 1-factors be coloured using colour j and let the remaining
edges be coloured 1. It follows then that every vertex v in K2n has

degK
1 (v) = 2n � 1 �

✓
k � 1

2

◆

incident edges coloured 1 and degK
j (v) = k � j incident edges coloured j for

1 < j < k. For convenience, define degK
k (v) = 0. Observe that the sequence

degK
1 (v), . . . , degK

k (b) is strictly decreasing, noting that

degK
1 (v)� degK

2 (v) >
k(k � 1)

k � 3
> 0

since n >
k(k2 � 2k + 1)

4(k � 3)
. Since K is a complete graph and each vertex v has the

same number of incident edges coloured j, then eK
j [v] = n degK

j (v) for 1  j  k.
We now show that for every vertex v in K, (k � 1)(eK

1 [v]� eK
2 [v]) > 4n2. Re-

arranging and substituting for eK
1 [v] and eK

2 [v] in terms of n and k, we must show

that n >
k(k2 � 2k + 1)

4(k � 3)
. This follows immediately by our choice of n.

Consider t 2 N such that

t � 4n2

(k � 1) min
1<j<k

{eK
j [v]� eK

j+1[v]}

and let H be a r =
(k � 1)(2t + k � 2)

2
regular bipartite graph. For 0  j  k� 2,

let t + j matchings of H be coloured using colour 2 + j.
Let G be the graph H ⇥ K, inheriting the edge-colourings of H and K respec-

tively. By Corollary 2.2.3, since G is the strong product of a triangle-free graph
H and a complete graph K, each vertex (u, v) in G has colour-degree

degG
j
�
(u, v)

�
=

8
<

:
2n � 1 � (k�1

2 ) j = 1

(k � j) + 2n(t + j � 2) 2  j  k

which is strictly increasing, and associated coloured closed neighbourhood sizes

eG
j [(u, v)] =

8
<

:
(r + 1)eK

1 [v] j = 1

(r + 1)eK
j [v] + 4n2(t + j � 2) 2  j  k
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5.5. Unbounded gaps in k-�ip sequences

which we now show to be strictly decreasing.
Firstly note that since r + 1 = (k � 1)t + (k�1

2 ) + 1, there exists k 2 R such
that k > 1 and r + 1 = (k � 1)tk. Now, recall that K has the property that
(k � 1)(eK

1 [v]� eK
2 [v]) > 4n2. Since k > 1, it follows that

(r + 1)
⇣

eK
1 [v]� eK

2 [v]
⌘
= (k � 1)

⇣
eK

1 [v]� eK
2 [v]

⌘
(tk) > 4n2t

and therefore since eK
1 [v] > eK

2 [v] we have that (r+ 1)eK
1 [v] > (r+ 1)eK

2 [v] + 4n2t.
Consequently, eG

1 [(u, v)] > eG
2 [(u, v)] as required.

Now consider 2  j  k � 1. By the choice of t and k > 1, we have that

(r + 1)
⇣

eK
j [v]� eK

j+1[v]
⌘
= (k � 1)

⇣
eK

j [v]� eK
j+1[v]

⌘
(tk)

> 4n2

= 4n2(t + j � 1)� 4n2(t + j � 2)

and therefore eG
j [(u, v)] > eG

j+1 [(u, v)].
It follows that G is a flip graph on k > 3 colours, such that for any vertex

(u, v), deg1
�
(u, v)

�
is only dependent on k and degk

�
(u, v)

�
increases with t.

Since t is not bounded above in the construction, then given any N 2 N, a
sufficiently large t can be found such that degk

�
(u, v)

�
> N. The result follows.

In the context of Problem 1.3.3 for k � 4, it follows that h(a1, . . . , ak) is not
bound in a1 either. It is therefore of interest to generalise these notions and find,
given k � 4, the longest subsequence a1, . . . , aq(k) possible such that ak and hence
h(a1, . . . , ak) is not bound in the terms of this subsequence.

More formally, let q(k) be an integer, q(k) < k, such that there exists some
m1(k), . . . , mq(k)(k) 2 N and for all N 2 N, there is a k-flip sequence (a1, . . . , ak)

where ai = mi(k) for 1  i  q(k) and ak > N.

5.5.1 | Bounding the parameter q(k)
It turns out that q(k) can be substantially large, at least max

n
1,
l

k
4

m
� 1

o
, but

not too large – indeed no more than
l

k
2

m
. We conclude by proving the following
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5.5. Unbounded gaps in k-�ip sequences

theorem which summarises the aforementioned, however it is worth noting that
the relation between the colour-degrees past q(k) is still not well understood.

Theorem 5.5.2. Let k 2 N such that k > 3. Then,

max
⇢

1,
⇠

k
4

⇡
� 1

�
 q(k) <

8
<

:

k
3 if k (mod 3) = 0
l

k
2

m
otherwise

Our strategy to prove the lower bound in Theorem 5.5.2 will be as follows:
If q-flip graphs satisfying particular properties (as outlined in the following
lemma) exist, then (a1, . . . , ak)-flip graphs exist for k > 4q, where ak can be arbi-
trarily large whilst ai is constant for 1  i  q.

Observe how this strategy differs from that employed in the proof of Propo-
sition 5.5.1, namely that here we are considering a flip graph as our starting
point whereas before we considered a coloured complete graph (which is not a
flip graph).

Lemma 5.5.3. Let q, k 2 N such that 1 < q < k
4 . Let D1, . . . , Dq 2 N such that

Dq(k � 4q) > 1 + xq(q � 1) + 5(k�q
2 ) where x = max

1j<q
{Dj � Dj+1}.

If there exists a (a1, . . . , aq)-flip graph F such that for every v 2 V(F) and 1  j 
q, eF

j [v] = Dj, then given any N 2 N there exists a (a1, . . . , ak)-flip graph for some
aq+1, . . . , ak 2 N where ak > N.

Proof. Let G be a sufficiently large finite group such that G has k � q � 1 disjoint
and inverse-closed subsets Sj where |Sj| = k � q � j for 1  j < k � q, and such

that S =
k�q�1S

j=1
Sj is sum-free in G.

Consider K = Cay (G; S) with an edge-colouring such that the edges labelled
in Sj are coloured using q + j. Hence for any v 2 G, degK

q+j(v) = k � q � j and
by the sum-free condition on S, eK

q+j[v] = k � q � j.
Such a group G exists, as it suffices to consider a sufficiently large cyclic group

by Lemma 3.2.5 with, if necessary, a number of direct products of Z2 to add a
number of involutions matching the number of odd colour degrees in K.

Now consider the coloured Cartesian product F ⇤ K, which is k � 1 coloured
since F is coloured using 1, . . . , q and K is coloured using q + 1, . . . , k � 1.
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5.5. Unbounded gaps in k-�ip sequences

By Lemma 2.1.2, for a given colour j the graph has colour-degree aj inherited
from F for 1  j  q, and aj = k � j inherited from K when q < j < k. Likewise,
the number of edges coloured j in a closed neighbourhood is Dj inherited from
F for 1  j  q and Dj = k � j inherited from K for q < j < k.

Finally, note that F ⇤ K is µ = (k�q
2 ) +

q
Â

i=1
ai regular. Let t 2 N such that

t �
1 + µ + 2

k
Â

i=1
Di

(k � q) min
q<i<k

{Di � Di+1}

and let H be a r = (k � q)t + (k�q
2 ) regular bipartite graph. For 1  j  k � q,

colour t + j � 1 matchings of H using q + j.
Let G be the coloured strong product H ⇥ (F ⇤ K). By Lemma 2.2.2, for

v 2 V(G) and 1  j  k, the edge-colouring in G is such that

degj(v) =

8
<

:
aj 1  j  q

aj + (t + i � q � 1)(1 + µ) q < j  k

and

ej[v] =

8
><

>:

Dj(r + 1) 1  j  q

Dj(r + 1) + (t + j � q � 1)
✓

1 + µ + 2
k
Â

i=1
Di

◆
q < j  k

We will show that G as constructed and edge-coloured is a k-flip graph. Ob-
serve that for 1  j  k, aj < 1 + µ. Hence for j = q we have that

degq(v) = aq < 1 + µ < aq+1 + t(1 + µ) = degq+1(v)

and for j > q we have that degj+1(v) � degj(v) = µ > 0. Consequently the
colour-degree sequence in G is strictly increasing.

Since for 1  j < q we have Dj > Dj+1 then in G we have ej[v] > ej+1[v].
Next note that r + 1 = (k � q)tk for some k > 1. Hence (Dq � Dq+1)(r + 1) >
(Dq � Dq+1)(k � q)t. Therefore to show that eq[v] > eq+1[v] it suffices to show

(Dq � Dq+1)(k � q) > 1 + µ + 2
k

Â
i=1

Di
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5.5. Unbounded gaps in k-�ip sequences

From the lower bound on Dq in the theorem statement we have that

Dq(k � q)

> 1 + (3q)Dq + xq(q � 1) + 5
✓

k � q
2

◆

> 1 +
q

Â
i=1

ai + (2q)Dq + xq(q � 1) + 5
✓

k � q
2

◆
* a1 < · · · < aq  Dq

= 1 + µ + (2q)Dq + xq(q � 1) + 4
✓

k � q
2

◆
* µ =

q

Â
i=1

ai +

✓
k � q

2

◆

� 1 + µ + 2
q

Â
i=1

Di + 4
✓

k � q
2

◆
* Dq�i  Dq + ix

= 1 + µ + 2
k

Â
i=1

Di + 2
✓

k � q
2

◆
*
✓

k � q
2

◆
=

k

Â
i=q+1

Di

= Dq+1(k � q) + 1 + µ + 2
k

Â
i=1

Di * Dq+1 = k � q � 1

as required and therefore the colours q and q + 1 flip in G.
Consider the final case when q < j < k. By the choice of t and k > 1, we have

(Dj � Dj+1)(r + 1) = (Dj � Dj+1)(k � q)(tk) > 1 + µ + 2
k

Â
i=1

Di

which we can re-arrange to get ej[v] > ej+1[v]. Hence the sequence of closed
neighbourhood sizes is strictly decreasing as required.

It follows that G is a flip graph on k colours, such that for any vertex v, the
difference between degq(v) and degk(v) grows in t as t ! •.

We are finally in a position to prove the lower bound in Theorem 5.5.2.

Proposition 5.5.4. Let k 2 N such that k > 3. Then for any q 2 N such that q = 1
or q < k

4 , there exists a1, . . . , aq 2 N such that given any N 2 N there exists a
(a1, . . . , ak)-flip graph for some aq+1, . . . , ak 2 N where ak > N.

Proof. The case q = 1 follows immediately from Proposition 5.5.1. Hence con-
sider the case when 1 < q < k

4 .
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5.5. Unbounded gaps in k-�ip sequences

Let b 2 N be sufficiently large such that b � max

(
101,

1 + q(q � 1) + 5(k�q
2 )

k � 4q

)

and
j

1
4
�
b2 � 10b

3
2
�k

� q � 1. By Corollary 5.3.2 and the choice of b, there exists
a (b, . . . , b + q � 1) flip graph F where for every vertex v 2 V(F),

eq[v](k � 4q) � (b + q � 1)(k � 4q) > b(k � 4q) � 1 + q(q � 1) + 5
✓

k � q
2

◆

and therefore the result follows as an immediate consequence of Lemma 5.5.3,
noting that x = 1 by Remark 5.4.1 for our choice of flip graph.

The proof of the upper bound in Theorem 5.5.2 is much less involved, and is
given next. It still remains open whether the two cases can be reconciled.

Proposition 5.5.5. Let k 2 N, k � 2. Then q(k) <

8
<

:

k
3 if k (mod 3) = 0
l

k
2

m
otherwise

.

Proof. The cases k = 2 and k = 3 immediately follows from Theorems 3.1.5 and
5.1.1. Hence consider k � 4. Let G be an (a1, . . . , ak)-flip graph. Consider the
case when k (mod 3) = 0 and let p = k

3 . Re-colour the edges of G such that
the p colours p(j � 1) + 1, . . . , pj are coloured j for j 2 {1, 2, 3}. For j 2 {1, 2, 3},
define bj = Âs

i=1 a(i�1)s+j. Note that b1 < b2 < b3 by the monotonicity of the
k-flip sequence and the fact that each bj is a sum of s terms.

Applying a similar argument to the coloured closed neighbourhood sizes,
one observes that G is a (b1, b2, b3)-flip graph.

By Theorem 5.1.1, it follows that b3  2(b1)2 and hence ak  2k2(as)2. There-
fore ak is bound in a k

3
and hence q(k) < k

3 when k (mod 3) = 0.

Otherwise, consider t =
l

k
2

m
. Let c1 = Ât

i=1 ai and c2 = Âk�t
i=1 at+i. Two cases

are possible: either 2t = k or 2t � 1 = k. In the case that 2t � 1 = k, it need not
necessarily be that case that c1 < c2. Indeed, suppose that c1 � c2. Then tat � ak

and hence ak is bounded in ad k
2e.

Consider the cases when 2t = k or 2t � 1 = k but c1 < c2. In both these
cases, by a similar argument to the case when k (mod 3) = 0, we have that G is
a (c1, c2)-flip graph. By Theorem 3.1.5 it follows that c2 < (c1+1

2 ) and hence ak is
quadratically bound in ad k

2e. It follows that q(k) <
l

k
2

m
.
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6

Conclusion and open problems

We began this thesis with a list of several enticing problems on flip graphs, and
have provided an in-depth treatment of a number of them, most notably Prob-
lems 1.3.2 – 1.3.6. Nonetheless, many open problems remain.

We have seen a complete treatment of the two-colour case in Chapter 3 con-
cerning Problems 1.3.2, 1.3.4, and 1.3.5. In Chapters 6 and 7 we also explored
these problems for the case when k � 3, along with Problem 1.3.6. In particular
for three colours, in Theorem 5.1.1 we have seen a necessary condition for a se-
quence (a1, a2, a3) to be a 3-flip sequence. In view of this theorem, it is of interest
to find constructions of 3-flip sequences (a1, a2, a3) with as large as possible a
constant c such that a3 = c(a1)2, where it is known that c  2.

Problem 6.0.1. Determine the supremum of c such that there exists infinitely
many 3-flip sequences (a1, a2, a3) satisfying a3 � c(a1)2.

With regards to Problem 1.3.3, albeit a comprehensive treatment was given in
Chapter 3, it still remains open whether an explicit form of h(b, r) can be given,
or at a minimum better upper and lower bounds.

Problem 6.0.2. Determine the exact value of h(b, r) or at least expand the range
of admissible values (b, r) for which the best possible asymptotic bound in Corol-
lary 3.2.8 holds, and obtain a non-trivial lower bound.

Finding large subsets of Abelian groups which are both sum-free and inverse-
closed is of interest with regards to expanding the range of admissible values r
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for fixed b such that h(b, r) is Q(b + r). As mentioned in Section 3.2.2, this prob-
lem has been studied greatly in the absence of the inverse-closed condition. We
therefore pose the following problem.

Problem 6.0.3. Given a finite Abelian group G, what is size of the largest subset
which is both sum-free and inverse-closed?

We next turn our attention to Problem 1.3.3 for three or more colours. Given
k � 4, as a consequence of Theorem 5.5.4, we have that there exists k-flip se-
quences were a1, . . . , aq(k) are fixed but ak ! •. In particular since h(a1, . . . , ak) >

ak, one observes that h(a1, . . . , ak) is not bounded above by a polynomial in
a1, . . . , aq(k).

This contrasts the cases when k = 2 and k = 3, where h(a1, a2) and h(a1, a2, a3)

are polynomially bound in a1, and in particular we have proven that h(a1, a2) is

quadratically bound in a1 whenever a2 < a1 + 2
j

a1+2
6

k2
. In light of this, we pose

the following problem.

Problem 6.0.4. For k � 4, is there a smallest integer p(k), k
4  p(k)  k, such

that h(a1, . . . , ak) is polynomially bound in ap(k)?

In Chapter 5 we introduced the family of (r, c)-constant graphs, which served
as a crucial tool for establishing a sufficient condition in Corollary 5.3.2 for the
recognition of a k-flip sequence, especially in the case when k � 3.

Given the demonstrated usefulness of (r, c)-constant graphs, it is therefore
important to advance our knowledge concerning spec(r).

Problem 6.0.5. Determine spec(r), or at least improve upon the lower bound
given in Theorem 5.2.2 (i) for membership into spec(r) and the non-membership
in spec(r) given in Theorem 5.2.2 (ii).

In light of Problem 1.3.3, small constructions of (r, c)-constant graphs are of
interest, as they may lead to small constructions of flip graphs.

Problem 6.0.6. Find lower and upper bounds to

g(r, c) = min {|V(G)| : G is an (r, c)�constant graph}
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Chapter 4 dealt with Problem 1.3.7 and the extension of the flipping problem
to the closed t-neighbourhoods. In particular we illustrated two distinct con-
structions for the case of two colours. Problems 1.3.2 – 1.3.6 naturally extend to
this generalisation of the flipping problem and remain to be studied extensively.

For t 2 N, define b(t) = min {b : ([t], (b, r))�flip graph exists}, in other
words the smallest colour degree such that a [t]-flip graph exists.

Observe that for t � 2, using q = 2 in the proof of Theorem 4.2.3, we get
the existence of

�
[t],

�
4
�
5t� , 4

�
5t�+ 1

��
-flip graphs and therefore b(t)  4(5t).

Furthermore, by Theorem 4.1.1 we improve this to b(t)  2t+1 � 1. This suggests
the following problem.

Problem 6.0.7. For t 2 N, t � 2 determine b(t) or get a lower bound and
improve the upper bound 2t+1 � 1.

Another perspective which one can consider is with regards to the computa-
tional complexity of recognising flip sequences and flip graphs, summarised in
the two problems below.

Problem 6.0.8 (Complexity of deciding that G is a k-flip graph). Given a graph
G and an integer k � 2, what is the complexity class of deciding whether G is a
k-flip graph or not? It is also of interest to determine the complexity class of this
decision problem if G belongs to a restricted class of graphs.

Problem 6.0.9 (Complexity of deciding that (a1, . . . , ak) is a k-flip sequence).
Given an integer k � 2 and an integer sequence (a1, . . . , ak), what is the com-
plexity class of deciding whether the sequence is a k-flip sequence or not?
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