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ABSTRACT
The classification performance of endogenous electroencephalogram (EEG) brain-computer inter
faces (BCIs) can be improved by hybridizing the paradigm through the use of commands from 
multiple paradigms. Hybrid paradigms using motor imagery (MI) and speech imagery (SI) have 
shown promise, but there is a lack of research into: i) their effectiveness when compared to pure MI 
and SI for multiclass problems, and ii) automated command selection. This study investigates 
multiclass MI and SI hybrid paradigms and compares the results to those obtained using pure MI 
and SI. Performance was assessed using F1 score and accuracy. The performances of all possible 
hybrid paradigm designs were assessed. The analysis indicated that hybridization does not always 
guarantee improved performance when compared to the pure paradigms, and there is inter- 
subject variation in the best paradigm. This confirmed the need for automated subject-specific 
hybrid paradigm designs. An automated hybrid paradigm selection technique using successive 
halving (SH) for expedited computational times was developed and results were compared to 
those obtained using a standard grid search. The SH approach resulted in an improvement in F1 
score of 21.09% and 36.86% compared to MI and SI and led to a reduction in computational times 
of 82.80% compared to grid search.
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1. Introduction

Wider adoption of electroencephalogram (EEG)-based 
brain-computer interfaces (BCIs) depends, in part, on 
the use of reliable and robust paradigms for issuing com
mands. There are two major kinds of EEG-based BCI 
paradigms: exogenous, which require the subject to inter
act with an external stimulus, for example by looking at 
a flickering light, and endogenous, in which the subject 
executes commands themselves, without any stimulus. 
The most widely adopted endogenous paradigm is 
motor imagery (MI) [1], which requires subjects to ima
gine movements of limbs to execute commands. 
Currently, exogenous paradigms provide better classifica
tion performance when compared to endogenous ones. 
However, exogenous paradigms can be impractical, tiring 
for the user, and possibly unintuitive [2,3]. Thus, there is 
extensive research into improving the classification per
formance when using endogenous paradigms [1,4–7].

Various approaches for improving the classification 
of endogenous commands have been proposed. 
Predominantly, the focus of previous research has 
been on exploring different signal processing methods, 

features, and classifiers [1,8]. Studies have also investi
gated the use of selection methods to choose subsets of 
features or EEG channels which result in improved 
performance [9–16]. Other approaches involve imple
menting novel pre-processing algorithms to clean the 
data through the removal of artifacts [17] or to improve 
its decipherability through decomposition methods 
[18]. Post-processing of the classifier output to stabilize 
classification performance [19] has also been investi
gated. These approaches all use computational methods 
to improve EEG classification.

An alternative approach for improving the classifica
tion performance of endogenous systems is to design 
the paradigm such that the commands themselves are 
more likely to be strongly decipherable [20,21]. This can 
be achieved through hybridization of the paradigm, 
which involves including commands from two or 
more endogenous paradigms [1,4–7,20–22]. Previous 
studies [20,21] have indicated that hybrid paradigms 
can outperform pure paradigms (which consist of com
mands from just one paradigm, such as MI alone) 
[20,21]. Two studies [20,21] have found that combining 
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MI and speech imagery (SI, which involves imagining 
speaking words) led to improved performance in binary 
classification problems when compared to using stan
dard left- and right-hand MI classes. Two overarching 
gaps were identified in the literature related to hybrid 
paradigms: i) there was a lack of research into the effec
tiveness of hybrid paradigms in improving classification 
performance, and ii) there was a lack of automated 
command selection within hybrid paradigm frame
works. These two gaps and associated literature will be 
discussed in turn.

The first gap identified was a lack of exhaustive 
analysis of the impact of hybridization on classification 
performance. Most studies do not compare the hybrid 
paradigms to a pure paradigm at all [1,4–7,22] whilst 
those that do have based their studies on binary classi
fication problems alone [20,21], which would be limit
ing in a practical BCI where multiclass classification is 
generally necessary to facilitate a variety of commands. 
Although these initial studies have indicated that hybri
dization can lead to improved performance, there are 
still questions as to whether hybridization will always 
lead to improved performance, and if not, how to effec
tively select suitable commands.

The second gap identified was in the area of auto
mated command selection for hybrid paradigms. Three 
main approaches for command selection within hybrid 
paradigms were identified. The most straightforward 
involved allowing participants to pick which commands 
they would like to use, but this does not mean that they 
will pick those which lead to the best performance [4]. 
The second approach evaluated the classification per
formance of each command combination to select the 
most appropriate [5] using a grid search method. 
Although this approach is rigorous, it can be computa
tionally expensive. The third approach was the interac
tive method by Kuzovkin et al. [7]. The user was allowed 
to explore different kinds of commands, with the inter
face giving feedback to the user on their classification 
performance and prompting them to change the com
mand that was detected most poorly. This approach 
requires extended periods of concentration and puts 
the onus on the user to identify a set of commands 
that work well together. If the subject experiments 
with various commands throughout the interactive ses
sion, it is possible that a particular subset of commands 
experimented with could potentially lead to improved 
performance compared to the final command set settled 
on through the interactive process due to the ‘greedy’ 
nature of the process.

Although automated hybrid paradigm selection has 
not been investigated in depth in the literature, selection 
algorithms have been applied to other problems in EEG 

processing, most notably to select the best EEG channels 
or features to optimize classification performance 
[9–16]. The most popular selection algorithms which 
could also be applied to hybrid paradigm selection can 
be divided into three main categories: i) exhaustive 
searches like the grid search approach, which evaluates 
all possible options [12,16]; ii) greedy search methods 
such as recursive feature elimination and forward selec
tion [13,15], and iii) metaheuristic and evolutionary 
methods [9,10,13,14,23], with popular metaheuristic 
and evolutionary algorithms used in the literature 
including genetic algorithms [9,11,13], swarm-based 
optimization [9,10,14,23] and differential evolution 
[9,24]. Aljalal et al. [13] found that metaheuristic 
approaches involving genetic algorithms performed bet
ter than greedy methods based on backward and for
ward feature selection. The main limitation of 
exhaustive searches is that they are computationally 
expensive. In a practical scenario, the hybrid paradigm 
selection process would contribute to the delay between 
recording the training data from the subject and the 
subject being able to use the BCI. Thus, the selection 
process must be computationally efficient such that this 
delay is brief. Furthermore, although greedy and meta
heuristic algorithms try to locate the global optimal 
solution, they are not guaranteed to explore the entire 
solution space, meaning that there is a risk that the best- 
performing hybrid command combination may not 
even be considered by the algorithm. Finally, metaheur
istic algorithms in particular have various parameters 
that need to be set and there is no guarantee that para
meters set at the design stage would be universally 
appropriate for all potential users of a BCI. If to try 
and ensure better performance for individual users, 
these parameters are tuned for each new user, this tun
ing process will contribute to an increase in the delay 
experienced by the user, which is contrary to the aim of 
introducing automated selection.

Successive halving (SH) [25–27] is a state-of-the-art 
selection algorithm that has been used as 
a hyperparameter tuning approach and was designed to 
be more computationally effective than traditional grid 
search hyperparameter tuning. In SH, the number of 
candidates is halved in each successive iteration, and the 
number of resources used is doubled. SH traditionally 
continues iteratively until one candidate has been 
selected. Thus, SH expedites the selection process by 
exploiting the fact that the evaluation process gets slower 
as the volume of data used increases. Therefore, when 
performing the initial survey of the whole candidate 
space in the first iteration, the smallest amount of data 
is used. Then, as the algorithm narrows down the candi
date space, the amount of data used is increased to ensure 
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that the best candidate is selected. In previous works, SH 
has been applied to hyperparameter tuning for deep 
learning algorithms [25–27] and a naïve Bayes [26] clas
sifier for different machine learning problems such as 
wine recognition [26], cancer detection [26], image clas
sification [25], and electrical interface signal processing 
[27]. To the authors’ knowledge SH has not been applied 
to the problem of hybrid paradigm selection, although it 
is highly suitable because it presents solutions to the 
shortcomings of other selection algorithms in the EEG 
literature, namely: i) SH is designed to explore the entire 
solution space, ii) by nature, SH is not heuristic and is 
non-parametric [25–27], meaning that it can be applied 
to the data of any new subject without the need to worry 
about parameters being sub-optimal or about additional 
delays to tune parameters to the individual subject, and 
iii) SH has been designed to be more computationally 
efficient than a grid search [25].

The objective of this study, based on this literature 
review, is to improve the classification of multiclass 
endogenous EEG commands. This is achieved through: 
i) exhaustively evaluating the impact of a MI and SI 
hybrid paradigm on multiclass classification perfor
mance when compared to the pure paradigms, and ii) 
proposing a computationally efficient approach, based 
on SH, to select commands for each subject which lead 
to improved performance when compared to the pure 
paradigm.

The rest of the paper is structured as follows: Section 2 
presents the Materials and Methods, Section 3 presents 
the Results, Section 4 presents the Discussion, and finally 
Section 5 presents the Conclusion.

2. Materials and methods

2.1. Data recording

Before data recording, ethical approval was sought, and 
project details were submitted to and acknowledged by 

the Faculty Research Ethics Committee at the Faculty of 
Media and Knowledge Sciences of the University of 
Malta (application number MAKS-2022–00012). The 
principles of the Declaration of Helsinki were respected. 
Informed consent was obtained: subjects were given an 
information sheet and signed a consent form to partici
pate. The consent form explained that their EEG data 
may be made publicly available. Five healthy subjects 
participated in this study, two males and three females, 
with an average age of 24.4 years. Data was recorded at 
a sampling frequency of 2.048 kHz using the BioSemi 
ActiveTwo EEG measurement system [28] with 32 
active gel electrodes. The data has been made publicly 
available at: https://doi.org/10.60809/drum.24465871.v1

EEG data was recorded for four MI classes and four 
SI classes. For the former, left-hand, right-hand, tongue, 
and legs MI, which constitute the standard hands, legs, 
and tongue paradigm [29], was recorded. For the SI 
classes, EEG data for the words ‘left’, ‘right’, ‘up’, and 
‘down’ was recorded. These words were chosen because 
they can easily be used for cursor control in a graphical 
user interface (GUI) or to control a robotic device.

A total of 40 trials were recorded for each of the four 
MI and four SI classes. Each trial had a duration of 6s 
and was structured as shown by the timing diagram in 
Figure 1. First, a fixation cross appears on-screen, indi
cating to the subject to remain relaxed but aware that 
the next trial is forthcoming. The cue then appears in 
the form of an arrow, with its direction being associated 
with a particular task. The subject starts executing the 
task as soon as they see the cue, and continues even 
when it has disappeared until the fixation cross appears 
again. The cues consist of a left-facing arrow (for left- 
hand MI or ‘left’ SI), a right-facing arrow (for right- 
hand MI or ‘right’ SI), an upward-facing arrow (for 
tongue MI or ‘up’ SI), and a downward-facing arrow 
(for legs MI or ‘down’ SI).

For data collection, four separate runs were carried 
out, where a ‘run’ refers to a series of 20 trials per class 

Figure 1. Timing diagram for each 6s-long trial.

BRAIN-COMPUTER INTERFACES 3

https://doi.org/10.60809/drum.24465871.v1


being recorded. Between each run, subjects were given 
a short break of 3–5 minutes. In the first and third runs, 
MI data was recorded, and then in the second and 
fourth runs, SI was recorded. At the start of a run, 
subjects were given one minute to settle down before 
the trials began.

2.2. Data pre-processing

Channel Cz was the recorded data reference channel. 
The data was then re-referenced by calculating the mean 
value across the channels at each time point and sub
tracting the resulting vector from all channels (common 
average referencing). A bandpass filter with a passband 
between 1 Hz and 120 Hz was applied to the data, fol
lowed by a 50 Hz notch filter. The data was then down- 
sampled to 1 kHz. Each trial was then augmented by 
dividing it into 32 segments using overlapping windows 
of length 2s and spaced out by 0.063s. These parameters 
were chosen since they replicate the buffering used in 
online BCI systems in the literature [19]. For classifica
tion, 24 channels out of the 32 available in the BioSemi 
setup were used. Channel Cz was removed since it was 
the reference, the anterior-frontal and frontopolar chan
nels (four in total) were removed due to their high 
correlation with artifacts [30], and the electrodes O1, 
O2, and O3 were not used in this analysis due to poor 
signal quality for one of the subjects. The 24 electrodes 
used were: F7, F3, FC1, FC5, T7, C3, CP1, CP5, P7, P3, 
Pz, PO3, PO4, P4, P8, CP6, CP2, C4, T8, FC6, FC2, F4, 
F8, and Fz.

2.3. Feature extraction and classification

Power spectral density (PSD) features together with 
a support vector machine (SVM) classifier were used 
for classification. This processing pipeline was chosen 
due to the widespread established use of this feature- 
classifier pairing within the literature for MI and SI 
classification [1,31–33]. All signal processing was imple
mented in MATLAB.

PSD features were extracted from each 2s-long seg
ment of data as follows. For each channel in the dataset, 
the Welch PSD was calculated using a 500 samples-long 
(i.e. 0.5s long) Hann window, with an overlap of 250 
samples and a zero-padding vector of size 500. PSD 
values for frequencies from 1 Hz to 120 Hz, spaced by 
steps of 1 Hz, were extracted. The average powers within 
specific frequency bands were then calculated, thus 
obtaining a set of features from each channel. The 
features from all channels were concatenated to form 
the final feature vector.

Throughout this paper, separate results are presented 
using three different approaches for segmenting the 
frequency bands as described below. For each approach, 
baseline results using pure MI and SI paradigms were 
obtained, as well as results using the hybrid paradigm. 
The goal was to assess the versatility and generalizability 
of the hybrid paradigm using the three different feature 
types and identify which frequency feature works best 
with the hybrid paradigm.

The first approach used for frequency band segmen
tation involves the extraction of features from the stan
dard, established EEG frequency bands, namely the 
delta, theta, alpha, beta, and gamma bands [34,35]. 
This standard method of frequency band stratification 
has been widely used in analysis throughout the EEG 
literature [8,34,35]. It is fairly common for the alpha, 
beta, and gamma frequencies to be further stratified into 
sub-bands [34,35]. Hence, the following divisions were 
used: delta (1–4) Hz, theta (4.5–7.5) Hz, low alpha (8– 
10) Hz, high alpha (10.25–13) Hz, low beta (13.25–18) 
Hz, medium beta (18.25–21) Hz, high beta (21.25–30) 
Hz, low gamma (30.5–45) Hz, medium gamma (45.5– 
58) Hz, high gamma (58.5–85) Hz, and ultra-high 
gamma (85.5–120) Hz. This first method is referred to 
as the ‘Standard Bands’ approach throughout this paper.

The second approach was used in the work of 
Koizumi et al. [31], who investigated an SI classification 
approach, in which PSD features were extracted from 
10 Hz frequency bands, delineated as follows: f < 10 Hz, 
(10�f< 20) Hz, (20�f< 30) Hz, . . . ,(110�f< 120) Hz, 
where f is the frequency. This method is referred to as 
the ‘10 Hz Bands’ approach.

The final feature extraction approach involved fea
tures from the alpha and beta bands only. Extensive 
previous research suggests that the alpha and beta 
bands are particularly important for MI, and have also 
been linked to SI [8]. Using features in these two bands 
only and comparing them to results from the Standard 
Bands and 10 Hz bands approaches will indicate 
whether they capture sufficient salient information for 
the hybrid classification system or whether bands out
side of these also have substantial influence. 
Furthermore, since MI was the primary benchmarking 
paradigm in these experiments, and these two bands are 
particularly important for MI classification, generating 
baseline MI results for these bands was important to 
ensure that frequencies outside of these bands do not 
confound the benchmarking results. This method is 
referred to as the ‘Alpha-Beta Bands’ approach through
out the rest of the paper.

An SVM with a radial basis function kernel was 
used as the classifier. Multiclass SVM classification 
was carried out using a one-vs-one configuration 
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through the inbuilt fitecoc function [36]. This function 
reframes the multiclass classification problem into 
a collection of binary classification problems using 
an error-correcting output codes model [36]. The 
box constraint parameter and kernel scale parameters 
of the basis classifiers were tuned for values in the 
range Nk for N set to either 2 or 10, and k values from 
2 to 6, increased in steps of 2. Tuning was carried out 
using a grid search on the training data, with the 
parameter set resulting in the greatest classification 
performance being applied to the test set. Four class 
classification was carried out in this analysis due to the 
four tasks the subjects carried out as described in 
Section 2.1.

2.4. Experimental methodology

2.4.1. Cross-validation
Subject-specific training was carried out, meaning that 
classifiers were trained using only the data from the 
individual subject. Ten-fold cross-validation was used 
for evaluating classification performance. The trials 
were divided into 10 groups in a stratified way, meaning 
that there were 4 trials of each class in each group. Trial 
segmentation was carried out such that the time chron
ology for each class was preserved. For each fold, one 
group was selected for testing, and the remaining 9 
groups were aggregated into the training dataset and 
used for hyperparameter tuning of the SVM classifier. 
Once the hyperparameters were selected based on cross- 
validation in the training dataset, the final classifier was 
trained with the training data. Then, the performance 
with the test set was evaluated and stored, and the 
process was repeated such that each of the 10 groups 
was considered as the test set. The final test-set perfor
mance was obtained by averaging the results over the 10 
folds. The approach used for tuning and evaluation is in 
keeping with established techniques used in the litera
ture [37–39].

2.4.2. Performance measures
Macro classification performance measures were used. 
This means that for each class in the classifier, the true 
positives (TP), false positives (FP), true negatives (TN), 
and false negatives (FN) were extracted. Then, the per
formance measure was calculated individually for each 
class and averaged across the classes to obtain an overall 
classification measure for the classifier.

It should be noted that although the classifier is 
trained and tested on a balanced dataset, the macro 
performance measures approach obtains values in 

a one-vs-rest fashion for each class before averaging 
across the four classes, meaning the performance calcu
lation is carried out on imbalanced data (i.e. one class vs 
the three other classes grouped as one). Factoring this, 
the performance measures were chosen to accurately 
represent the performance.

The F1 score was the leading performance measure 
used in this study. It is deemed as a more informative 
statistic for BCI classification than the traditional clas
sification accuracy, which can be skewed for unbalanced 
data [40]. F1 score has also been used as a performance 
measure in similar studies [7,41,42]. The equation for F1 
score is as follows: 

The sensitivity and positive predictive value (PPV) were 
also recorded, and calculated as follows [39]:  

The sensitivity indicates the rate at which commands 
were correctly identified, and the PPV is 
a complementary measure to test for oversensitivity 
[40]. Typically, there is a trade-off in the values of 
sensitivity and PPV [40]. The F1 score is a balanced 
average of these two values which can be expressed as 
follows: 

An increase in the F1 score thus indicates an overall 
increase in performance, based on these two statistics. 
The sensitivity and PPV value are also reported to 
identify the underlying mechanisms through which the 
F1 score changes.

The balanced accuracy [43–46], which is an average 
of the sensitivity and specificity, captures the inherent 
trade-off between the two: ideally, both measures are 
high, leading to better overall performance, which is in 
turn captured by the balanced accuracy. The balanced 
accuracy is complementary to the F1 score since it takes 
into consideration the true negatives, which the F1 score 
does not. Moreover, since macro-averaging of perfor
mance measures inherently introduces a class imbalance 
in the calculations, the balanced accuracy is a more 
appropriate measure of performance than the standard 
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classification accuracy [43–46]. The equations for spe
cificity and balanced accuracy are as follows: 

The final performance measure used is computational 
execution time. A computational time for each subject 
was calculated by recording the execution time of each 
of the ten folds and then finding the average time. To 
obtain a global figure, the execution times obtained for 
each subject were then averaged. This means that com
putational times in this study were obtained based on 50 
readings. Computational time readings were recorded 
on a desktop computer with an Intel®Core™ i7–10700 
CPU running at 2.90 GHz, 36GB of RAM, and the 
Windows 10 Pro 64-bit operating system. Experiments 
were run using MATLAB 2023a. Other applications 
were closed, and non-essential background processes 
were suspended to ensure accurate readings.

Percentage changes in performance measures were 
calculated by taking the difference between the nominal 
value and the comparison value, and then dividing by 
the nominal value.

2.4.3. General evaluation of the hybrid paradigm
A general evaluation of the impact of the MI-SI para
digm hybridization on classification performance was 
first carried out. In this analysis, every possible hybrid 
pairing of two MI and two SI tasks was considered, 
amounting to 36 combinations. For each hybrid pairing, 
the SVM classifier was tuned, and the average F1 score 
and balanced accuracy were obtained using the 10-fold 
cross-validation approach previously described in 
Section 2.4.1.

Benchmarking results were obtained using: i) the 
pure MI paradigm which consists of the four MI classes, 
and ii) the pure SI paradigm, which consists of the four 
SI classes.

2.4.4. Automated hybrid paradigm selection
In a practical BCI, the best combination of four com
mands for the hybrid paradigm should be automatically 
selected from the subjects’ training data. Two 
approaches were applied for this purpose: i) a grid 
search approach, and ii) a successive halving (SH) 
approach.

2.4.4.1. Grid search hybrid paradigm selection.. The 
grid search method used the same 10-fold cross- 
validation tuning approach used to tune the classifier. 
Specifically, in each fold, the cross-validation algorithm 
looped through all the possible hybrid combinations of 
two MI and two SI commands, tuning an SVM classifier 
for each combination, and then using the training data
set, identified the best hybrid design based on classifica
tion performance. The term ‘design’ refers to the 
specific combination of two MI and two SI commands. 
The test set was then used to evaluate the performance 
of the selected hybrid pairing and SVM parameters. This 
mimics how tuning would be carried out in a practical 
application of the hybrid paradigm, where the best pair
ing would be selected using the training data.

2.4.4.2. Successive halving hybrid paradigm selection.
The SH-based method used in this study is an iterative 
process, which involves halving the number of candi
date solutions (i.e. hybrid paradigm designs) considered 
in each iteration, whilst doubling the amount of data 
used for processing. The selection process is designed 
such that at the end of the iterations, two remaining 
candidate solutions are being considered, and 100% of 
the data is used to decide between them. Since the 
hybrid paradigm consists of two MI and two SI com
mands, and these commands are chosen from a pool of 
four MI commands and four SI commands, there are 36 
candidate paradigms in total.

Figure 2 shows how SH was applied to the hybrid 
paradigm selection problem in this study. Since 36 can 
be successively halved five times before a value of two 
remains, five iterations are carried out. To calculate how 
much data was used in each iteration, 100% was succes
sively halved five times, to give a starting data percen
tage of 6%. Thus, in the first iteration, 6% of the data is 
used to evaluate all 36 candidates and select the best half 
(i.e. 18), which are promoted for consideration in 
the second iteration. In the second iteration, the data 
is doubled, meaning 12% of the data is used to identify 
the best half of the candidates (i.e. 9), which are then 
promoted to the third iteration. This continues until the 
final iteration is reached, in which 100% of the data is 
used to evaluate the 2 remaining candidates. Note that 
since during four out of the five iterations, SH is using 
a subset of the training data, and is selecting candidates 
based on these randomly selected subsets, SH has the 
potential to select a different candidate than the grid 
search approach, which uses 100% of the data to evalu
ate all 36 candidates.
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For each iteration, the data is randomly selected in 
a stratified way such that the data used to train is always 
balanced. Evaluation is based on the classification per
formance, with the candidates exhibiting the best per
formance being promoted.

2.4.5. Statistical analysis
Statistical tests throughout the results section consist 
of comparisons between two groups of data. Before 
carrying out these tests, both groups were checked 
for normality using an Anderson-Darling test. If 
both groups of data were normal, a t-test was used 
to compare the two groups. Otherwise, its non- 
parametric counterpart, the Wilcoxon rank-sum test 
was used. A 0.05 level of significance was adopted, 
meaning that p-values below 0.05 were considered to 
indicate a statistically significant result.

For the statistical analysis, the ten cross-validation 
results obtained for each subject were concatenated 
to make result vectors of size 50, which were then 
compared. Statistical analysis was carried out to 
compare:

● The classification performance of the selected 
hybrid paradigm to the pure MI.

● The computational times for hybrid paradigm selec
tion using the grid search method and using the SH 
method.

● Separate comparisons for the F1 score, balanced 
accuracy, sensitivity, and PPV were carried out.

3. Results

3.1. Results for general evaluation of the hybrid 
paradigm

The results in this section were obtained using the 
methodology described in Section 2.4.3. The scatter 
plots in Figure 3 show the F1 score and balanced accu
racy results, averaged across subjects, obtained for each 
of the 36 hybrid paradigm combinations with the three 
different feature extraction approaches: Alpha-Beta 
Bands, Standard Bands, and 10 Hz Bands. The x-axes 
denote the code number for the hybrid paradigm com
bination, with Table A1 in the Supplementary Material 
showing all the possible hybrid combinations and their 
associated identifying codes. In Figure 3, the average 
results obtained when using the pure MI paradigm are 
denoted by the black horizontal lines, and similar results 
for the pure SI paradigm are denoted by the red hor
izontal lines.

Figure 2. Successive halving applied to the hybrid paradigm selection problem. The green circles visualize the number of candidates 
being considered in each iteration, and the purple circles visualize the amount of data being used to evaluate the candidates. In each 
iteration, the best-performing half of the candidates are selected for promotion to the next iteration.
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The best performing hybrid paradigms, on average, 
for each feature extraction method are shown in Table 1, 
together with their associated F1 scores.

Additionally, the authors identified two intuitive 
command sets that emerge from the combinations 
under consideration, namely: i) left-hand MI, right- 
hand MI, SI ‘up’ and SI ‘down’ (called ‘I1’), and ii) legs 
MI, tongue MI, ‘left’ and ‘right’ (called ‘I2’). These 
command sets were chosen as the most intuitive because 
they have strong directional commands associated with 
the left and right directions, and left and right direc
tional commands are important in many BCIs, from 
cursor control in a GUI to controlling the turning direc
tion of a robot. Figure 4 compares the performance of 
these intuitive paradigm sets to the results for pure MI 
and pure SI.

Figure 5 then shows the F1 scores obtained for each 
of the 36 hybrid paradigms for Subjects 1 and 2 to 
illustrate inter-subject variability that can exist in the 
performance of different hybrid paradigms. Results for 
each of the three feature extraction approaches are 
shown, and the baseline results for the pure MI and 
pure SI paradigms are represented by the black and 
red horizontal lines, respectively.

3.2. Results for automated hybrid paradigm 
selection

Whereas in Section 3.1 the results were focused on 
presenting the impact of hybridization on average 
performance across the population for all possible 
hybrid paradigm command combinations, the results 

Figure 3. Comparing the F1 score and balanced accuracy results, averaged across subjects, for the hybrid paradigms (blue scatter 
points) to the performance obtained with the pure MI (black line) and SI (red line) paradigms. Results are shown for the three different 
feature extraction approaches. The x-axes denote the hybrid paradigm combination code as in supplementary table A1.

Table 1. The F1 score and balanced accuracy of the best-performing paradigm for each feature 
extraction approach. The numbers in brackets next to the hybrid paradigms denote the hybrid 
paradigm code number used along the x-axis of the plots in Figure 3. These codes are also 
used in Table A1.

Feature Extraction Method Average F1 Score Hybrid Paradigm

Alpha-Beta Bands 39.08% Right-hand; left-hand; ‘left’; ’down’ (5)
Standard Bands 41.55% Right-hand; tongue; ‘right’; ‘up’ (8)
10 Hz Bands 41.14% Tongue; legs; ‘up’; ‘down’ (36)
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in this section capture the performance when the 
hybrid paradigm commands are customized for each 
subject through an automated selection process. The 
results in this section were obtained using the metho
dology described in Section 2.4.4.

Table 2 shows the F1 score results obtained using the 
hybrid paradigm designs selected through grid search 
and SH, and compares them to the pure MI and SI 
paradigms. Results for each subject and feature are 
shown. This table also contains p-values that were 

Figure 4. The classification performance of some intuitive command sets I1 and I2 compared to the pure MI and pure SI paradigms. 
Each data point represents the performance, averaged across all subjects.

Figure 5. Comparing the performance of the hybrid paradigms (blue scatter points) for two subjects. The baseline results obtained 
using pure MI (black lines) and pure SI (red lines) for each subject are shown. The x-axes denote the hybrid paradigm combination 
code as in supplementary Table A1.
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obtained by comparing the results for the selected 
hybrid paradigm designs to those obtained using pure 
MI classification. Pure MI was used since it was the best- 
performing benchmark approach. The methodology of 
this statistical analysis is explained in Section 2.4.5. This 
analysis was carried out for the results obtained using 
Alpha-Beta Band features, Standard Band features, and 
10 Hz Band features. p-values that indicate statistical 
significance are in bold. Table 3 shows results for the 
additional performance statistics, namely balanced 
accuracy, sensitivity, and PPV averaged across subjects. 
The table also contains p-values comparing the results 
obtained using the selected hybrid paradigm designs to 
the results obtained with pure MI for all three of the 
feature types.

The best performance in terms of F1 score was 
obtained for MI classification when using the Alpha- 
Beta bands (34.33%), whereas, for the hybrid paradigm 
approach, the best performance was obtained when 
using the design selected through SH for 10 Hz Bands 

features (42.91%). The results for these two scenarios 
were compared using statistical tests, with the p-values 
obtained being: 1.5 × 10−5 (for F1 score), 6.38 × 10−6 (for 
balanced accuracy), 9.1 × 10−7 (for sensitivity), and 
1.0 × 10−3 (for PPV).

Figure 6 shows the distributions of the F1 score 
results for each approach, namely MI, SI, the hybrid 
paradigm with grid search, and the hybrid paradigm 
with SH. The box plots were created using all of the 
individual fold-wise results for all of the subjects, mean
ing that each box represents the distribution of 50 
results.

Figure 7 compares the average computational times, 
in seconds, for the traditional grid search approach and 
the grid search with SH. A t-test was used to compare 
the computational times for each feature, when using 
the grid search method and when using SH. The p-value 
obtained in all three instances was 7.56 × 10−10, which 
indicated that SH had a significant impact on computa
tional time.

Table 2. The F1 score results (%) obtained for individual subjects when using the pure MI paradigm, the pure SI paradigm, and the 
hybrid paradigms selected using grid search (GS) and successive halving (SH), for classification with the Alpha-Beta Bands, the 
Standard Bands, and the 10 Hz Bands features. In each row, the peak benchmarking result is highlighted in bold as well as the peak 
hybrid paradigm result. p-values were obtained through statistical comparisons between the results obtained using the automatically 
selected hybrid paradigm design and pure MI for classification. All results were generated using a Wilcoxon rank-sum test unless 
highlighted with an asterisk, in which case a t-test was used. p-values in bold denote statistical significance.

F1 Scores

Alpha – Beta Bands Standard Bands 10 Hz Bands

Subject SI MI
Hybrid 

Paradigm (GS)
Hybrid 

Paradigm (SH) SI MI
Hybrid 

Paradigm (GS)
Hybrid 

Paradigm (SH) SI MI
Hybrid 

Paradigm (GS)
Hybrid 

Paradigm (SH)

1 28.64 37.08 34.80 35.61 33.59 31.23 42.75 39.65 27.25 32.21 39.93 44.92
2 24.22 42.64 40.24 42.76 29.27 41.26 46.67 47.90 28.52 41.41 40.52 45.43
3 29.88 32.41 38.75 38.39 31.34 35.19 39.80 34.69 28.45 29.04 35.86 41.15
4 23.37 29.82 37.47 34.00 21.81 31.45 42.36 46.55 23.39 28.63 46.47 48.39
5 33.18 29.68 37.01 35.46 25.55 28.51 30.70 32.13 27.55 27.69 36.31 34.67
Average 

(p-value)
27.86 34.33 37.65 

(5.6 × 10-2)
37.25 

(5.4 × 10−2*)
28.31 33.53 40.45 

(5.1 × 10−3)
40.18 

(1.4 × 10−4*)
27.03 31.80 39.82 

(6.8 × 10−6)
42.91 

(2.8 × 10−7)

Table 3. Comparing various performance measures (%) for the hybrid paradigms selected using grid search (GS) and successive 
halving (SH), and the baseline MI and SI approaches. In each row, the peak benchmarking result is highlighted in bold as well as the 
peak hybrid paradigm result. p-values are shown in brackets and were obtained through statistical comparisons between the results 
obtained using the automatically selected hybrid paradigm design and pure MI for classification. All results were generated using 
a Wilcoxon rank-sum test unless highlighted with an asterisk, in which case a t-test was used. p-values in bold denote statistical 
significance.

Alpha – Beta Bands Standard Bands 10 Hz Bands

Measure SI MI
Hybrid 

Paradigm (GS)
Hybrid 

Paradigm (SH) SI MI
Hybrid 

Paradigm (GS)
Hybrid 

Paradigm (SH) SI MI
Hybrid 

Paradigm (GS)
Hybrid 

Paradigm (SH)

Balanced 
Accuracy

52.80 56.56 59.49 
(1.9 × 10−2*)

59.26 
(1.4 × 10−2)

52.60 56.19 61.20 
(9.5 × 10−4)

60.86 
(1.1 × 10−4*)

52.28 56.16 60.47 
(4.9 × 10−4*)

62.93 
(6.5 × 10−7*)

Sensitivity 28.00 36.20 41.38 
(5.2 × 10−3)

40.07 
(2.3 × 10−2)

29.18 34.90 44.86 
(8.7 × 10−6)

43.72 
(5.9 × 10−5)

26.65 31.96 45.20 
(1.8 × 10−9)

46.75 
(6.0 × 10−9)

PPV 29.77 33.98 38.14 
(8.8 × 10−2*)

37.28 
(5.1 × 10−2)

28.62 33.69 38.90 
(2.8 × 10−2*)

40.44 
(2.8 × 10−3*)

29.85 33.61 37.63 
(3.5 × 10−2)

42.92 
(5.0 × 10−4)
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4. Discussion

4.1. General evaluation of the hybrid paradigm

This section discusses the results obtained during the 
general evaluation analysis of the MI-SI hybrid para
digm. Thus, it contains a broad analysis of the hybrid 
paradigm and illustrates the necessity for automated, 

subject-specific command selection, which is then dis
cussed in Section 4.2.

Considering the classification results for the pure 
paradigms only, in Figure 3, the MI paradigm outper
formed the SI paradigm for all three feature extraction 
approaches. It is also evident that the pure MI paradigm 
performed best when only the alpha and beta frequency 

Figure 6. Box plots showing the distributions of the fold-wise F1 scores for the MI, SI, hybrid with grid search (GS), and hybrid with 
successive halving (SH) approaches. Results for all three types of features, namely the Alpha-Beta (AB), Standard Bands (SB), and 10 Hz 
Bands (10 Hz) are shown. The horizontal red lines denote the median of the distribution.

Figure 7. Comparing the average computational time in seconds for the hybrid paradigm design using the traditional grid search 
approach and successive halving.
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bands were used. As discussed in Section 2.3 this was 
expected due to the relationship between MI and these 
particular bands.

It is evident from the plots in Figure 3 that the hybrid 
paradigm has a strong potential for outperforming the 
pure paradigms. When using the Standard Bands and 
10 Hz Bands feature extraction approaches, all the 
hybrid paradigm combinations outperformed pure MI 
both in terms of F1 score and balanced accuracy.

Considering the results obtained when using the 
alpha and beta bands, the hybrid paradigms generally 
led to improved performance, however not as consis
tently. Furthermore, the hybrid results obtained using 
Alpha-Beta Band features tend to be clustered at lower 
values than those obtained using Standard Bands or 10  
Hz Bands, with none of the results for Standard Bands 
or 10 Hz Bands falling below the baseline MI results. 
These results therefore indicate that frequencies outside 
the alpha and beta bands appear to be important for 
discrimination in the hybrid paradigms, and using 
wideband features has the potential to lead to notably 
improved performance.

Considering the results in Table 1, features extracted 
using Standard Bands gave the best F1 score, although 
the difference between the Standard Bands approach 
and the 10 Hz Bands approach was less than 1%. As 
expected from the plots in Figure 3, the Alpha-Beta 
Band features gave rise to the poorest-performing 
hybrid paradigm system. Based on this analysis, 
a hybrid paradigm classification system based on 
Standard Bands and the hybrid commands right-hand, 
tongue, ‘right’ and ‘up’, or 10 Hz Bands and the ‘tongue’, 
‘legs’, ‘up’ and ‘down’ hybrid paradigm would be recom
mended. These resulted in improvements of 21.03% and 
19.84%, respectively, in F1 score when compared to the 
best performing MI baseline F1 score of 34.33%, which 
was obtained using Alpha-Beta Band features.

It should be noted that some of the hybrid paradigm 
command sets are more intuitive than others. For exam
ple, in Table 1 the best performing hybrid paradigm 
consisted of the right-hand, tongue, ‘right’, and ‘up’ 
commands with Standard Bands features. This para
digm contains two commands conceptually associated 
with the term ‘right’. Consider applying these com
mands to a practical BCI for cursor control which 
requires four commands: move left, move right, move 
up, and move down – whilst one of the two commands 
conceptually associated with the right can be associated 
with the ‘move right’ command, the other command 
will have to be associated with one of the other com
mands, which may be counter-intuitive. Of course, the 
intuition or lack thereof of these commands will depend 
on the application of the BCI. Furthermore, it should be 

noted that in previous BCI work in the domain of 
paradigm selection, and also in the wider field of endo
genous BCIs, the intuition of the paradigm is secondary 
to obtaining the optimal levels of control in the BCI 
through discriminative commands [1,5,6,47].

For this reason, Figure 4 shows the results obtained 
for two hybrid paradigm designs that were deemed to be 
more intuitive, and compares them to the MI and SI 
baseline performance. Considering the F1 scores, both 
of these designs outperformed the best-performing pure 
paradigm result, which was obtained for MI with the 
Alpha-Beta Band features. For both of the intuitive 
designs, the 10 Hz Bands features gave rise to peak 
performance. The F1 score for the right-hand, left- 
hand, ‘up’ and ‘down’ design (I1) outperformed the 
baseline MI approach by 9.45%, while the legs, tongue, 
‘left’ and ‘right’ design outperformed the baseline MI 
approach by 14.80%. Improved performance was also 
observed in terms of balanced accuracy. Thus, although 
these more intuitive paradigms did not exhibit peak 
performance, they still outperformed the best baseline 
result.

Discussions up until this point have been focused on 
the average performance across subjects. Although these 
results give a generalized overview of the performance 
of the hybrid paradigm, they can obscure important 
inter-subject differences. Figure 5 illustrates these dif
ferences by comparing the classification performance 
for two particular subjects, specifically Subject 1 and 
Subject 2. Various hybrid paradigm designs would be 
suitable for Subject 1. In fact, in the case of the 10 Hz 
Bands approaches, all the hybrid paradigm designs led 
to improved performance when compared to the base
line MI and SI approaches. For the Standard Bands 
approach the vast majority of hybrid paradigms led to 
improved performance. As expected from the observa
tions made in Figure 3, fewer hybrid paradigm designs 
led to improved performance when using Alpha-Beta 
Band features. Starkly different trends emerge for 
Subject 2. In this case, the majority of hybrid paradigm 
designs led to decreased performance when using fea
tures extracted using Standard, 10 Hz, and the Alpha- 
Beta Band features.

The paradigm format that results in peak perfor
mance also varies between subjects. Considering the 
results for 10 Hz Bands feature extraction, Subject 1 
obtained a peak F1 score of 47.11% with the paradigm 
format {right-hand; legs; ‘right’; ‘up’}, while Subject 2 
obtained a peak performance of 45.90% with the format 
{right-hand; tongue; ‘left’; ‘up’}.

Overall, these results illustrate that inter-subject differ
ences in EEG data can lead to stark differences in perfor
mance for a hybrid paradigm. They also indicate that 
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while a hybrid paradigm can improve performance rela
tive to the pure MI and SI benchmarks, this is not the case 
for all subjects. Furthermore, the paradigm formats that 
result in peak performance can vary between subjects. 
Thus, an automated subject-specific hybrid paradigm 
design selection approach would be beneficial. The next 
section discusses a generalizable hybrid paradigm design 
selection approach that can be used to select the best 
paradigm design for a particular subject.

4.2. Automated hybrid paradigm selection

This section discusses the results obtained using auto
mated SH hybrid paradigm selection, in which subject- 
specific hybrid paradigm commands were selected for 
each subject. First, the classification performance 
obtained using automated hybrid paradigm selection is 
discussed, and then the computational efficiency of the 
automated selection approach is analyzed.

Considering the average results in the bottom row of 
Table 2, for each feature type, the hybrid paradigm 
results led to an improved F1 score when compared to 
pure MI and pure SI. Comparing average performance 
across the features, a peak F1 score of 42.91% was 
obtained with the hybrid paradigm selected through 
SH for 10 Hz Bands features. This peak value was 
a 22.90% improvement on the best baseline result of 
34.33%, which was obtained with pure MI and Alpha- 
Beta Band features. A peak performance of 28.31% was 
obtained for the SI paradigm with the Standard Bands 
features, meaning that the peak hybrid paradigm result 
was an improvement of 51.57% on this. Consider also 
the results for individual subjects. Using a hybrid para
digm led to improved peak performance when com
pared to the baseline approaches across subjects and 
features.

Tables 3 shows the results for balanced accuracy, 
sensitivity, and PPV, averaged across subjects. 
Considering the average results for each feature, using 
a hybrid paradigm led to increased performance in all 
three statistics. As was the case for the F1 score results, 
peak performance was obtained for the hybrid paradigm 
selected through SH for 10 Hz Bands features. These 
peak values represented an improvement of 11.26% in 
balanced accuracy, 29.14% in sensitivity, and 26.31% in 
PPV when compared to the peak results obtained with 
MI (those for the Alpha-Beta Bands features). p-values 
recorded in Section 3.2 also confirmed that these 
improvements were all statistically significant. The 
improvement in both sensitivity and PPV is particularly 
important: there is a risk that increased sensitivity in 
a classifier can lead to oversensitivity, which would 

result in a corresponding drop in PPV. However, this 
is not the case in these results; in fact, the PPV increased, 
indicating that not only was the hybrid classifier more 
sensitive to command classes when compared to the 
pure MI paradigm, but it also had improved precision.

Comparing the average F1 score obtained by SH in 
Table 2, and the average balanced accuracy results in to 
the corresponding baseline MI and SI results, the 
improvements in average F1 score and balanced accu
racy respectively can be summarized as:

● 8.51% and 4.77% compared to MI, and 33.70% and 
12.23% compared to SI, for Alpha-Beta Band 
features.

● 19.83% and 8.31% compared to MI, and 41.93% 
and 15.70% compared to SI, for Standard Band 
features.

● 34.94% and 12.05% compared to MI, and 34.94% 
and 12.05% compared to SI, for 10 Hz Bands 
features.

When averaging these observations across the different 
features, the average improvements in F1 score and 
accuracy were 21.09% and 8.38%, respectively, when 
compared to pure MI, and 36.86% and 13.33% when 
compared to pure SI.

The p-values in Tables 2 and 3 confirm that, for the 
Standard Bands and 10 Hz Bands approaches, hybridi
zation of the paradigm leads to significantly improved 
performance across all measures. In the case of the 
Alpha-Beta Bands approach, statistically significant 
changes in performance were observed in balanced 
accuracy and sensitivity.

The classification results discussed so far in this sec
tion are in agreeance with the observations made in the 
general analysis in Section 4.1, which indicated that at 
a population level, the Standard Bands and 10 Hz Bands 
had a strong performance with the MI-SI hybrid para
digm. However, the results discussed in this section go 
beyond those presented in the general evaluation by 
illustrating that the subject-specific commands selected 
through the automated SH approach lead to improved 
classification performance. Recall that the general eva
luation highlighted the risk that for some subjects, the 
majority of hybrid paradigm command combinations 
can lead to diminished performance. Despite this risk, 
the SH approach selects commands that lead to 
improved performance for all subjects when using 
Standard Bands and 10 Hz Bands features, as shown in 
Table 2.

The results obtained using the grid search and SH 
approaches can also be directly compared. Consider the 

BRAIN-COMPUTER INTERFACES 13



average F1 score results obtained using grid search and 
SH in Table 2. For each of the three feature extraction 
results (Alpha-Beta, Standard, and 10 Hz Bands), the 
results obtained using the traditional grid search were 
37.65%, 40.45%, and 39.82%, which are similar to those 
obtained using SH: 37.25%, 40.18%, and 42.91%. The 
box plots in Figure 6 further confirm this similarity in 
results by illustrating how the distribution of results 
varies for both methods. Comparing the results for the 
hybrid paradigm with grid search and the hybrid para
digm with SH for each feature individually, there is 
a notable overlap in the distributions for each case. 
Considering the balanced accuracy results in Table 3, 
the results for the traditional grid search method were 
59.49%, 61.20%, and 60.47%, which were similar to 
those obtained with SH: 59.26%, 60.86%, and 62.93%. 
From these results, it is notable that SH can sometimes 
lead to a notable increase in performance when 10 Hz 
features are used. This could be because SH may pro
duce more generalizable results since it uses a subset of 
the training data for all of the iterations except the final 
one, meaning that it would be less likely to overfit the 
training data. Successive halving is considered to be an 
early-stopping method since it disqualifies the majority 
of the candidates after evaluating them on only a subset 
of the data [25,26]. Early-stopping methods by nature 
can prevent overfitting [26].

Considering the average computational time 
results in Figure 7, there are substantial differences 
between the traditional grid search approach and the 
SH approach. The figure presents the times in sec
onds because it is the International System of Units 
time measurement, however for better conceptualiza
tion of the latency the discussion will also mention 
hours and minutes. The grid search method always 
took longer than three hours to select the hybrid 
paradigm design regardless of the feature type used, 
whereas the SH approach always took under 45 min
utes. Using the successive halving approach led to 
a reduction in average computational times of 
83.34%, 81.75%, and 82.32% for the Alpha-Beta, 
Standard, and 10 Hz Bands features, respectively.

Computational times are important because, in 
a practical setup, the hybrid paradigm selection pro
cess introduces latency. In a practical system, the 
prospective user of the BCI would need to wait for 
the system to complete the selection process before 
they can use the BCI. Thus, shorter latencies use 
fewer computer resources and result in lower delays 
for the end-user. SH resulted in a statistically signif
icant improvement in computation times.

4.2.1. Comments on performance variation with PSD 
feature type
This study focused on the use of PSD-based features and 
investigated the hybrid MI and SI paradigm in the con
text of features from three different PSD bands. Based 
on the classification performance results, the use of 10  
Hz Bands in conjunction with a hybrid paradigm design 
approach based on SH would be recommended. This 
investigation into PSD-based features adds 
a supplementary element of novelty to this research 
since previous studies into hybrid MI and SI paradigms 
have not used PSD features, having favored other com
mon features, namely: common spatial patterns, cross- 
correlation function, and phase locking value [20–22].

Comparing computational results between the differ
ent kinds of features, the Alpha-Beta Band features 
resulted in the lowest computational times, whereas 
the 10 Hz Bands approach had the highest computa
tional times. This is likely because the feature vector 
used with the 10 Hz Bands was the largest, and that for 
the Alpha-Beta Bands approach was the smallest. Larger 
feature vectors contain more data for the classifier to 
process during training.

4.3. Limitations of this study and future work

The results indicate that a hybrid MI-SI paradigm can 
lead to significant improvement when compared to 
using the pure MI and SI paradigms, and should be 
considered for practical BCI implementations. 
However, the analysis has a core limitation: the rela
tively small sample size of five subjects. Although BCI- 
related studies with populations of this size are present 
in the recent literature [7,48–50], indicating that these 
results are still impactful and highlight a clear avenue 
for potential future studies, the statistical limitations of 
small sample sizes should be considered when interpret
ing the results. Future research that directly builds on 
this work should involve a larger number of participants 
to further validate the results presented in this study.

Another limitation is the fact that the experiments 
were conducted using just one kind of signal proces
sing pipeline, consisting of power spectral density 
features and an SVM classifier, which have both 
been widely used for EEG classification [1,8,51]. 
This particular kind of classification pipeline was 
chosen due to its established use in the literature for 
the classification of both MI [52,53] and SI [8,31] 
data. Moreover, straightforward classification pipe
lines that do not involve any channel or feature 
selection have also been adopted in online BCI 
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implementations [54–58], possibly because these 
approaches are established and can be rapidly 
employed. Thus, the research presented in this study 
would be most relevant to these implementations. 
Notwithstanding this, feature and channel selection 
[9–14], as well as deep learning classifiers [1,6], are 
growing in importance in the literature, and it would 
be important for future work to evaluate the impact 
of SH command selection in pipelines involving these 
methods.

In this study, we constrained the hybrid paradigm to 
consist of two MI commands and two SI commands. 
The SH approach, however, is not restricted to this 
hybrid paradigm setup. It can be easily deployed in the 
same way shown in this paper to select the optimal 
commands for other hybrid paradigm command setups, 
such as one using three MI commands and one SI 
command, or three SI commands and one MI com
mand. If one wishes to find the optimal hybrid para
digm design when considering all possible scenarios for 
the four commands (i.e. all possible combinations of 
two MI/two SI commands, three MI/one SI command, 
and three SI/one MI command), this would constitute 
a larger search which would take a longer time, but 
could lead to an improved result, and could be investi
gated as part of future work.

The impact of training the BCI user was also not 
covered in this study, which used data that was 
recorded from the subjects during a single recording 
session. It is a well-established phenomenon that users 
of both MI and SI-based BCIs can exhibit improved 
performance when they are trained over multiple ses
sions in using a BCI [59]. This training typically 
involves the user executing mental commands and 
being given feedback on how well the commands 
were classified [19,59]. In the future, it would be of 
value to study how the performance of users of 
a hybrid MI-SI BCI varies with user training and 
compare this to results obtained after training with 
the pure MI and SI BCIs. Training the user over 
multiple sessions is, however, time and resource- 
intensive. The results in this paper indicate that naïve 
(untrained) users perform better with the hybrid para
digm when compared to the pure paradigms, and this 
is a notable finding for studies that cannot afford 
extended training sessions, or aim to design plug-and- 
play BCIs.

Regarding future work, applying the findings of this 
study to an online BCI would be a direct next step. The 
commands would be selected offline by applying the 
proposed SH command selection method to the training 
data of the participant. Then, the selected commands 
could be used to control an online BCI to operate an 

external device, such as a GUI. The performance of the 
online system with the selected commands could be 
compared to the performance with pure SI and MI 
paradigms.

Future work could also increase the variety of com
mands considered by the SH selection algorithm. In this 
paper, the search was limited to MI and SI commands, 
however, commands from other paradigms such as 
spelling and visual imagery, could be included in the 
search for the optimal command set. This future work 
could investigate whether introducing a wider variety of 
commands to the search leads to improved perfor
mance. Alternatively, the SH command selection algo
rithm could be applied to select the best commands 
within a particular pure paradigm. For example, it 
would be of interest to use SH to select the best com
mands in an SI system from pairs of synonyms. For 
instance, in an SI-based BCI for robot control, SH 
could be used to select the best commands from the 
synonym command pairs (up/increase), (down/ 
decrease) and (stop/brake) to control the speed.

Finally, future work could build on this study by 
exploring alternative early-stopping methods that 
could be applied to the command selection problem. 
These could be compared to SH, both in terms of 
computational times to converge to the final command 
set, and in terms of the classification performance 
obtained with the selected commands. Algorithms sui
table for such a study include Bayesian optimization 
with early stopping [60] and greedy early stopping [61].

5. Conclusion

The goal of this study was to improve the classification 
performance of endogenous BCI commands. This was 
achieved by first exhaustively investigating the impact of 
a hybrid MI-SI paradigm on multiclass classification 
performance when compared to the pure MI and SI 
paradigms, and then presenting a computationally 
effective SH-based command selection approach that 
produced command sets that were able to outperform 
the pure paradigms. This analysis was based on classifi
cation results obtained with a pipeline that used PSD 
features and an SVM classifier.

A general evaluation of the performance of the 
hybrid MI-SI command paradigm was carried out. 
In this analysis, the classification results for the pure 
four-class MI and SI command sets were used for 
benchmarking. The classification results for every 
possible combination (design) of two MI and two SI 
commands were compared to these benchmarks. It 
was evident that hybridization could lead to 
a notable improvement in performance. However, 
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there were also substantial inter-subject variations in 
paradigm design performance, as well as the risk that 
hybridization could lead to decreased performance for 
certain subjects, something previous literature had not 
indicated. This highlighted the necessity of an auto
mated approach for selecting the best commands for 
individual subjects.

An SH-based approach for automated command 
selection was then presented. Using hybrid paradigm 
designs selected using this approach led to an average 
improvement of 21.09% and 36.86% in F1 score when 
compared to baseline MI and SI results, respectively. 
The SH approach was also compared to the traditional 
grid search approach. In terms of the performance of the 
selected designs, the results were similar. However, SH 
was found to be highly effective in accelerating the 
hybrid paradigm selection process, resulting in an 
82.80% improvement in computational time.

The two main limitations of this study were the 
relatively small sample size used and the fact that experi
ments were only carried out on a single, conventional 
classification pipeline. Additional limitations include 
the fact that the impact of user training on classification 
performance in the proposed system was not assessed 
and that the system was limited to the selection of two 
MI and two SI commands.

Future work should focus on testing with a larger 
sample size, and with a more diverse range of clas
sification pipelines. More in-depth investigations 
into the characteristic differences between MI and 
SI signals could also be carried out to improve clas
sification with this hybrid paradigm. Moreover, test
ing with an online system would further validate the 
results. The SH command selection approach could 
also be applied to different hybrid or pure para
digms. Furthermore, other early-stopping techniques 
from the literature could be applied to the command 
selection problem.
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