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Abstract: Devising a financial trading strategy that allows for long-term gains is a very common
problem in finance. This paper aims to formulate a mathematically rigorous framework for the
problem and compare and contrast the results obtained. The main approach considered is based
on Dynamic Bayesian Networks (DBNs). Within the DBN setting, a long-term as well as a short-
term trading strategy are considered and applied on twelve equities obtained from developed and
developing markets. It is concluded that both the long-term and the medium-term strategies proposed
in this paper outperform the benchmark buy-and-hold (B&H) trading strategy. Despite the clear
advantages of the former trading strategies, the limitations of this model are discussed along with
possible improvements.
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1. Introduction

In this paper, Dynamic Bayesian Networks (DBNs) are used to study the problem
of obtaining and testing a financial strategy whose return is higher than the buy and
hold strategy for a given equity. A Bayesian Network (BN) is a graphical and compact
representation of a joint probability density function (PDF) that makes use of conditional
independence and can be used to model a system under one time instance. DBNs extend
the BN to more than one time period, which is to say that DBNs are a temporally driven
extension of BNs.

Some benefits of using DBNs over other models, such as basic time series models, are
the following. Firstly, DBNs have the capacity to incorporate what are known as hidden
(or latent) variables, which either govern, or are thought to govern, the observations of
the observable random variable. These hidden variables are random variables whose true
value cannot be measured directly, sometimes due to instrumental inadequacies, and other
times simply because the existence of these variables is hypothesized. Examples of such
hidden variables are the intelligence of an individual (which cannot be measured precisely
using any instrument) or the state (bull or bear) of a financial market (whose existence
itself is hypothetical). Secondly, since they are an offshoot of BNs, DBNs allow for compact
representations of an otherwise possibly cumbersome joint distribution. Russell and
Norvig [1] argue that due to conditional independence, representing a joint distribution
as a DBN may eliminate any redundant terms, which, in turn, also makes parameter
estimation simpler. Murphy [2] state that another benefit of DBNs is the ease with which
variations to the model at hand can be introduced. DBNs can be used to alternatively
represent both basic Hidden Markov Models (HMMs), and HMMs with variations, such as
HMMs with a mixture-of-Gaussian outputs, Auto-regressive HMMs, Input–Output HMMs
and Hierarchical HMMs. DBNs can also be used to represent Kalman Filter Models where,
contrary to HMMs, the hidden state is continuous rather than discrete. Lastly, DBNs also
have the capacity to answer questions about different types of reasoning or inference, such
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as diagnostic inference (from effects to causes), causal inference (from causes to effects),
intercausal inference (between causes of the same effect), and mixed inference (a mixture of
any two of the above types of inference).

In this research paper, we use the price–earnings (PE) ratio in the models discussed.
In the literature, various papers can be found which apply the said PE ratio to examine
investment strategies. Most notably, one can mention Basu [3]. This ratio has also been
used in a vast range of literature including that of Lleo [4] and Angelini [5]. Chang and
Tian [6] also use BNs to model the qualitative and quantitative relationships between
several variables that affect the dynamics of the S&P 500 stock index, with the aim of
optimizing trading decisions, namely when to open a short position and when to invest in a
long position. Damiano et al. [7] base their work on a previous study, that of Tayal [8], which
employs HHMMs to analyze financial data. The results obtained by Tayal are reproduced
in Damiano et al.’s paper, and further insight is given. Damiano et al. [7] conclude that
probabilistic inference allows the identification of two distinct states in high-frequency data
that are mainly marked by buying and selling pressure.

Historically, Paul Dagum is thought to have kick-started the development of DBNs in
the early 1990s, namely, in the work by Dagum et al. [9] in 1992 and by Dagum et al. [10] in
1995. Ever since, DBNs have been used in various areas, namely, in finance and economics.
However, other areas include (but are not limited to) speech recognition (Murphy [2],
Zweig, Russell [11], and Nefian et al. [12]), biology(Yao et al. [13], Raval et al. [14], Murphy
and Mian [15]), robotics (Prembida et al. [16], Patel et al. [17]), image processing (Delage
et al. [18]), and fault detection (Cozar et al. [19]). Parameter estimation techniques of DBNs
are discussed by Benhamou et al. [20], whereas Murphy [21] works on the theoretical
foundations of DBNs.

The rest of this paper is structured as follows. Section 2 introduces the theoretical
underpinnings of DBNs. In Section 3, DBNs are applied to twelve equities from both
developed and developing markets, and the return on investment is presented. The reason
for considering both developed and developing markets is to test model robustness under
different economic conditions and growth patterns. Finally, in the concluding section, the
key points and results obtained are highlighted.

2. Theoretical Framework

This model is based on the work by Wang [22] and exploits two behavioral finance
phenomena—behavioral volatility and mean reversion. Behavioral volatility refers to the
phenomenon whereby market-related events such as irrational trades executed by inex-
perienced traders cause the trading price of a stock to deviate away from its ‘true’ value.
Events like these continually affect market price either until the effects caused cancel each
other out, or until rational investors balance these effects out with their rational trades.
This phenomenon is known as mean reversion. The theory of mean reversion is applicable
not only to the price of a stock, but to any price-related metric, such as the price–earnings
(PE) ratio (share price divided by the earnings per share). As a result, one can decide to buy
(or sell) a stock only when some metric that follows the mean reversion theory is far away
from the mean, knowing that the ‘true’ value of the metric will be returned to at some point
in the future.

A Directed Graphical Model (DGM) is a representation of a probabilistic model that
uses conditional independence assumptions through a directed graph, where the vertices
(note that the terms “state”, “random variable”, “node” and “vertex” may be used inter-
changeably) of the graph represent random variables and the arcs represent conditional
dependence between pairs of random variables. An arc from vertex A to vertex B represents
the statement “A causes B” (Murphy [2]). DGMs are convenient due to their compactness in
exhibiting some joint probability distribution—for N binary random variables, the general
closed form of the joint probability distribution of these random variables may need O(2N)
parameters, whereas the graphical model may give the same information using fewer
parameters due to the omission of terms via conditional independence statements.
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A Bayesian Network is a DGM that represents a set of random variables X1, ...., Xn
and their conditional dependencies through a directed acyclic graph (DAG), denoted by
G = (V , E). Each vertex in V represents a random variable Xi, and each directed edge in E
represents the conditional dependence a random variable has on another. A conditional
probability distribution is associated to each node Xi, and the joint probability distribution
on the vertex set V is given by P[V ] = ∏n

i=1 P[Xi | parents(Xi)]. The generalization of a BN
to multiple time slices gives rise to the definition of a DBN. A Dynamic Bayesian Network is
defined to be a pair (B0, B→), where B0 is the BN representing the prior probability (or the
initial state probability), that is, the probability distribution of the random variables at time
0, and B→ is a two-slice temporal BN which describes transition probabilities from time t − 1
to time t for any node X in the vertex set V of the DAG G = (V , E), denoted by P[Xt|Xt−1].
The joint probability distribution of the vertex set V over all time slices is given by:

P[V ] = P[V0] P[V1:T ] = ∏
Xi∈V

P[Xi0 | parents(Xi0)]
T

∏
t=1

∏
Xi∈V

P[Xit | parents(Xit)],

where Vt1 :t2 refers to the set of all vertices indexed from time t1 up to time t2. A DBN can be
parametrized by its transition matrix At = P[Xt = j | Xt−1 = i], and its prior distribution
π(i) = P[X1 = i]. If the transition probabilities are assumed to be constant for all time
slices (At = A), then they are said to be homogeneous and have a much more compact joint
distribution function. When representing a DBN pictorially, two or three time slices are
typically shown—the initial time slice and the subsequent one or two—since its structure is
assumed to replicate throughout time.

An important property of DAGs is that “nodes can be ordered such that parents come
before children. This is called a topological ordering, and it can be constructed from any
DAG.” (Murphy [23]). Given such an ordering, the Ordered Markov property (or Local Markov
property) is defined to be the “assumption that a node only depends on its parents, not on all
its predecessors in the ordering” (Murphy [23]). This assumption is in fact a generalization
of the Markov property for Markov chains.

2.1. Inference for DBNs

The objective in inference is to infer the value of the latent states given the observations
of the observable states, that is, inferring the marginals P[Xt = i | y1:τ ]. If τ = t, the process
is known as filtering (or ‘now-casting’); if τ > t, then this is smoothing; and if τ < t, then
one would be performing prediction (or forecasting). A commonly used inference algorithm
for DBNs is the forward–backward algorithm. In this algorithm, dynamic programming
is implemented through two steps, known as passes, that run in a counter-directional
manner—one runs forward in time, whilst the other runs backward. Note that it is assumed
that the transition probability matrix, emission probability matrix, and prior probabilities
are all known. In the forward pass, the value of αt(i) := P[Xt = i | y1:t] is found in a
recursive manner. In the backward pass, the value of βt(i) := P[yt+1:T | Xt = i] is also found
recursively but moving in counter chronological order (from time T to time 2). After the
forward and backward passes are complete, the value for γt(i) := P[Xt = i | y1:T ] can
finally be obtained:

γt(i) = P[Xt = i | y1:T ] =
P[yt+1:T | Xt = i]P[Xt = i | y1:t]

P[y1:T ]

where P[y1:T ] = ∏T
t=1 ct.

2.2. Learning DBNs

In this context, learning refers to the parameter estimation process. In parameter
estimation, learning can be tackled either through a Maximum Likelihood (ML) approach
or through the Maximum A Posteriori (MAP) approach. If using ML, then the data
are used to obtain parameter estimates via the solution of the optimization problem:
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θ∗ML = arg maxθ

{
P[Y | θ]

}
= arg maxθ

{
logP[Y | θ]

}
, where θ is the set of parameters

to be estimated. Typically, θ contains the transition matrix and parameters pertaining to
the probability distribution used in the emission matrix. On the other hand, if using the
MAP method, the optimization problem above is adjusted slightly to become θ∗MAP =

arg maxθ

{
logP[Y | θ] + logP[θ]

}
, where P[θ] is the parameter prior distribution. The

approach to solving the optimization problems above is through an adaptation of the
Expectation–Maximization (EM) algorithm known as the Baum–Welch algorithm, proven
to give a local optimum to the optimization problems above (Baum et al. [24], Dempster
et al. [25]). It uses the forward–backward algorithm as a subroutine. Hence, in cases where
the model parameters are unknown, the Baum–Welch algorithm is first used to estimate (or
learn) the model parameters. Then, the forward–backward algorithm is used to infer the
posterior marginals.

2.3. Application of Theory

The main hypothesis of the model is that the stock price of a firm is not always equal
to the firm’s ‘true’ intrinsic value. Utilizing the phenomena of behavioral volatility and
mean reversion, temporary effects that cause stock metrics to deviate from their ‘true’ value
are classified into two: short-term effects (length of a few days) and medium-term effects
(length of several weeks).

It is hypothesized that the fundamental value of a company i at time t, denoted by P∗
i,t,

is directly proportional to its annual earnings at time t, denoted by Ei,t, with the fundamental
PE ratio, denoted by PE∗

i,t, acting as the constant of proportionality:

P∗
i,t = (PE∗

i,t)(Ei,t).

On the other hand, the observed PE ratio (openly available on the public domain),
denoted by PEi,t, is given by PEi,t =

Pi,t
Ei,t

where Pi,t denotes the actual trading price of a
company i at time t.

Note that from this point onward, the index i is dropped, as the analysis on stocks is
performed univariately. The model equation that results from the above is given by:

Pt = P∗
t (1 + Zt)(1 + εt) =⇒ yt = ln

[
PE∗(1 + Zt)

]
+ ln

[
1 + εt

]
=⇒ yt = ln

[
PE∗(1 + Zt)

]
+ εt (1)

where yt = ln
[

Pt
Et

]
, {Zt}t∈N is a discrete-time Markov chain modeling the medium-term

noise effects, and εt ∼ N (0, σ2) is a random variable modeling the short-term noise effects.
Due to the above model equation, the model used is only applicable for firms that have
positive earnings throughout the period under study. Furthermore, one must note that yt is
an observable quantity (since both Pt and Et are); however, PE∗ and Zt are not. It is assumed
that both Zt and PE∗ are discrete-valued; hence, Zt ∈ {a1, . . . , aM} and PE∗ ∈ {b1, . . . , bN}
where M and N represent the number of possible latent states of Zt and PE∗, respectively.

The conditional independence assumptions used in this model are presented next:

∀ t ≥ 1, ∀ i, j ≥ 1,

Zt ⊥ PE∗ | ∅. (2)

Zi ⊥ Zj | Zk ∃ k ∈ {i + 1, . . . , j − 1} (3)

yi ⊥ Zj | Zk, PE∗ ∃ k ∈ {i, . . . , j − 1} or k ∈ {j + 1, . . . , i}. (4)

yi ⊥ yj | Zk, PE∗ ∃ k ∈ {i, . . . , j}. (5)
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For t ≥ 2 and r, s ∈ {1, . . . , M}, the matrix W := [wrs]M×M is defined to be the
transition probability matrix, where

wrs := P[Zt = as|Zt−1 = ar].

Note that wrs ∈ [0, 1] and ∑M
s=1 wrs = 1. For t ≥ 1, m ∈ {1, . . . , M} and n ∈ {1, . . . , N},

the matrix Dt := [dmn(yt)]M×N is defined to be the emission probability matrix at time t,
where

dmn(yt) := P[yt | Zt = am, PE∗ = bn].

where dmn(yt) ∼ N (ln[bn(1 + am)], σ2). For m ∈ {1, . . . , M} and n ∈ {1, . . . , N}, the
vectors u := (um)m∈N and v := (vn)n∈N are defined to be the initial probability vectors
that contain the initial probability distributions, where

um := P[Z1 = am]; vn := P[PE∗ = bn].

Note that um, vn ∈ [0, 1], ∑M
m=1 um = 1 and ∑N

n=1 vn = 1. These prior distributions serve
to incorporate any expert knowledge that the researcher may have available. A graphical
representation of the model described above can be found in Figure 1.

Having laid out the principles needed for inference, the aim of the analysis now makes
itself clearer—that of inferring the value of PE∗ so as to estimate the fundamental price of a
stock and formulate a trading strategy based on this knowledge. Furthermore, inferring
the value of Zt is also useful, as it can be used to test an alternative trading strategy. In this
context, the data used will be split into a training and a test set. The set of model parameters
is given by θ = {W, u, v, σ2}. The space of possible parameters is given by the set:

Θ =

{
θ : um, vn, wrs ∈ [0, 1],

M

∑
m=1

um = 1,
N

∑
n=1

vn = 1,
M

∑
s=1

wrs = 1, σ2 > 0

}
. (6)

Figure 1. Representation of the model described above using a DBN, where yt is observable and PE∗

and Zt are latent, discrete variables.

Learning and inference then follow. Since the parameters in θ are unknown, they will
first need to be estimated (learning procedure). As mentioned, the algorithm used to obtain
the MAP estimates is the Baum–Welch algorithm. After the unknown model parameters
are estimated, the forward–backward algorithm is used on the parameter estimates to
infer the constant value of PE∗ for the training set and test set, and to infer the value of Zt
through smoothing for the training set, and through filtering for the test set:

• Filtering probabilities: P[ZT , PE∗ | y1:T , θ];
• Smoothing probabilities: P[Zt, PE∗ | y1:T , θ], where t ∈ {1, . . . , T − 1}.

2.4. Inference with Known Parameters

As per the forward pass of the forward–backward algorithm, the following definitions
are made and equations derived for the filtering probabilities:

∀ t ∈ {1, . . . , T}, m ∈ {1, . . . , M}, n ∈ {1, . . . , N},
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αtmn := P[Zt = am, PE∗ = bn | y1:t, θ] ;

α1mn =
dmn(y1)umvn

∑M
m′=1 ∑N

n′=1 dm′n′(y1)um′vn′
;

αtmn =
dmn(yt)∑M

i=1 P[Zt−1 = ai, PE∗ = bn | y1:t−1]wmi

ct
;

ct :=
M

∑
m=1

N

∑
n=1

dmn(yt)
M

∑
i=1

P[Zt−1 = ai, PE∗ = bn | y1:t−1]wmi.

After defining the filtering probabilities, the smoothing probabilities are given through
the estimate denoted by γtmn:

∀ t ∈ {1, . . . , T − 1}, m ∈ {1, . . . , M}, n ∈ {1, . . . , N},

γtmn := P[Zt = am, PE∗ = bn | y1:T ].

Next, as per the backward pass of the forward–backward algorithm, the definition of
βtmn is to be given so as to be able to obtain the values for γtmn:

βtmn :=
P[yt+1:T | Zt = am, PE∗ = bn]

P[yt+1:T | y1:t]
=

P[yt+1:T | Zt = am, PE∗ = bn]

∏T
t′=t+1 ct′

Therefore, as per the forward–backward algorithm, one has:

γtmn = αtmnβtmn.

What remains to be derived are the expressions for βtmn ∀ t ∈ {1, . . . , T − 1}:

β(T−1)mn =
β′
(T−1)mn

cT
=

∑M
i=1 din(yT)wim

∑M
m=1 ∑N

n=1 cT
.

For βtmn ∀ t ∈ {1, . . . , T − 2}, m ∈ {1, . . . , M}, n ∈ {1, . . . , N}:

β′
tmn =

M

∑
i=1

β′
(t+1)indin(yt+1)wim ; βtmn =

∑M
i=1 β(t+1)indin(yt+1)wim

ct+1
.

With expressions found for both the smoothing and filtering probabilities, the most
probable values of the latent variables PE∗ and Zt are found through marginalization:

P̂E∗ = arg max
bn

{ M

∑
m=1

P[Zt = am, PE∗ = bn | y1:T ]

}
= arg max

bn

{ M

∑
m=1

γtmn

}

To find the estimate Ẑt for the latent state Zt, smoothing is used on the training ,set
whilst filtering is applied on the test set:

Ẑt = arg max
am

{ N

∑
n=1

γtmn

}
∀ t ∈ {t : yt ∈ Xtrain};

Ẑt = arg max
am

{ N

∑
n=1

αtmn

}
∀ t ∈ {t : yt ∈ Xtest}.

where Xtrain and Xtest denote the training set and test set, respectively.
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2.5. Learning Unknown Parameters

The optimization problem in learning is given by θ̂MAP = arg max
θ∈Θ

{
P
[
θ | yT

1
]}

and is

solved using the Baum–Welch algorithm (note that in the forthcoming expressions, θ should
technically be written with a hat superscript (ˆ) since it is a set of parameter estimates):

1. Set j = 1.
2. Set θ(1) − θ(0) > δ

3. while θ(j) − θ(j−1) > δ do

(i) Calculate probabilities P
[

Zt = am, PE∗ = bn | y1:T , θ(j)
]
∀ t, m, n

(ii) Solve the constrained maximization problem

θ̂(j+1) = arg max
θ∈Θ

{
Q
(

θ; θ(j)
)
+ lnP[θ]

]
}

where Q
(

θ; θ(j)
)
= EZ1:T ,PE∗ |y1:T ,θ(j)

[
lnP[y1:T , Z1:T , PE∗ | θ]

]
.

(iii) Increment j

An expression in closed form can be obtained for Q
(

θ; θ(j)
)

by using the smooth-
ing probabilities:

Q
(

θ; θ(j)
)
=

T−1

∑
t=1

M

∑
m=1

N

∑
n=1

α
(j−1)
tmn β

(j−1)
tmn ln[dmn(yt)] +

M

∑
m=1

N

∑
n=1

α
(j−1)
Tmn ln[dmn(yT)]

+
T−1

∑
t′=2

M

∑
i,m=1

N

∑
n=1

β
(j−1)
tmn

(
d(j−1)

mn (yt)

c(j−1)
t

)
w(j−1)

mi α
(j−1)
(t−1)in ln[wmi]

+
M

∑
i,m=1

N

∑
n=1

(
d(j−1)

mn (yT)

c(j−1)
T

)
w(j−1)

mi α
(j−1)
T−1,in ln[wmi]

+
M

∑
m=1

N

∑
n=1

α
(j−1)
1mn β

(j−1)
1mn (ln[um] + ln[vn]).

In the argument of the maximization problem above, lnP[θ] is the logarithm of the
prior distribution P[θ], where P[θ] = P[u]P[v]P[W]P[σ2] since the independence of pri-
ors is assumed. Within this prior distribution, two types of expert knowledge can be
included—prior knowledge of the ballpark value of PE∗ and prior knowledge of the per-
sistence of the medium-term noise effects, which are encoded through the prior P[v] and
the prior P[W], respectively.

The prior for the vector v is represented by the Dirichlet distribution:

f (v) =
Γ(k1 + k2 + . . . + kN)

Γ(k1)Γ(k2) . . . Γ(kN)

N

∏
n=1

vkn−1
n . (7)

The values kn for n ∈ {1, . . . , N} intuitively correspond to the degree of belief an
expert has on the event that bn is the ‘true’ value for PE∗. For this analysis, kn = 1 ∀ n. The
prior for the matrix W is also derived from the Dirichlet distribution f (W) = ∏M

m=1 f (wm),
where wm = (wim)i=1,...,M and

f (wm) =
Γ(k1m + k2m + . . . + kMm)

Γ(k1m)Γ(k2m) . . . Γ(kMn)

M

∏
m=1

wkim−1
im .

Since W is the transition matrix for the hidden Markov chain {Zt}t∈N, then the diag-
onal entries of W represent the probability that a particular state persists (stays as is in
the next time point). The greater the value of Zt (or, correspondingly, am), the greater that
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state’s persistence. In this analysis, the off-diagonal entries (the reader is suggested to refer
to Wang [22] for more information on the values of the off-diagonals) are set to 0.

Taking all the above into consideration, the logarithm of the prior P[θ] becomes

lnP[θ] = lnP[W] + lnP[v] =
M

∑
m=1

M

∑
i=1

(kim − 1) ln[wim] +
N

∑
n=1

(kn − 1) ln[vn] + s1,

where s1 = ln
[

Γ(k1+k2+...+kN)
Γ(k1)Γ(k2)...Γ(kN)

]
+ ln

[
Γ(k1m+k2m+...+kMm)
Γ(k1m)Γ(k2m)...Γ(kMn)

]
.

The constant s1 is only included for completeness’ sake—it is rendered irrelevant when
maximizing in the Baum–Welch algorithm.

With the priors set, the constrained optimization problem is now fully defined. Note
that only the equality constraints in (6) will be considered, as the inequality constraints will
end up being satisfied still. Therefore, the method of Lagrange multipliers can be used to
solve this optimization problem. The expressions for the estimators of the four variables in
question are given below:

û(j)
m =

N

∑
n=1

α
(j−1)
1mn β

(j−1)
1mn ; (8)

v̂(j)
n =

∑M
m=1 q(j)

1mn(Z1, PE∗) + (kn − 1)

1 + ∑N
n′=1(kn′ − 1)

=
∑M

m=1 α
(j−1)
1mn β

(j−1)
1mn + (kn − 1)

1 + ∑N
n′=1(kn′ − 1)

; (9)

ŵ(j)
mi = −

∑T
t′=2 ∑N

n=1 q(j)
t′ ,m,i,n(Zt′ , Zt′−1, PE∗) + (kmi − 1)

∑T
t′=2 ∑M

m=1 ∑N
n=1 q(j)

t′ ,m,i,n(Zt′ , Zt′−1, PE∗) + ∑M
m′=1(km′i − 1)

=
ω
(j)
t′,m,i,n

∑M
m′=1 ω

(j)
t′,m,i,n

,

(10)

where

ω
(j)
t′,m,i,n =

T−1

∑
t′=2

N

∑
n=1

β
(j−1)
t′mn

(
d(j−1)

mn (yt′)

c(j−1)
t′

)
w(j−1)

mi α
(j−1)
t′−1,i,n

+
N

∑
n=1

(
d(j−1)

mn (yT)

c(j−1)
T

)
w(j−1)

mi α
(j−1)
(T−1)in + (kmi − 1)

σ̂2(j−1) =
∑T−1

t=1 ∑M
m=1 ∑N

n=1 α
(j−1)
tmn β

(j−1)
tmn (yt − ln[bn(1 + am)])

2

∑T−1
t=1 ∑M

m=1 ∑N
n=1 α

(j−1)
tmn β

(j−1)
tmn + ∑M

m=1 ∑N
n=1 α

(j−1)
Tmn

+
∑M

m=1 ∑N
n=1 α

(j−1)
Tmn (yT − ln[bn(1 + am)])

2

∑T−1
t=1 ∑M

m=1 ∑N
n=1 α

(j−1)
tmn β

(j−1)
tmn + ∑M

m=1 ∑N
n=1 α

(j−1)
Tmn

.

(11)

3. Methodology of Analysis and Results

Twelve equities were chosen to be analyzed in this paper (see Table 1)—nine from a
developed market (US) and three from emerging markets (Brazil and China). The training
set contains data from the 1st of January 2011 to the 31st of December 2019 whilst the test set
contains data from the 1st of January 2020 to the 30st of September 2020. Using a 12-month
rolling Sharpe ratio as a point of reference, all equities displayed average or above average
returns (with respect to an S&P benchmark) in the test period, with the exception of the
two underperforming Brazilian equities [26]. Two datasets were collected for each stock for
the above-mentioned period—daily price data and quarterly earnings per share data.
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Table 1. Table of results, showing the return on investment as a percentage of the sum invested.
Values in brackets are negative.

Stock Thresholds for LT Strategy Thresholds for MT Strategy Profit from B&H0.05 0.10 0.15 0.20 0.03 0.05 0.07 0.10

AAPL (US) 55.30% 55.30% 55.30% 55.30% 69.51% 57.82% 48.06% 76.02% 55.30%
ADBE (US) 25.46% 37.86% 44.45% 0% 46.65% 46.65% 46.65% 46.65% 46.65%
BLK (US) 12.98% 12.98% 12.98% 12.98% 33.92% 34.66% 20.85% 20.85% 12.98%
COST (US) 22.59% 22.59% 22.59% 22.59% 50.12% 42.85% 28.21% 0% 22.59%
HD (US) 28.71% 28.71% 28.71% 28.71% 57.76% 51.31% 37.99% 47.35% 28.71%
ITUB (BZ) (39.86%) (29.36%) (29.36%) (27.57%) 9.10% 7.07% 7.07% (9.59%) (55.85%)
MA (US) 27.17% 29.34% 61.09% 60.41% 47.70% 32.57% 24.66% 34.39% 11.93%
MCD (US) 11.38% 11.38% 11.38% 11.38% 18.94% 18.94% 30.63% 30.63% 11.38%
NTES (CHN) 47.89% 50.84% 57.35% 39.54% 39.54% 39.54% 39.54% 39.54% 39.54%
NVDA (US) 125.90% 125.90% 125.90% 125.90% 149.00% 156.79% 125.90% 125.90% 125.90%
SAN (BZ) (2.08%) (14.35%) (17.78%) (17.78%) (57.17%) (57.17%) (57.17%) (57.17%) (57.17%)
UNH (US) 7.95% 7.95% 15.90% 19.88% 72.41% 21.83% 38.58% 2.87% 7.95%

Average 26.12% 25.07% 32.38% 27.61% 44.79% 37.74% 32.60% 29.79% 20.83%

W/D/L 4/7/1 4/7/1 5/6/1 4/7/1 9/3/0 9/3/0 7/4/1 6/4/2
Totals 17/27/4 31/14/3

After the preliminary data cleaning and preparation phase, the initial values of vectors
a = (am) and b = (bn) are set next. Priors of the vector v and matrix W are set as discussed
earlier; the prior for u is set to be the discrete uniform distribution, and the initial value
of σ2 is set to 5. Parameter learning is then performed before inference of the latent states
P̂E∗ and Ẑt. Simulation of the trading strategies follows. The trading strategies proposed
by Wang [22] and used in this paper will be compared to the benchmark B&H strategy.
For both the proposed trading strategies, let It denote the amount of cash available at time
t; let Nt denote the units of a security held at time t; let Ttrain represent the size of the
training set; and let T represent the size of the dataset (sum of sizes of training and test
sets). Both the long-term and the medium-term trading strategies can be described by three
possible courses of action (labeled (i), (ii) and (iii) below) at time t; that is, courses of action
(i) through (ii) are common to both trading strategies:

(i) If PEt ≤ At(1 − Tr) and It > 0, then buy the security using all the available cash It.
Hence, Nt+1 = It

PT
and It+1 = 0.

(ii) If PEt ≥ At(1 + Tr) and It = 0, then sell all the units held Nt. Hence, Nt+1 = 0
and It+1 = PtNt.

(iii) If neither (i) or (ii) are satisfied, do not execute any trades. Hence, Nt+1 = Nt and
It+1 = It.

Note that At is considered to be a baseline and depends on the trading strategy. The
threshold value Tr ∈ (0, 1) acts as a sensitivity gauge defining how much the investor
wants to allow PEt = Pt

Et
to deviate from the baseline At before triggering a particular

course of action in the trading strategies. This is clear from how the courses of action are
defined. The total profit at the end of the trading period is given by IT + PT NT − ITtrain+1.

The first trading strategy is the so-called ‘long-term strategy’, where trading is per-
formed with respect to the constant value of P̂E∗, so At = P̂E∗. The alternative strategy
is the ‘medium-term strategy’, where trading is performed with respect to the dynamic
values of P̂E∗(1 + Ẑt), where each Ẑt is dynamically estimated through filtering. Therefore,
for the medium-term strategy, At = P̂E∗(1 + Ẑt).

The results on the BLK and ITUB stocks are presented in graphical detail in this paper.
Firstly, the long-term strategy on the BLK stock data suggests that the investor buys the
stock at time point 2265 = Ttrain + 1 and holds the stock for the rest of the period. Clearly,
this strategy coincides with the B&H strategy and, as a result, profit from the long-term-
strategy would be equal to profit from the B&H strategy which is equal to USD1298.04,
equaling a 12.98% return on the initial investment of USD 10,000. On the other hand, the
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medium-term strategy suggests that the investor buys the stock at time points 2265, 2301
and 2437, sells it at time points 2289 and 2431, and holds it for the rest of the time points.
This would yield a profit of USD 3391.85; equalling a 33.92% return on the initial investment
of USD 10,000 in the nine-month period that the testing set covers. This means that the
medium-term strategy beats the B&H strategy by 20.94%. Figure 2 illustrates the long-term
strategy and medium-term strategy.

Next, we discuss the ITUB stock data. The long-term strategy suggests that the
investor buys the stock at time point 2308 and holds the stock for the rest of the period.
Implementing this strategy would yield a loss of USD 3986.16, which equates to a 39.86%
loss on the initial investment of USD 10,000. The buy-and-hold strategy, however, would
yield a greater loss of USD 5584.67. In contrast, the medium-term strategy suggests that the
investor buys the stock at time points 2313, 2315 and 2376, sells it at time points 2314 and
2372, and holds it for the rest of the time points. This would actually yield a profit of USD
909.81. Although this is only a 9.1% return on the initial investment of USD 10,000, the
medium-term strategy provides the investor with a strategy whereby he or she can make
a profit in a period when the stock is actually crashing. Figure 3 illustrates the long-term
strategy and medium-term strategy, respectively.

(a) Long-term strategy (b) Medium-term strategy

Figure 2. Simulated strategies for the BLK stock.

More generally, we see in Table 1 that the medium strategy has been consistently
superior (for various thresholds) for BLK, COST, HD, ITUB, MA, MCD, NVDA and UNH.
For ITUB, for all but one threshold, the strategy turns a slight profit even though a loss is
registered for other strategies. The long-term strategy has been consistently superior for
NTES and SAN. Neither strategy has offered any advantages on ADBE, while for AAPL,
the success of the medium-term strategy depends on the choice of threshold. Some further
analysis on these results will be given in the conclusion.

(a) Long-term strategy (b) Medium-term strategy

Figure 3. Simulated strategies for the IUTB stock.
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4. Conclusions

Through the use of DBNs, the model for stock movement by Wang [22] is built for
our existing equity dataset. This model includes two latent states—one modeling the
medium-term noise effects, and the other modeling the true fundamental PE ratio of a
firm, the latter assumed to be constant throughout the period under study. The forward–
backward algorithm and the Baum–Welch algorithm (variant of the EM algorithm) are
used to perform parameter learning and inference. Based on this fitted model, the long-
and medium-term strategies are applied to the twelve stocks studied here, with nine of
these stocks trading on a developed market and the rest on an emerging one. Overall,
both the long-term and medium-term strategies outperform the benchmark B&H trading
strategy 17 and 31 times, respectively, out of a total of 48 experiment runs for each strategy
(four for each of the twelve stocks). The strategies proposed by Wang only lose out to the
B&H four and three times, respectively. Furthermore, the outperformance of these trading
strategies is substantial. Whereas the average profit over all stocks when using the B&H is
20.83%, the average profit over all stocks and over all thresholds for the long-term strategy
is 27.78% and that for the medium-term strategy is 36.23%. Lastly, it results that these
trading strategies provide the investor with trading suggestions that, in certain cases, can
even turn a loss under the B&H strategy into a profit as was shown to be the case for the
ITUB stock. This stock was on a downfall, but the medium-term strategy still yielded a
profit on the sum invested. All these results are as displayed in Table 1.

As with any statistical model, the model implemented in this work has room for
improvement. The first and most significant limitation is the fact that only stocks that had a
positive EPS during the period under study can be modeled by the model. This is due to the
left-hand side of the model equation, that is, Equation (1). In certain times such as during
pandemics or during recessions, it may be considerably difficult to find a firm who has not
registered a loss in at least one quarter for the period under study. A second limitation is the
lack of use of expert knowledge. In real-world investing, expertise in the field is considered
highly valuable, and only seasoned investors are generally advised to trade actively. Since
the model in this paper allows for the incorporation of expert knowledge, it is indeed a
limitation that such knowledge is not made use of. Another limitation related to expert
knowledge is the limitation that no trading fees or commissions are taken into account in
this analysis. Although the proposed model allows for commissions to be considered in the
trading strategies, no knowledge on the actual values of fees or commissions charged was
available at the time of writing, and hence, such expenses could not be taken into account.
It is well known that certain trading fees can sometimes tally up when executing numerous
trades in such a way that a profit can turn into a loss when these fees are brought to the
fore, which would make the buy-and-hold strategy more profitable.

Improvements on the above-mentioned limitations can add value to the model and
should be considered in future works. In addition, another improvement that makes the
model here more applicable in real-life scenarios is the incorporation of some variable
that measures the liquidity of a stock. This is because the suggestions provided by the
trading strategies on when to buy and sell a stock are rendered useless if the stock itself is
not liquid. Prices may change by the time the stock becomes liquid enough for an actual
trading opportunity to arise, and if the price changes significantly, that obviously renders
the suggestion itself useless. In this study, liquidity was not envisaged to be of concern
since all 12 stocks considered are large-cap stocks.

The choice of historical data used is always an important decision due to the fact that
the length of the time series plays a major role. In principle, longer time series are preferred
to shorter ones, but if the historical data contain changes in regime, this may inhibit the
model in its forecasting performance. Furthermore, future regime changes that may occur
in the test period may also impact the model’s forecasting performance.

Finally, other improvements that can be implemented in future studies are further and
deeper experimentation and testing, and the possibility of short-selling stock. To begin
with, experimentation at a portfolio level can be implemented with the stocks studied here
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to understand how the profits change when a group of stocks are considered together—for
instance, samples of nine stocks from the twelve studied here can be taken to form portfolios,
and the ’optimal’ portfolio can be identified. Apart from this, more time can be spent on
cross-validation in future studies to further improve on the suggestions provided by the
trading strategies in this work. Also, the properties of all the estimators used could be
derived in future works, to better understand their behavior. Finally, this strategy does
not allow the short-selling of stock; extensions to the model which allow for this could
be proposed.
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