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Abstract A well-known problem in cosmology is the
‘Hubble tension’ problem, i.e. different estimates for the
Hubble constant Hj are not concordant with each other. This
work investigates different statistical methods for estimating
this value using cosmic chronometer, type Ia supernova and
baryonic acoustic data. We start by making use of methods
already established in the literature for this purpose, namely
Gaussian process regression and Markov chain Monte Carlo
(MCMC) methods based on the concordance ACDM model.
We also consider two novel approaches; the first makes use
of non-parametric MCMC inference on the hyperparameters
of a Gaussian process kernel, independently of any cosmo-
logical model. The second approach is Student’s 7-process
regression, which is a generalised version of Gaussian pro-
cess regression that makes use of the multivariate Student’s
t-distribution instead of the multivariate Gaussian distribu-
tion. We also consider variants of these two methods which
account for heteroscedasticity within the data. A comparison
of the different approaches is made. In particular, the model-
independent techniques investigated mostly agree with pre-
dictions based on the ACDM model. Moreover, Gaussian
process regression is highly sensitive to the prior specifi-
cation, while Student’s 7-process regression and the het-
eroscedastic variants of both methods are more robust to this.
Student’s ¢-process regression and both heteroscedastic mod-
els suggest a lower value of the Hubble constant. Across all
the estimates obtained for the Hubble constant within this
work, the median value is 1316"“1 = 68.85 + 1.67 km s~!
Mpc— L.
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1 Introduction

The Hubble constant Hy) is one of the fundamental constants
within cosmology and is sourced originally by the direct pro-
portionality relationship between the recessional velocity of
distant objects together with their radial distance. However,
whereas the linear relationship, initially made famous in [1],
has been widely accepted within the astrophysics commu-
nity, the exact value of Hy is still a matter of great debate,
with different techniques for estimating this parameter pro-
ducing different results that do not agree with each other.
This problem is known as the ‘Hy tension’ [2,3].

In recent years, there has been a marked increase in the
reported divergence of the Hubble constant. The discrepancy
originates in the measurement of the Hy parameter using
direct and indirect techniques and has now reached a criti-
cal statistical threshold [4—6]. The early Universe results in a
low estimation of the Hubble constant [4,7], when the con-
cordance model is used to interpret observations. On the other
end of the spectrum, direct measurements in the late Universe
produce higher corresponding estimates of Hp [8,9]. Inter-
nally, each survey shows a high level of internal consistency
making this a tension between surveys, and is particularly
relevant when the concordance model is used against direct
astrophysical data sets [10].

There has been a wide range of nonparametric approaches
in the literature where the evolution profile of the Hubble
parameter is reconstructed from observational data using sta-
tistical techniques. Gaussian process regression (GPR) is the
most applied of these techniques [11-25], where a nonphysi-
cal kernel is used to characterize the covariance relationships
between within a data set. This naturally leads to the ability to
broaden the Hubble reconstruction interval of a wider evolu-
tion profile. However, GPR suffers from some disadvantages
such as having to select a kernel function as well as possible
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overfitting [26] at low-redshift values. Student’s ¢-process
regression (TPR) offers a generalisation of GPR which has
several advantages including needing low amounts of data to
reconstruct underlying behaviour, as well as its better han-
dling of outliers [27-29].

In this work, we explore different statistical methods for
obtaining estimates for Hy. We consider methods already
present in the astrophysical literature, such as GPR [16]
and Markov chain Monte Carlo (MCMC) methods based
on the ‘concordance’ Lambda cold dark matter (ACDM)
cosmological model [30]. We also consider some novel
approaches to estimating Hp. In particular, these include
model-independent MCMC methods based on the kernel
hyperparameters of GPR, TPR, and variants of GPR and
TPR that allow for heteroscedasticity in the underlying data.
Other interesting approaches exist in the literature (such
as the “move” method where the iterations of the walkers
in the MCMC are updated in a novel way [31]), but the
fast and low uncertainty convergence of the hyperparameter
MCMC implies that this approach is competitive with other
fitting methods. All these novel methods have the advantage
of being independent from any pre-supposed cosmological
model such as ACDM, since they rely only on the data sup-
plied.

This paper is structured as follows. Firstly, in Sect.2, we
introduce the datasets used throughout our analysis. Then,
in Sect. 3, we go into some detail on the statistical methods
used. This is followed by Sect.4, where we summarise the
results and different estimates which we obtained for Hp.
Lastly, in Sect.5, we discuss our findings in relation to the
present literature on the Hy tension and suggest areas for
further research.

2 Observational datasets and H priors

Throughout this work, we shall be concerned with three main
data sources for H (z). These are cosmic chronometers (CC),
type Ia supernovae (SN), and baryonic acoustic oscillations
(BAO).

CC are used to obtain measurements for H (z) using red-
envelope galaxies [32]. These measurements are based on the
observed 4000A break in the passively evolving galaxy spec-
tra, caused by the absorption of high-energy radiation from
metals and by a scarcity of hot blue stars [33]. According
to the CC approach, the expansion rate H(z) may be mea-
sured by using the redshift-time derivative % between these
galaxies [34], i.e.

1 dz 1 Az

Hf) = ————~————,
S 1+z At

ey
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The CC approach has the advantage of not relying on any
cosmological models, since one is measuring only the red-
shift difference between ‘local’ galaxies. Moreover, it is ideal
for obtaining H (z) data atredshifts of z < 2 [35]. For CC, the
datain Table 4 of the study by [36] is used. To avoid the effects
of cosmological model dependence and therefore retain inde-
pendence from any cosmological models, only those points
that are independent of BAO observations are considered.

For the SN data, the compressed Pantheon compilation
data (SN) [37] is used throughout most of this work. While
the compressed dataset consists of only six points, these data
points are effectively a compressed version of a set of around
1048 SN data points at z < 1.5 of the Pantheon compilation
[38] together with the 15 data points obtained by the HST
at z > 1.5 as part of the CANDELS and CLASH Multi-
Cycle Treasury programs [37]. The values given in [37] are
values for E(z) = H(z)/Hp instead of H(z), but these values
are still proportional to H(z), since Hy is a constant. The
compressed data point for z = 1.5 in Table 6 of [37] is
excluded, since the error is non-Gaussian. Moreover, the full
set of 1048 SN data points, which we will denote as SN,
is used in conjunction with the ACDM cosmological model
within Sect. 3.1.2 of this work. A more recent development in
this field is the release of the ‘Pantheon+’ dataset [39], which
combines the SN, dataset with other cosmological surveys.

The 1048 observations of the full Pantheon dataset [38]
are given in terms of the distance modulus 1£(z), so the use
of SN, requires the distance modulus values to be converted
to H(z) values, which can only be done given a cosmolog-
ical model. Therefore, model-independent statistical meth-
ods, such as GPR and TPR, cannot be carried out using the
full Pantheon dataset. Converting the 1 (z) values to H(z) is
quite an involved process that requires numerical integration.
In particular, defining the luminosity distance dr,(z) by

1
H(Z)

d7/,

dL(Z)ZC(1+Z)/.
0

where c is the speed of light and 7’ is a variable of integration,
then

m(z) = Slogo (dL(z)) + M,

for some arbitrary fiducial absolute magnitude M [30].

The BAO data points included are from the SDSS com-
pilation [40,41]. BAO observations are mainly constructed
from high resolution images of the distribution of galax-
ies at different redshifts across the Universe. In this way,
a map of the evolution of the large scale structure of the
Universe can be built which can then be used to infer the
expansion velocity at different redshifts. At lower redshifts,
BAO readings may be obtained by observing galaxy clus-
ters [42]. Another source of BAO measurements is from the
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Table 1 Values of different estimates for Hy to be used as ‘priors’

Value I:Io (km s~ Mpc™1) Source
HSHOES 7422 £1.82 [46]
HIRGB 69.8+1.9 [47]
A 73.3%17 (48]
AgM 75.35 £ 1.68 [49]
af 67.4£0.5 [4]
APES 67.4%1) [50]

Lyman-alpha (Ly-«) forest [43]; however, a significant ten-
sion of 2.50 exists between galaxy BAO and Ly-o BAO.
A similar tension exists between Ly-o BAO and predictions
based on the widely accepted ACDM cosmological model,
while galaxy BAO measurements are consistent with ACDM
predictions. The mechanism behind obtaining BAO observa-
tions is more complicated than for both CC and SN. Essen-
tially, BAO are fluctuations in the density of matter of the
Universe and provide a ‘standard ruler’ for measuring large
distances within the Universe in the same way that SN of
known brightness provides a ‘standard candle’ [44,45].

For each of the statistical approaches discussed in this
work, the different data sources will often be amalgamated.
In particular, we shall consider the datasets CC, CC+SN,
and CC+SN+BAO, where + denotes the concatenation of
datasets. Moreover, for the MCMC ACDM approach, we
also consider the datasets CC+SN,. and CC+SN..+BAO. The
datasets are also combined with pre-established estimates
for Hy present in the literature, which we shall refer to as
‘priors’. The priors used are summarised in Table 1. Each of
the priors is presented in the form x &= ykm s ~! Mpc~!, where
x is the point estimate and y represents the uncertainty of
this estimate. For each combination of dataset and statistical
method, we will consider each ‘prior’ Hy value separately
and also the priorless case.

3 Statistical methods

As mentioned towards the end of Sect. 1, we shall be consid-
ering a number of statistical methods for the purpose of esti-
mating the Hubble constant Hy. Each of the methods obtains
an estimate for Hy by using the data available to reconstruct
the relationship between z and H(z) and extrapolating the
resulting reconstruction function to z = 0. These statisti-
cal methods can be broadly divided into two classes, namely
methods already established in the literature and novel meth-
ods.

The established methods include GPR [13,22] and MCMC
inference based on the ACDM model [30,51], using the
ensemble sampler [52,53]. Of these, the first method is said to

be model-independent, since it does not assume any cosmo-
logical model but is instead dependent only on the observa-
tional data. Oppositely, the latter method necessarily assumes
the ACDM concordance model. The remaining methods are
said to be ‘novel’ methods since, to our knowledge, they have
not yet been used within the astrophysical literature to obtain
estimates for Hy. The novel methods to be discussed within
this paper include model-independent MCMC-based infer-
ence, TPR, and variants of both GPR and TPR that allow for
heteroscedasticity in the data reconstructions.

3.1 Established methods
3.1.1 Gaussian process regression

A GPis astochastic process thatis effectively a generalisation
of the multivariate Gaussian distribution, in the sense that any
finite sample of random variables from such a process has the
multivariate Gaussian distribution as its joint distribution. In
the same way that a multivariate Gaussian distribution can
be characterised by its mean vector and variance-covariance
matrix, a GP can be completely characterised by its mean
and kernel functions. If f is a GP with mean function m
and kernel function k, this is denoted by f ~ GP(m,k)
for notational convenience. Since there is a one-to-one cor-
respondence between f and pairs (m, k) of mean and kernel
functions, then specifying m and k implicitly corresponds to
a ‘unique’ GP(m, k).

GPR, which has been extensively covered within the sta-
tistical literature [54], is a model-independent supervised
learning approach based on constraining a kernel function
[55], which can then be used to ‘reconstruct’ data, that is, to
smoothen out observed data and simulate unobserved data
points using interpolation and extrapolation. An example of
an admissible kernel function is the square exponential kernel

. _ Ix —x'||>
k(x,x,af,l)—ofexp 5z |- 2)

For this kernel, the quantities oy and [ are the hyperparam-
eters, which allow for flexibility in the kernel specification.
For example, a larger value for the length scale / means that
the function values change more slowly and is therefore suit-
able for capturing a long-term trend. On the other hand, o
is a scale factor that determines the average distance of the
function from its mean [55].

GPR has been used extensively within the field of astro-
physics, for example in the analysis of light curves of stars
and active galactic nuclei [56,57]. GPs have also more
recently found use in the estimation of core cosmological
parameters, such as Hy and fog, with the goal of under-
standing better the tension between the different estimates

@ Springer
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for these parameters. In particular, GPR has been widely
used in the literature for smoothing Hubble data [16,35].

GPR may be viewed as a Bayesian inference problem.
The GP prior f ~ GP(m, k) is combined with a Gaussian
likelihood function for each of the observed vectors. The
mean function m is usually taken to be zero throughout, since
GPs are able to model the mean arbitrarily well [54]. The
combination of GP prior and Gaussian likelihood results in
a Gaussian posterior distribution of f. The hyperparameters
present in the mean and covariance structure of the GP, as
well as the posterior mean and covariance, are unknown a
priori; instead, they are inferred from the data.

In GPR, we are given the observations (x;, y;),i €
{1,2,...,n}. We use aregression model, i.e.

yi = f(Xi) ¢ 3

where € corresponds to random noise which is assumed to
follow a Gaussian distribution with mean zero and variance
o2. The x;s can be rearranged as a data matrix X, and the
values y; can be joined into a vector y. Then, the log-marginal
likelihood can be derived [54] and is given by:

1 _ 1 n
log P(y|X) = —EyTMy 1y —3 log |Ky| — EIOme 4

where Ky = Cov(Y|X) = K+ O‘GZHN is known as the kernel
matrix.

In the right-hand side, the first two terms represent the
data fit and model complexity respectively, while the last
term is simply a constant. Moreover, for GPR, the posterior
predictive mean is K [K;,ly.

We obtain a reconstruction of the relationship between
H (z) and z that is independent of any physical or cosmolog-
ical models through the minimisation of a Chi-squared statis-
tic that measures the discrepancies between the observed
points at redshifts z1, z2, ..., zn [22], as in Eq. (5):

[ﬁpred(Zi) - Hobx(zi):lz

62(zi)

, &)

N
15 =2
i=1

where H pred(2i) and Hoyps(z;) are the reconstructed and
observed values of H at redshift z;, and 6%, (z;) 1s the esti-
mated variance of the observation H,s (z;). This Chi-squared
statistic reaches a minimum value of 0 when the observed and
reconstructed H (z;) values are equal for each redshift value
z;. Minimisation of this statistic is equivalent to estimating
H (z) using maximum likelihood estimation [58].

@ Springer

3.1.2 Markov chain Monte Carlo based on ACDM

In this work, we consider a family of MCMC methods known
as ensemble samplers. The term ‘ensemble’ relates to multi-
ple samplers, or ‘walkers’, of the standard MCMC algorithms
(such as the Metropolis—Hastings algorithm or Gibbs sam-
pler) being run in parallel. Ensemble samplers that are invari-
ant under affine transformations of the coordinate space have
been proposed by [52]. These samplers have been used exten-
sively within cosmology, particularly for Bayesian inference
of the parameters of some pre-defined cosmological model
given a set of data [59]. In this paper, we consider the ‘con-
cordance’ ACDM model, the parameters of which are the
Hubble constant Hy and the matter density parameter £270.

MCMC algorithms aim to sample from some desired joint
distribution f(a) = f(ay, az, ..., ap) in cases where sam-
pling directly from such a distribution is not possible or fea-
sible. MCMC algorithms achieve this by starting from some
initial state a© and iteratively sampling a'*) given the value
of a~D forr = 1,2,... until some stopping criterion is
achieved. N

An ensemble A consists of L random vectors known as
‘walkers’ {A1, Ay, ..., AL}, each of which is in R”. Hence,
the ensemble can be thought of as being in R? x RL. The idea
behind the ensemble sampler is to independently sample each
walker from f.

The term ‘ensemble MCMC algorithm’ arises from the
fact that the sampler is made up of a Markov chain on the
state space of ensembles. The ensemble algorithm gener-

= > —
ates AO AL AD iteratively starting from the ini-
tial point _A)(O).
) . > —

The ensemble algorithm obtains A ) from A ¢~D by
updating one walker at a time, i.e. by cycling through each
of the L walkers in the ensemble. Each walker is typi-
cally implemented as a Metropolis—Hastings Markov chain,
although in theory any MCMC algorithm can be used [53].
For eachi € {1,2,..., L}, the walker A; is updated based
on the current positions of the other walkers, i.e. the walkers
making up the complementary ensemble X[i] ={A;: ] #
i}. If, for each i, the single-walker move from Alg'_l) to A;@

preserves the conditional distribution of A; |TA>I(:?, then the
overall ensemble update from _A) =D to _A)(’) preserves the
product density [52].

Three different types of moves which one may wish to
carry out on the individual walkers have been proposed by
[52]. The type of move most recommended by the authors
is the ‘stretch move’, where the walker A; is updated using
one complementary walker, that is, using A ; for some i #

Jj. Starting from AEtil), a new value Al@* is proposed as
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follows: to 0.3 [64]. Therefore, we conservatively set a mostly unin-
formative prior on the parameters, defined by:

Alg)* — A;t—l) Ly (Algt—l) . A;t—l)) ’ (6)

where Y is a scaling variable. This proposed value is then
accepted or rejected through the ‘usual’ Metropolis—Hastings
rule.

In this work, we consider the use of the ensemble sampler
as implemented in the Python package emcee [53] with the
aforementioned stretch move in order to obtain estimates for
Hy based on the ACDM cosmological model. The density of
the Universe at current time is expressed as a parameter £2¢
that is made up of three sub-quantities. The first is the mass
density of matter — including both baryonic matter as well
as dark matter — and is denoted by £2s0. The second density
parameter, denoted by $2go, is the effective mass density of
the relativistic particles, i.e. light and neutrinos, while the
final density parameter £2 4 is the effective mass density of
the dark energy:

20 = 2p0 + 2ro + 2 40- @)

Using observations from the Wilkinson Microwave
Anisotropy Probe (WMAP) and assuming the ACDM model,
it was found that £2,4¢ is around 0.3, while £2g¢ is very close
to zero and £2 4¢ is around 0.7 [60, p. 129]. Therefore, the
total mass density as defined in Eq. (7) is close to 1, sug-
gesting a Euclidean or ‘flat’ Universe. The dominance of the
mass and dark energy densities compared to that of the rel-
ativistic particles at current time is contrasted with that at
early times in the Universe. In fact, radiation was then dom-
inant over both mass and dark energy [61]. The true values
of the density parameters determine the shape and ultimate
fate of the Universe, with current research mostly in favour
of accelerating expansion [62].

According to [63], the first Friedmann equation relates
the different density parameters to the Hubble parameter and
Hubble constant, namely:

H(z)? 4 3 2
? = Lro(14+2)"+240(14+2)"+2ko(14+2)"+$2 40,
0

where 2x9 ~ 0 so the third term may therefore be elimi-
nated. Similarly, the term containing §2( can also be elimi-
nated, and £2 49 may alternatively be expressed as 1 — £270
from Eq. (7). Therefore, the model under consideration
becomes:

H(z) = Hy v/Q2u0(1 +2)3 + (1 — 2u10).

Virtually all modern estimates of Hy lie in the range of
65 — 80 km s~! Mpc~!, and £279 is known to be very close

0 Hp €[50, 100] and £2370 € [0.1,0.5]

logP(#) = )
—o0 otherwise,

(®)

where 6 is the vector of parameters (Hy, 210)T. As initial
points, we use ﬁéo) =75 km s~ Mpc~'and SAZZ(V(,% =0.3.

As was done with GPR, we fit the H (z)-against-z curve
by comparing the predicted and observed values of H(z). In
particular, for CC and BAO, our objective is analogous to
weighted least squares estimation. Therefore, the objective
function is proportional to

[Flpred(z,') — Hops (Zi)]2

67z

, ©))

n
i=1

where H pred(2;) and Hypg (z;) are the predicted and observed
values of H at redshift z; and 82, (z;) is the variance of the
observation H,p,(z;). The idea behind such a function is to
minimise the distance between the predicted and observed
values for H at each of the redshifts z; present in the CC
dataset. This quantity reaches a maximum of O when the
predicted and observed values of H for each z; are equal.

For the SN data, the objective function is similar but it dif-
fers in that we use E(z) = H (z)/Hy values instead of using
H values directly, and additionally we need to incorporate
the 5 x 5 covariance matrix ¥ gy of these readings [30].

Therefore, suppose that the five values of z form a vector
z = (z1,22,...,25)7, and let the corresponding observed
values of E at these z-values form a vector E,;; (z), and sim-
ilarly for the predicted values. In this case, we have that the
objective function is proportional to

— Bprea(@) — Eops (@) Tgp (B prea(@) — Eops (). (10)

For all three data sources, since we are assuming a regres-
sion structure with independent Gaussian errors, estimation
using the CC and BAO cases is analogous to ordinary least
squares regression, while the SN data takes a weighted least
squares structure since the SN error terms are correlated.

This is similar to the statistical technique of maximum
likelihood estimation; in fact, we inherit asymptotic consis-
tency and efficiency [58] for our estimates. Moreover, the
objective functions are often directly referred to as ‘likeli-
hood functions’ within the astrophysics literature [30]. We
denote the likelihood relating to each dataset as Acc, Asn,
and Ap4 o respectively. The overall log-likelihood when all
the datasets are considered altogether is then given by the

@ Springer
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summation of the component log-likelihoods, i.e.:

log Asoi (f10) = log Acc(f10) +log Asn (f16)
+log Apao(f10). (I

Using Bayes’ rule, the posterior log-probability is propor-
tional to the summation of the log-prior and log-likelihood,
ie.

P@|f) o< P(0) Ao (f10)
= logP(@]f) oclogP(0) + log A;0r (f10).

In order to obtain the parameter estimates I:IO and S:?Mo
for each combination of dataset and ‘prior’, we use the affine
ensemble sampler as implemented in emcee with 5000 iter-
ations and 200 walkers. Each walker is initialised close to the
point 8@ := (I-}(go), fz}‘%)T = (75,0.3)7, and the parame-
ter values are updated iteratively using the parallelised ver-
sion of the stretch move such that the log-likelihood function
of Eq. (11) is maximised with respect to 6.

3.2 Novel methods

3.2.1 Markov chain Monte Carlo based on kernel
hyperparameters

The first novel method investigated is a non-parametric
implementation of the ensemble MCMC sampler. In par-
ticular, we consider a GPR structure and use an ensemble
sampler to obtain estimates for the hyperparameters of the
kernel functions involved. These hyperparameter values are
then used to obtain estimates for the Hubble constant. When
compared to the approach of Sect. 3.1.2, this novel approach
has the advantage of being independent from any cosmolog-
ical model.

The module mcmcdgp within the Python package GaPP
[13] allows for a non-parametric reconstruction of the H (z)-
against-z function through MCMC inference on the hyper-
parameters of the kernel function. This reconstruction is car-
ried out in exactly the same way as in Sect.3.1.1. In par-
ticular, we minimise the Chi-squared statistic between the
reconstructed/estimated and observed value of H (z) in each
case, as in Eq. (5). The only difference between the theo-
retical setup used here when compared to GPR is that the
values for the kernel hyperparameters are obtained using
the affine ensemble sampler described in Sect.3.2.1 and as
implemented in emcee instead of the usual minimisation of
derivatives.

3.2.2 Student’s t-process regression

While GPR has been extensively used within the astrophys-
ical literature, including obtaining estimates for Hy [10,30],

@ Springer

this work also explores the use of TPR to obtain estimates for
this constant. As the name implies, TPs are highly similar to
GPs, but with the multivariate Student’s 7-distribution replac-
ing the multivariate Gaussian distribution. A TP is therefore
characterised by its mean and kernel functions, as well as an
additional degrees of freedom parameter.

The main drawbacks of GPR include the normality
assumption taken on the observations, as well as the poor
performance of GPR when outliers are present in the data and
the tendency to overfit. The Student’s #-distribution has com-
paratively heavier tails than the Gaussian distribution [65, p.
2], so TPR can address these disadvantages [66,67]. In this
work, we consider a form of TPR that introduces dependent
Student’s #-noise, in that the variance of the noise is depen-
dent on how well the corresponding noise-free model fits
the data [68]. This is referred to as the Student’s 7-process
regression with dependent Student’s # noise (TPRD) model.
Analogously to the Gaussian case, in TPR we let the latent
function f be a TP and assign a multivariate Student’s 7-
distributed likelihood function, leading to a TP posterior.

The p-variate Student’s z-distribution [68] with mean
function m, (p x p) scale matrix K, and degrees of freedom
parameter v > 2 has joint probability density function
res?)

7 K™

emEr(3)

D=

P(x) =

v+p

x—m)TK(x— m)}2
» ,

X [l + (12)
We denote this as X ~ MV T,(m, K, v).

Then, we define a TP in a similar manner to a GP, except
that the multivariate Gaussian distribution is replaced with
the multivariate Student’s ¢-distribution. In other words, any
finite sample of random variables from a TP is jointly mul-
tivariate Student’s 7-distributed. Similar to the notation for
Gaussian processes, we denote a TP using f ~ T P(m, k, v).

Many of the properties of TPs follow from those of GPs,
since the Student’s z-distribution is closely related to the
Gaussian distribution. In particular, given some fixed m and
K, then a TP becomes equivalent to the corresponding GP at
the limit v — oo. This follows immediately from the fact
that the multivariate Student’s 7-distribution converges to the
multivariate Gaussian distribution at this limit [69], and from
the definitions of GPs and TPs.

Moreover, the additional ‘degrees of freedom’ parameter
v within the TP controls the degree of dependence between
jointly z-distributed variables [67] as well as the heaviness of
the tails, with smaller values of v corresponding to heavier
tails. However, the behaviour of a TP becomes closer to that
of a GP as we increase v. Additionally, the conditional dis-
tribution for the multivariate Student’s ¢-distribution can be
worked out analytically, and it then follows that the posterior
predictive distribution of a TP converges to that of a GP as
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v — o0. Therefore, assuming that the same kernel with the
same hyperparameters is used, the posterior predictive mean
of a TP has the same form as in a GP. However, the same
cannot be said for the predictive covariance. In fact, the pre-
dictive covariance for a TP depends on the observed values.
This allows for increased flexibility in using a TP when com-
pared with GPs, as in the latter case the predictive covariance
is independent of the training observations.

In the TPRD model [68], we let the noise vector € :=
(€1, €2, ...,€,)T follow an n-dimensional MVT distribu-
tion with correlation matrix dependent on how well the
noise-free model y = f(X) fits the data. Define f :=
(fx1), f(x2), ..., f(xn))T. Then, assuming zero mean, the
noise vector is distributed as:

1 1
EIB ~ MVTH[O, (1 + —fTﬂ<‘1f> Bl v+n], (13)
v

where B is a constant scaling factor and [, is the (n x n)
identity matrix. The quantity % [, thus ensures that the covari-
ance matrix of the noise distribution is indeed a matrix, as
is required from the definition of the multivariate Student’s
t-distribution.

Given F ~ MVT,(m, K, v) and Eq. (13), we obtain
the likelihood derived from the multivariate Student’s -
distribution:

1 1
Y|F,/3~MVT”[f, (1 —i—;fT[K—lf) Eﬂ"’ v+n:|, (14)

The joint distribution of y and f is therefore given by

B r(. B
[P(y,f|ﬁ)o<[l+—v+ny ([I _v+nA >y

_v+2n
2

+ (f—f)TA(f—f)] , (15)

_ 1p—1 B F_ B -1 S
where A = ;[K + Hnﬂ and f = H”A y, resulting in the

marginal log-likelihood

log P(yl, K) = —

1
vn log |:1 + —yTily:|
2 v

as shown by [68].

Comparing with Eq. (4) for the GPR case, the log-
likelihood in this case is highly similar. In fact, the first
term is related to the data-fit term y” ¥ ~'y, while the second
and third terms are a model complexity penalty and a nor-
malisation constant respectively. The main difference from
GPR in this case is that the first term in the TPRD marginal

log-likelihood is a logarithmic, rather than linear, function
of y' ¥ ~!y. This provides further evidence in favour of the
robustness of TPRD, as any outliers in y would disturb the
marginal log-likelihood for TPRD less than the equivalent in
GPR. The kernel hyperparameters and the optimal value for
v can then be inferred through numerical optimisation of the
derivative of Eq. (16), similarly to the GPR case.

3.2.3 Heteroscedastic regression

Another novel method considered for estimating H is het-
eroscedastic GPR and TPR as described by [70]. The idea
behind heteroscedastic GP and TP modelling is to simulta-
neously model the mean and variance, while allowing the
error terms ¢; to have a different variance for each element.
In other words, given a vector of observations (X;, y;) for
ie{l,2,...,n}and f ~ GP(m,k)or f ~ TP(m,k,v),
the basic model y; = f(x;) 4+ €; shown in Eq. (3) is assigned
error terms €; ~ N (0, aiz) for each i instead of assuming that
the error terms are independent and identically-distributed
forall i.

This method, as implemented in the R package hetGP
[70], also allows for some optimisations based on the
‘stochastic kriging’ (SK) predictor [71], which lead to large
computational savings especially when a large number of
observations are available at each x;. However, this assump-
tion of repeated readings is often prohibitive when modelling
real-world data. While replication can still help speed up the
computation, use of the SK predictor does not inherently
require a set minimum dataset size or numbers of replicates.

The log-likelihood for the SK predictor is defined by [72,
p.- 10] as:

n

1 1
log A = =3 Z [(ai—l)logki+logai]—§ log |K,|. (17)

i=1

The SK predictor already includes some in-sample het-
eroscedasticity by independently calculating the moments
for each element; therefore, a different variance value will
be assigned to each of the sampled elements. However, this
is not extended out-of-sample and is therefore not useful
for heteroscedastic interpolation. [71] suggest to incorporate
out-of-sample heteroscedasticity fitting another GP or TP
on the variances of the sample points to obtain a smoothed
variance for use in interpolation. However, [70] go a step
further and propose introducing latent variables under a GP
or TP prior and performing MCMC inference on their joint
distribution in order to obtain this smoothed variance. Let
A, = Diag(é1, 82, ..., 8,) be made up of the latent variance
variables corresponding to the r < n unique observation
points. We assign a GP or TP prior to this matrix, i.e.:

By ~ MV N; (o, Ki)),
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or analogously:
B ~ MV T, (Bo, K\, vig),

where K() := C(g) + gA, ! Here, the subscript (g) is used
to distinguish this process from the one on the latent func-
tion f As for ﬂo, the natural estimator to use is ,30 =
AT (g)A (IT [K(g) 1,)~L. As described by [72], one can opt to
use log(A,) in place of A, to ensure that §; remains positive
foreachi € {1,2,...,r}.

In heteroscedastic GPR, a joint log-likelihood function
over both GPs is defined, i.e.:

1 r
log P(y|Kr, Kg)) = ¢ = 5 3 J[(a; — Dlog i +loga;]

i=1

1 1
- 510g|ﬂ<r| - 510g|ﬂ<(g)|»

(18)

and this likelihood may be optimised numerically with
respect to any unknown parameter by differentiating it with
respect to that parameter and setting the derivative to zero.
For TPR, we can similarly use a joint log-likelihood func-
tion over both TPs. In the event that replication is present, the
maximum likelihood estimates obtained using the r unique
points are equivalent to the full-n estimates [72].

For the application of these techniques on our data, we
use the R package hetGP [70], in particular the subroutines
mleHetGP and mleHetTP for heteroscedastic GPR and
TPR.

4 Results and discussion

For each of the methods investigated, reconstruction plots of
H (z) against z were obtained. As an example, Fig. 1 shows
the reconstruction obtained using GPR with the square expo-
nential function, for the dataset CC+SN+BAO and for the
priorless case.

The results are also presented in tabular form; for exam-
ple, Table 2 shows the Hy values obtained after running the
regressions on the different datasets and using the square
exponential kernel function, for each of the priors discussed
in Table 1. Only the results for the square exponential kernel
function are presented here, since each of the kernel func-
tions trialled gave very similar results. The full set of results
obtained is available in the Supplementary Material.

For the MCMC-based methods, trace plots showing the
evolution of the walkers at each iteration provided a visual
confirmation that the desired convergence of the parameter
estimates was achieved. An example of one of the trace plots
obtained is given in Fig. 2.
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Fig. 1 Reconstruction of A (z) against z: GPR, square exponential ker-
nel, CC+SN+BAO data, no prior

Table 2 Hj estimates: GPR with square exponential kernel

Dataset I:Io (km s~ Mpc*')
cC 67.448 £ 4.753
CC+SN 68.104 £ 1.786
CC+SN+BAO 68.903 £ 1.595
CC+HMOES 73.833 +1.728
CC+SN+HFHOES 71.646 + 1.334
CC+SN+BAO+H; HOES 71.547 £1.248
CC+HIROB 69.602 £ 1.773
CC+SN+H[RCB 69.011 £ 1.315
CC+SN+BAO+H[ ROB 69.295 £ 1.226
CC+HIY 72.998 + 1.622
CC+SN+HITY 71.269 £ 1.278
CC+SN+BAO+H[Y 71.225 £ 1.202
CC+HSM 74.970 + 1.611
CC+SN+HEM 72.624 %+ 1.290
CC+SN+BAO+HM 72.409 £ 1.213
CC+HF 67.393 £ 0.497
CC+SN+A[ 67.432 £ 0.481
CC+SN+BAO+H[ 67.517 +0.475
CC+HPES 67.366 £ 1.070
CC+SN+HPES 67.533 £0.931
CC+SN+BAO+HPES 67.831 & 0.896

Additionally, corner plots showing the distribution of the
parameters in each case were produced. The corner plot for
the dataset CC+SN+BAO and the priorless case is presented
in Fig.3. This plot provides a visual confirmation of the
decrease in .QMO with increasing Ho, i.e. from the shape of
the ‘oval’ in the bottom-left corner of each subplot.
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73 dot, while the errors are shown using the whisker plots. More
o uncertain estimates, i.e. those with a higher standard error,
T 70+ consequently have longer whiskers than estimates with low
standard error. The pre-established SHOES and Planck priors
T ' T T ' H(;g HOES and H01D are superimposed on the plot as the blue
and red bars respectively.
030 In order to calculate the ‘distance’ between two estimates
G of Hp, we make use of the o-distance as in Eq. (19):
0.25
. : . . : R Ho,; — Ho,;
0 1000 2000 3000 4000 5000  d(Ho,;, Ho,j) = , (19)
6% +62%
Hy,; Hy j

Fig. 2 Trace plot: MCMC ACDM, CC+SN+BAO data, no prior
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Fig. 3 Corner plot: MCMC ACDM, CC+SN+BAO data, no prior

Since there is a large number of possible combinations of
kernel function, method, prior, and dataset, a large number
of estimates for Hy were obtained. The different approaches
were compared using whisker plots. For example, Fig. 4 con-
tains all the Hp estimates obtained using the CC+SN+BAO
dataset, irrespective of the method and prior used. This allows
us to determine the effect of different methods and priors
given a fixed dataset. Similarly, we present the estimates
obtained using the GPR method across all datasets and priors
in Fig.5. We also show the estimates obtained using the pri-
orless case as well as the SHOES and Planck priors in Figs. 6,
7, 8. Similar figures and tables for the other priors, datasets,
and methods considered are presented in the Supplementary
Material.

Ineach case, the estimate for Hy presented is the median of
estimates obtained using a given dataset, method, and prior.
The same applies for the standard error of this estimate. For
each estimate, the actual estimated value is shown using the

where I—Alo, ; and ﬁo, ; are the two estimates for Ho, and o Ao
and &Iflo,j are their corresponding standard errors. Here, the
denominator has a normalising effect since it takes the esti-
mators’ variances into account. This is the same methodology
used in [30].

The distance between each Hj estimate and the pre-
established SHOES and Planck priors is also shown in the
whisker plot. In particular, for each Hy estimate presented in
Figs. 4, 5, 6, 7, 8, 9, the distance between the estimate and
the Planck prior is shown on the left of the box and whisker,
while the distance between the estimate and the SHOES prior
is shown on the right. A figure of 1.5 on the left-hand side,
for example, means that the estimate obtained is at 1.5 units
of distance larger than the Planck prior. Lastly, at the bottom
of each plot, we show the median of all the values shown in
that plot. The median Hy estimate for each plot is also pre-
sented within Tables 3, 4, and 5. In order to obtain a suitable
standard error for each median value, the median standard
error of the relevant estimates is taken.

From these figures, one can immediately notice some
patterns. In particular, the estimates obtained using GPR,
MCMC ACDM, and MCMC GPR are highly dependent
on the prior specification. For these methods, the tensions
between each estimate and the pre-established SHOES and
Planck priors are often more than 20, and even exceed 40 in
some cases. On the other hand, TPR as well as heteroscedas-
tic GPR and TPR are less sensitive to the specification of the
‘prior’ I:IO value, so that the estimates obtained for the Hubble
constant using each of the different ‘priors’ are closer to each
other. However, for TPR, only a few of the estimated values
have more than 20 tension with either the SHOES or Planck
priors, owing to the larger standard error associated with the
TPR estimates. Therefore, further investigation of TPR with
larger datasets is required so that these standard errors are
reduced. Regardless of the method used, the standard errors
for the priorless case are understandably much larger than
for the cases where a prior Hy value was specified. This can
be seen, for example, by comparing Fig.6 to Figs.7 and 8.
Additionally, a striking observation that can be made from
Fig. 8 is that the estimates for all methods when considering
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GPR, CC+SN+BAO, CM: - 3.7287 [ -0.7622

GPR, CC+SN+BAO, DES: - 0.3517 e -3.1671

GPR, CC+SN+BAO, HW: -{ 2.8480 [ -1.3771

GPR, CC+SN+BAO, No prior: = 0.7275 -2.1943

GPR, CC+SN+BAO, Planck: = 0.1431 o -3.5717

GPR, CC+SN+BAO, SHOES: - 2:9957 = -1.2103

GPR, CC+SN+BAO, TRGB: - 1.3331 ] -2.2509

MCMC LambdaCDM, CC+SN+BAO, CM; - 4.1763 e -0.5804
MCMC LambdaCDM, CC+SN+BAO, DES: - 0.8085 e -2.8851
MCMC LambdaCDM, CC+SN+BAO, HW: - 33475 [ -1.0595
MCMC LambdaCDM, CC+SN+BAO, No prior: -{ 1.6616 —— -1.4794
MCMC LambdaCDM, CC+SN+BAO, Planck: = 0.3319 lel -3.4909
MCMC LambdaCDM, CC+SN+BAO, SHOES: - 34980 (] -0.8979
MCMC LambdaCDM, CC+SN+BAO, TRGB: - 1.9509 ] -1.8035
MCMC GPR, CC+SN+BAO, CM: - 3.0839 —— -0.7619

MCMC GPR, CC+SN+BAO, DES: = 0.3593 e -3.2304

MCMC GPR, CC+SN+BAO, HW: | 2.3448 - -1.3107

MCMC GPR, CC+SN+BAO, No prior: -{ 0.4289 — -1.5713
MCMC GPR, CC+SN+BAO, Planck: = 0.1561 [} -3.6706
MCMC GPR, CC+SN+BAO, SHOES: - 23773 = -1.1424
MCMC GPR, CC+SN+BAO, TRGB: - 1.4187 —— -1.8756

TPR, CC+SN+BAO, CM: = 0.3997 — -1.0491

TPR, CC+SN+BAO, DES: = -0.0143 — -1.5130

TPR, CC+SN+BAO, HW: - 0.3366 ——— -1.2088

TPR, CC+SN+BAO, No prior: =-0.0029  p———e—o| -1.2607

TPR, CC+SN+BAO, Planck: —-0-0600  j——e—f -1.5543

TPR, CC+SN+BAO, SHOES: - 04105 —— -1.1604

TPR, CC+SN+BAO, TRGB: = 0.1602 — -1.3823

HetGP, CC+SN+BAO, No prior: = -0-4270 —— -3.0302

HetGP, CC+SN+BAO, SHOES: - 1.8563 i -1.6820

HetGP, CC+SN+BAO, TRGB: - 0.5792 —— -2.6054

HetGP, CC+SN+BAO, HW: - 1.5208 - -1.9273

HetGP, CC+SN+BAO, CM: - 1.9824 —— -1.4301

HetGP, CC+SN+BAO, Planck: —]-0-2936 ] -3.2765

HetGP, CC+SN+BAO, DES: —-0-2936 [ -3.2765

HetTP, CC+SN+BAO, No prior: =-0.1936 —— -2.7633

HetTP, CC+SN+BAO, SHOES: = 1.1451 —— -1.8035

HetTP, CC+SN+BAO, TRGB: - 0.4400 - -2.6320

HetTP, CC+SN+BAO, HW: - 1.0602 —— -1.9708

HetTP, CC+SN+BAO, CM: - 1.2642 —— -1.6027

HetTP, CC+SN+BAO, Planck: —-0-1692 ] -3.0775

HetTP, CC+SN+BAO, DES: —{:0.1692 - -3.0775

Average: - 0.9897 —— 272628

Holkm s~ Mpc™?)

Fig. 4 Comparison of estimates and
CC+SN+BAO dataset

errors obtained using

the Planck prior are very close to each other. In this case, the
evidence suggests a lower Hy value and one that is very close
to A .

Additionally, in Fig. 9 we further summarise the results by
presenting the median Hubble constant estimates obtained
by prior, dataset, and method. In other words, given a fixed
‘prior’, we present the median of all the estimates involving
that prior irrespective of the kernel, dataset, and method used.
Similarly, given a dataset, we calculate the median over all
priors, kernels, and methods, and given a method we get
the median over all priors/kernels/datasets. At the bottom of
this plot, we present the median estimate obtained across all
methods, datasets, kernels, and priors. This value is I-AI(’)"ed =
68.85+1.67 kms~! Mpc~!. As can be seen from the bottom
part of Fig. 9, this value is less than 1 standard deviation from
the Planck prior fAI(ﬁD but is at a tension of more than 20 from
the SHOES prior I:I()S HOES , which is further evidence in favour
of a lower value for the Hubble constant.

We can also compare the median Hy value obtained for
each method, prior, and dataset in order to determine the
effect of the particular method, prior, or dataset on the esti-
mates obtained. The table comparing the different datasets
is presented as Table 3, and similarly Tables 4 and 5 respec-
tively compare the methods and priors.
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GPR, CC, CM: - 4.4883 —— 03156
GPR, CC+SN, CM: - 3.7381 |—.—| -0.6952
GPR, CC+SN+BAO, CM: | 3.7287 |_._| 0.7622
GPR, CC, DES: | 0.0025 - 32274
GPR, CC+SN, DES: = 0.1407 = -3.2484
GPR, CC+SN+BAO, DES: = 0.3517 |_.-| 3.1671
GPR, CC, HW: - 3.3072 —— -0.4892
GPR, CC+SN, HW: - 2.7817 |—.—| 13155
GPR, CC+SN+BAO, HW: - 2.8480 |_._| 13771
GPR, CC, No prior: | 0.2648 p——— 0.9676
GPR, CC+SN, No prior: - 0.3945 —— 22736
GPR, CC+SN+BAO, No prior: - 0.7275 |—o—| 2.1943
GPR, CC, Planck: = 0.0000 b -3.6149
GPR, CC+SN, Planck: = 0.0518 M -3.6033
GPR, CC+SN+BAO, Planck: o 0.1431 b 35717
GPR, CC, SHOES: | 3.5791 —— -0.1436
GPR, CC+SN, SHOES: ~ 2.9391 — 11288
GPR, CC+SN+BAO, SHOES: | 2.9957 onan| 12103
GPR, CC, TRGB: - 1.2210 — -1.7804
GPR, CC+SN, TRGB: — 11282 — 22972
GPR, CC+SN+BAO, TRGB: o 13331 o -2.2500
Average: - 1.3072 |—0—| -2.2341

T T T T T

60 65 70 75 80

Ho(km s~ Mpc™)

Fig. 5 Comparison of estimates and errors obtained using GPR method

From these tables, we can see that larger datasets gen-
erally lead to more confident predictions, i.e. estimates with
lower uncertainties. However, it should be noted that only the
MCMC ACDM method was applied to the datasets CC+SN,
and CC+SN,+BAO. When it comes to the method used, we
see that GPR, MCMC ACDM, and MCMC GPR give very
similar results, indicating that the model-independent GPR
is in agreement with the widely-accepted ACDM cosmo-
logical model. From the bottom part of Fig.5, we can see
that the median value obtained for GPR is at a distance of
1.3072 standard deviations from FAIOP , while there is a ten-
sion of 2.23410 with I:I(f HOES This provides some evidence
in favour of a lower value for the Hubble constant. The rest
of the methods considered, namely TPR and heteroscedas-
tic GPR and TPR, produced even lower estimates for Hy.
Therefore, these methods provide further evidence in favour
of a lower value of Hj that is closer to the Planck and DES
priors.

As for the prior used, this naturally has a great effect on
the Hj estimates obtained, as the effect of adding a prior is
to consider an additional ‘artificial’ data point at z = 0. As
expected, using the Planck and DES priors produced lower
values than the SHOES, HOLiCOW, and CM priors. How-
ever, it is to be noted that the estimates obtained when no
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GPR, CC, No prior: = 0.2648 -0.9676

GPR, CC+SN, No prior: = 0.3945 -2.2736

GPR, CC+SN+BAO, No prior: =] 0.7275 -2.1943

MCMC LambdaCDM, CC, No prior: - 0.1203 -1.7642

MCMC LambdaCDM, CC+SN, No prior: ={ 0.3470 -1.6047

MCMC LambdaCDM, CC+SN+BAO, No prior: =| 1.6616 -1.4794

MCMC GPR, CC+SN, No prior: —{-0.4825 -2.1090

MCMC GPR, CC+SN+BAO, No prior: = 0.4289 -1.5713

——
|_._|
|_._|
]
|-
|_._|
MCMC GPR, CC, No prior: = 0.3596 |_._| -0.8438
——
]
]

TPR, CC, No prior: —{-0.0514 -1.1070

TPR, CC+SN, No prior: ~{ 0.0018 f———e———| -0.9102

TPR, CC+SN+BAO, No prior: ={-0.0029 -1.2607

—
MCMC LambdaCDM, CC+SN*, No prior: —-0.3867 |—0—| -2.2838
MCMC LambdaCDM, CC-+SN*+BAO, No prior: — 1.3082 - 17279

HetGP, CC, No prior: — 0.1243 |_._| -1.8766
HetGP, CC+SN, No prior: - 0.1722 —— 21063
HetGP, CC+SN+BAO, No prior: - -0.4270 ! -3.0302
HetTP, CC, No prior: =-0.7312 |—‘—| -2.7711
HetTP, CC+SN, No prior: = -0.5983 |—-—| 2.7107
)
]

HetTP, CC+SN+BAO, No prior: —1-0.1936 -2.7633

Average: = 0.1257 -1.8576

60 65 70 75 80
Holkm s~ Mpc™?)

Fig. 6 Comparison of estimates and errors obtained in priorless case

prior was included are closer to the Planck and DES priors
than the SHOES and HOLiCOW priors — this also suggests a
lower value for Hy. This is arguably the main finding of our
research.

5 Conclusion

In this work, we explore the comparative reconstruction
methods as applied to expansion data against a baseline
ACDM MCMC approach. We do this using late time sur-
vey data involving direct CC data, the Pantheon sample, and
BAO data, which collectively have been shown to give strong
constraints on cosmological models. In our case, we only
consider the ACDM model, which serves as our benchmark
for other constraints on cosmological parameters including
the increasingly contentious value of Hy. These data sets are
described in detail in Sect. 2 while the reconstruction methods
are explained in Sect. 3. Here, we consider several methods
which reconstruct the Hubble diagram independently of a
physical cosmological model. This includes GPR which is
based on a kernel function that is optimized through a learn-
ing process to mimic the underlying data and has been used
exhaustively in data analysis pipelines to reduce noise. We
also describe our implementation of MCMC and how we use

GPR, CC, SHOES: - 3.5791 -0.1436

GPR, CC+SN, SHOES: - 2.9391 -1.1288
GPR, CC+SN+BAO, SHOES: - 2.9957 -1.2103

-0.7069

MCMC LambdaCDM, CC, SHOES: 3.0385

3.1307 -0.6544

MCMC LambdaCDM, CC+SN, SHOES:

-0.8979

MCMC LambdaCDM, CC+SN+BAO, SHOES: 3.4980

MCMC GPR, CC, SHOES: - 2.1225 -0.0996
MCMC GPR, CC+SN, SHOES: - 3.5189 -0.0546
MCMC GPR, CC+SN+BAO, SHOES: - 2.3773 -1.1424
TPR, CC, SHOES: - 0.3007 -0.8696
TPR, CC+SN, SHOES: — 0.3121 -0.8988

-1.1604

TPR, CC+SN+BAO, SHOES: 0.4105

2.7590 -0.9098

MCMC LambdaCDM, CC+SN*, SHOES:

-1.0326

MCMC LambdaCDM, CC+SN*+BAO, SHOES: 3.2409

HetGP, CC, SHOES: - 1.2298 -1.3027
HetGP, CC+SN, SHOES: - 1.2038 -1.4745
HetGP, CC+SN+BAO, SHOES: - 1.8563 -1.6820
HetTP, CC, SHOES: — 1.3178 -1.4510
HetTP, CC+SN, SHOES: - 0.9685 -1.7325

-1.8035

HetTP, CC+SN+BAO, SHOES: 1.1451

2.2062 -1.0762

IIIIIIIIII{IIIIIIIIII

Average:

T T T T T
60 65 70 75 80

Holkm s~ Mpc™1)

Fig. 7 Comparison of estimates and errors obtained using SHOES prior

it to fit the GPR kernel hyperparameters. We then describe
the TPR method which is a generalization of GPR in that it
can address the assumption of Gaussianity in GPR and thus
is more applicable to real observational data. This can also
help address the problem of overfitting in GPR. Finally, we
use the heteroscedastic regression method where both the
GPR and TPR methods are reevaluated through the prism of
allowing the uncertainty of each reconstructed point to have
a separate variance in the determination of its uncertainty.
This produces a much more precise reconstruction when
tested against real data. The general consistency between the
methods helps strengthen the broader coherence of model-
independent approaches, and may be useful in constructing
parametric models and obtaining constraints on those cos-
mologies.

The results of each of the different methods with the
plethora of data sample combinations and possible trial prior
values (Table 1) on the value of the Hubble constant are laid
out in Sect.4. For a square exponential kernel, we show the
reconstructions of the Hubble constant in Table 2. Firstly,
these are largely invariant up to lo in the choice of ker-
nel function. Another point to appreciate is that the stud-
ies that contain a prior are highly dependent on that choice
which can readily be observed for the best fits containing a
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GPR, CC, Planck: | 0.0000 f -3.6149

GPR, CC+SN, Planck: | 0.0518 H -3.6033

GPR, CC+SN+BAO, Planck: - 0.1431 I 35717

MCMC LambdaCDM, CC, Planck: - 0.0182 b -3.6019
MCMC LambdaCDM, CC+SN, Planck: — 0.0420 k 3.5019
MCMC LambdaCDM, CC+SN+BAO, Planck: | 0.3319 H -3.4909
MCMC GPR, CC, Planck: — 0.1400 H 3.6710

MCMC GPR, CC+SN, Planck: | 0.0653 H -3.6976

MCMC GPR, CC+SN+BAO, Planck: | 0.1561 H -3.6706
TPR, CC, Planck: --00426  |——e—] 11972

TPR, CCHSN, Planck: -{-0.1419  |——e—] 13773

TPR, CC+SN+BAO, Planck: o-0.0600 | ——e——] -1.5543

MCMC LambdaCDM, CC+SN¥, Planck: o -0.0575 I -3.6305
MCMC LambdaCDM, CC+SN*+BAO, Planck: | 0.2660 H 35172
HetGP, CC, Planck: - 0.0311 — -2.3466

HetGP, CC+SN, Planck: = 0.0872 ] 25379

HetGP, CC+SN+BAO, Planck: - -0.2936 - -3.2765

HetTP, CC, Planck: —-0.3889 — 2.8741

HetTP, CC+SN, Planck: | -0.4040 |—.—| -3.0239

HetTP, CC+SN+BAO, Planck: -{-0.1692 - 3.0775
Average: - 0.0301 H 3.5969

T T T T T
60 65 70 75 80

Holkm s~ Mpc™1)

Fig. 8 Comparison of estimates and errors obtained using Planck prior

HOS HOES prior. In all cases, the uncertainties were reason-

ably good except for the sole instance where only CC data
was considered. This is further emphasized when comparing
the best fits for specific data sets as in Table 2 as compared
with the corresponding result for the scenario in which pri-
ors are placed on these analyses, as in Table 5. In Table 4,
the methods described here are shown comparatively against
their estimates on their constraint value of Hy. It is observed
that GPR overfits this parameter due to a generic overfitting
problem in the method for low redshifts, while TPR fits the
real uncertainties much better.

We conducted an exhaustive study of the data set com-
binations together with priors on Hy and the reconstruction
methods, which are shown in Figs.4, 5, 6, 7, 8, 9. This con-
firms our previous discussion on the overfitting issue of GPR

which is corrected by the TPR method which contains
larger uncertainties that are more consistent with the under-
lying data. As for the heteroscedastic regression method, this
produces intermediary uncertainties which tend to a medium
value between the two quoted Hubble constants from litera-
ture. We plan to extend this work to probe the comparative
behaviour of these methods for large scale structure data,
which expresses a mild tension in the value of the Sg param-
eter. Another important future prospect is to include updated
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Prior: No prior o 0.1257 |—0—| -1.8576
Prior: SHOES = 2.2062 |—0—| -1.0762
Prior: TRGB —| 0.8282 |—0—| -2.1225
Prior: HOLICOW = 2.1692 |—0—| -1.2437
Prior: CM | 2.9519 |_._| -0.7170
Prior: Planck - 0.0301 H -3.5069
Prior: DES — 0.0520 |—-—| -3.1743
Dataset: CC o 0.6191 |—-—| -1.8889
Dataset: CC+SN ={ 0.6928 |—0—| -2.0872
Dataset: CC+SN+BAO - 0.9897 |—o—| -2.2628
Dataset: CC+SN* - 0.8527 |—0—| -2.3036
Dataset: CC+SN*+BAO - 1.8312 |_._| -1.9838
Method: GPR - 1.3072 |—-—| 2.23a1
Method: MCMC LambdaCDM = 1.7311 |—-—| 1.9417
Method: MCMC GPR - 1.2873 |—-—| 1.8315
Method: TPR - 0.1226 |—0—| -1.0933
Method: HetGP | 0.4763 |_._| 2.0718
Method: HetTP - 0.3045 |—0—| -2.3549
Median: — 0.8286 |_°_| 2.1719

T T T T T

60 65 70 75 80

Ho (km s~ Mpc™1)

Fig. 9 Comparison of estimates and errors obtained: median values
for each prior, dataset, and method

Table 3 Median H estimate and error obtained by dataset

Dataset Median PAIO value (km s~! Mpc*])
cC 68.806 £ 2.215

CC+SN 68.751 & 1.885

CC+SN+BAO 68.933 £ 1.465

CC+SN, 68.762{-2)]

CC+SN,+BAO 69.8501244

Table 4 Median H estimate and error obtained by method

Method Median I-}o value (km s~! Mpc*])
GPR 69.222 4+ 1.301

MCMC ACDM 69.850}324

MCMC GPR 69.670 £+ 1.691

TPR 68.057 +5.335

Heteroscedastic GPR 68.436 £2.117

Heteroscedastic TPR 68.002 +1.913

data sets in a future study [73-78], as well as other types
of observational data including gamma-ray bursts [79,80]
and HII galaxy [81,82] data samples. We also aim to include
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Table S Median Hj estimate and error obtained by prior

Prior Median I:Io value (km s~! Mpc™1)
No prior 67.7775:9%
ySHOES 1.781
Hy 71.480, 75,
YT RGB 1.727
H, 68.891173
yHW 1.658
Hj 71.158235
5CM 1.640
Hy 72.463| ¢33
A p 0.513
H, 67.4215315
Y DES 1.104
Hj 67.4631 106

more reconstruction methods and expand our diagnostic tests
of these methods in future work.

Acknowledgements This research paper is based on the principal
author’s dissertation, which was submitted in partial fulfillment of the
requirements for the degree of Master of Science at the University of
Malta. This paper is based upon work from COST Action CA21136
Addressing observational tensions in cosmology with systematics and
fundamental physics (CosmoVerse) supported by COST (European
Cooperation in Science and Technology). Some parts of the work were
presented at the 31st Texas Symposium on Relativistic Astrophysics,
held in September 2022 in Prague, Czechia. Additionally, this research
has been partially carried out using computational facilities procured
through the European Regional Development Fund (ERDF), Project
ERDF-080 ‘A Supercomputing Laboratory for the University of Malta’,
and in conjunction with the Department of Physics and the Institute of
Space Sciences and Astronomy at the University of Malta. JLS would
also like to acknowledge funding from *“The Malta Council for Science
and Technology” as part of the REP-2023-019 (CosmoLearn) Project.

Data Availability Statement This manuscript has no associated data.
[Authors’ comment: Data sharing not applicable to this article as no
datasets were generated or analysed during the current study.]

Code Availability Statement This manuscript has associated code/
software in a data repository. [Author’s comment: The code/software
generated during and/or analysed during the current study is avail-
able on the “EstCosmoPar-GPR-TPR* repository, https://github.com/
samuelzammit/EstCosmoPar-GPR-TPR.]

Open Access This article is licensed under a Creative Commons Attri-
bution 4.0 International License, which permits use, sharing, adaptation,
distribution and reproduction in any medium or format, as long as you
give appropriate credit to the original author(s) and the source, pro-
vide a link to the Creative Commons licence, and indicate if changes
were made. The images or other third party material in this article
are included in the article’s Creative Commons licence, unless indi-
cated otherwise in a credit line to the material. If material is not
included in the article’s Creative Commons licence and your intended
use is not permitted by statutory regulation or exceeds the permit-
ted use, you will need to obtain permission directly from the copy-
right holder. To view a copy of this licence, visit http://creativecomm
ons.org/licenses/by/4.0/.

Funded by SCOAP?.

References

1.
2.

10.
11.
12.
13.
14.
15.

16.
17.

18.
19.

20.
21.
22.
23.
24.
25.
26.
27.
28.
29.
30.
31.
32.
33.
34.
. A. Gomez-Valent, L. Amendola, JCAP 2018(4) (2018)
36.
37.

38.

E. Hubble, PNAS 15(3), 168 (1929)

A. Gémez-Valent, Current status of the Hy-tension (2019). www.
mpi-hd.mpg.de/lin/seminar_theory/talks/Talk_Gomez_211019.
pdf

. E. di Valentino, O. Mena, S. Pan, L. Visinelli, W. Yang, A. Mel-

chiorri et al., Class. Quantum Gravity 38(15), 153001 (2021)

. N. Aghanim, Y. Akrami, M. Ashdown, J. Aumont, C. Baccigalupi,

M. Ballardini et al., Astron. Astrophys. 641, A6 (2020)

. M.S. Madhavacheril, F.J. Qu, B.D. Sherwin, N. MacCrann, Y. Li,

I. Abril-Cabezas et al., arXiv:2304.05203 p. 113 (2023)

. N. Schoneberg, L. Verde, H. Gil-Marin, S. Brieden, JCAP 11, 039

(2022)

. S. Aiola, E. Calabrese, L. Maurin, S. Naess, B.L. Schmitt, M.H.

Abitbol et al., JCAP 12, 047 (2020)

. A.G. Riess, L.M. Macri, S.L. Hoffmann, D. Scolnic, S. Casertano,

A.V. Filippenko et al., ApJ 826(1), 56 (2016)

. S.A. Uddin, C.R. Burns, M.M. Phillips, N.B. Suntzeff, W.L. Freed-

man, P.J. Brown et al., arXiv:2308.01875 (2023)

J.L. Bernal, L. Verde, A.G. Riess, JCAP 2016(10), 019 (2016)
V.C. Busti, C. Clarkson, M. Seikel, MNRAS 441, 11 (2014)

V.C. Busti, C. Clarkson, M. Seikel, IAU Symp. 306, 25 (2014)
M. Seikel, C. Clarkson, arXiv:1311.6678 (2013)

R.C. Bernardo, J.L. Said, JCAP 08, 027 (2021)

S. Yahya, M. Seikel, C. Clarkson, R. Maartens, M. Smith, Phys.
Rev. D 89(2), 023503 (2014)

M. Seikel, C. Clarkson, M. Smith, JCAP 2012(6), 036 (2012)

A. Shafieloo, A.G. Kim, E.V. Linder, Phys. Rev. D 85, 123530
(2012)

D. Benisty, Phys. Dark Univ. 31, 100766 (2021)

D. Benisty, J. Mifsud, J.L. Said, D. Staicova, Phys. Dark Univ. 39,
101160 (2023)

R.C. Bernardo, D. Grandén, J. Said Levi, V.H. Cérdenas, Phys.
Dark Univ. 36, 101017 (2022)

R.C. Bernardo, D. Grandén, J.L. Said, V.H. Cardenas, Phys. Dark
Univ. 40, 101213 (2023)

C. Escamilla-Rivera, J.L. Said, J. Mifsud, JCAP 2021(10), 016
(2021)

P. Mukherjee, N. Banerjee, Phys. Dark Univ. 36, 100998 (2022)
R. Shah, A. Bhaumik, P. Mukherjee, S. Pal, JCAP 06, 038 (2023)
P. Mukherjee, R. Shah, A. Bhaumik, S. Pal, ApJ 960(1), 61 (2024)
R.O. Mohammed, G.C. Cawley, in MLDM 17 (Springer, 2017),
pp- 192-205

J. Leddy, S. Madireddy, E. Howell, S. Kruger, Plasma Phys. Control
Fusion 64(10), 104005 (2022)

B.D. Tracey, D.H. Wolpert, arXiv:1801.06147 (2018)

Z. Chen, B. Wang, A.N. Gorban, arXiv:1703.04455 (2017)

R. Briffa, C. Escamilla-Rivera, J.L. Said, J. Mifsud, N.L. Pullicino,
Eur. Phys. J. Plus 137(5), 532 (2022)

W. Hong, K. Jiao, Y.C. Wang, T. Zhang, T.J. Zhang, Astrophys. J.
Suppl. 268(2), 67 (2023)

D. Stern, R. Jimenez, L. Verde, M. Kamionkowski, S.A. Stanford,
JCAP 2010(2), 8 (2010)

N. Vogt, Astronomy 505: Galaxy spectra (2012). https://astronomy.
nmsu.edu/nicole/teaching/ ASTR505/lectures/lecture26/slide01.
html

F. Melia, M.K. Yennapureddy, JCAP 2018(2), 034 (2018)

M. Moresco, L. Pozzetti, A. Cimatti, R. Jimenez, C. Maraston, L.
Verde et al., JCAP 2016(5), 14 (2016)

A.G.Riess, S.A. Rodney, D.M. Scolnic, D.L. Shafer, L.G. Strolger,
H.C. Ferguson et al., ApJ 853(2), 126 (2018)

D.M. Scolnic, D.O. Jones, A. Rest, Y.C. Pan, R. Chornock, R.J.
Foley et al., ApJ 859(2), 101 (2018)

@ Springer


https://github.com/samuelzammit/EstCosmoPar-GPR-TPR
https://github.com/samuelzammit/EstCosmoPar-GPR-TPR
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
www.mpi-hd.mpg.de/lin/seminar_theory/talks/Talk_Gomez_211019.pdf
www.mpi-hd.mpg.de/lin/seminar_theory/talks/Talk_Gomez_211019.pdf
www.mpi-hd.mpg.de/lin/seminar_theory/talks/Talk_Gomez_211019.pdf
http://arxiv.org/abs/2304.05203
http://arxiv.org/abs/2308.01875
http://arxiv.org/abs/1311.6678
http://arxiv.org/abs/1801.06147
http://arxiv.org/abs/1703.04455
https://astronomy.nmsu.edu/nicole/teaching/ASTR505/lectures/lecture26/slide01.html
https://astronomy.nmsu.edu/nicole/teaching/ASTR505/lectures/lecture26/slide01.html
https://astronomy.nmsu.edu/nicole/teaching/ASTR505/lectures/lecture26/slide01.html

987 Page 14 of 14

Eur. Phys. J. C (2024) 84:987

39.

40.

41.

42.

43.

44.

45.
46.

47.

48.

49.
50.

51.

52.

53.

54.

55.

56.
57.

58.
59.

60.

D. Scolnic, D. Brout, A. Carr, A.G. Riess, T.M. Davis, A. Dwomoh
et al.,, ApJ 938(2), 113 (2022)

S. Alam, M. Ata, S. Bailey, F. Beutler, D. Bizyaev, J.A. Blazek
et al., MNRAS 470(3), 2617 (2017)

G.B.Zhao, Y. Wang, S. Saito, H. Gil-Marin, W.J. Percival, D. Wang
et al., MNRAS 482(3), 3497 (2018)

A. Cuceu, J. Farr, P. Lemos, A. Font-Ribera, JCAP 2019(10), 044
(2019)

H. du Mas des Bourboux, J.M. Le Goff, M. Blomqvist, N.G. Busca,
J. Guy, J. Rich et al., Astron. Astrophys. 608, A130 (2017)

S. Perlmutter, G. Aldering, G. Goldhaber, R.A. Knop, P. Nugent,
P.G. Castro et al., ApJ 517(2), 565 (1999)

D. Eisenstein, New Astron. Rev. 49(7), 360 (2005)

A.G. Riess, S. Casertano, W. Yuan, L.M. Macri, D. Scolnic, ApJ
876(1), 85 (2019)

W.L. Freedman, B.F. Madore, D. Hatt, T.J. Hoyt, I.S. Jang, R.L.
Beaton et al., ApJ 882(1), 34 (2019)

K.C. Wong, S.H. Suyu, G.C.F. Chen, C.E. Rusu, M. Millon, D.
Sluse et al., MNRAS 498(1), 1420 (2019)

D. Camarena, V. Marra, Phys. Rev. Res. 2, 13 (2020)

T. Abbott, EB. Abdalla, J. Aleksié, S. Allam, A. Amara, D. Bacon
et al., MNRAS 460(2), 1270 (2016)

R. Briffa, C. Escamilla-Rivera, J.L. Said, J. Mifsud, Phys. Dark
Univ. 39, 101153 (2023)

J. Goodman, J. Weare, Commun. Appl. Math. Comput. Sci. 5(1),
65 (2010)

D. Foreman-Mackey, D.W. Hogg, D. Lang, J. Goodman, Publ.
Astron. Soc. Pac. 125(925), 306 (2013)

C.K.I. Williams, C.E. Rasmussen, Gaussian Processes for Machine
Learning, vol. 2(3) (MIT Press, Cambridge, 2006)

D. Duvenaud, Kernel cookbook (2014). www.cs.toronto.edu/
duvenaud/cookbook/index.html

B.J. Brewer, D. Stello, MNRAS 395(4), 2226 (2009)

B.C. Kelly, A.C. Becker, M. Sobolewska, A. Siemiginowska, P.
Uttley, ApJ 788(1), 33 (2014)

M.W. Browne, ETS Res. Bull. Ser. 1973(1), i (1973)

J. Akeret, S. Seehars, A. Amara, A. Refregier, A. Csillaghy, Astron.
Comput. 2, 27 (2013)

C.L. Bennett, D. Larson, J.L. Weiland, N. Jarosik, G. Hinshaw, N.
Odegard et al., ApJ Suppl. 208(2), 20 (2013)

@ Springer

61.

62.

63.
64.

65.
66.

67.

68.

69.
70.
71.
72.

73.
74.

75.
76.
71.
78.
79.
80.

81.
82.

C.R. Nave, Density parameter, £2 (2016). http://hyperphysics.
phy-astr.gsu.edu/hbase/ Astro/denpar.html

A.G. Riess, A.V. Filippenko, P. Challis, A. Clocchiatti, A. Diercks,
P.M. Garnavich et al., Astron. J. 116(3), 1009 (1998)

R.J. Nemiroff, B. Patla, Am. J. Phys. 76(3), 265 (2008)

G. Hinshaw, D. Larson, E. Komatsu, D.N. Spergel, C.L. Bennett,
J. Dunkley et al., ApJ 208(2), 19 (2013)

J.L. Kirkby, D. Nguyen, D. Nguyen, arXiv:1912.01607 (2019)

Y. Zhang, D. Yeung, in AISTATS ’10, PMLR, vol. 9, ed. by Y.W.
Teh, M. Titterington (Chia, IT, 2010), pp. 964-971

A. Shah, A. Wilson, Z. Ghahramani, in AISTATS ’14, PMLR,
vol. 33, ed. by S. Kaski, J. Corander (PMLR, Reykjavik, IS, 2014),
pp- 877-885

Q. Tang, L. Niu, Y. Wang, T. Dai, W. An, J. Cai, et al., in IJCAI
17 (2017), pp. 2822-2828

D.T. Cassidy, Open J. Stat. 06(03), 8 (2016)

M. Binois, R.B. Gramacy, J. Stat. Softw. 98(13), 1 (2021)

B. Ankenman, B.L. Nelson, J. Staum, Oper. Res. 58(2), 371 (2010)
M. Binois, R.B. Gramacy, M. Ludkovski, J. Comput. Graph. Stat.
27(4), 808 (2018)

M. Moresco, arXiv:2307.09501 (2023)

C. Zhang, H. Zhang, S. Yuan, S. Liu, T.J. Zhang, Y.C. Sun, Res.
Astron. Astrophys. 14(10), 1221-1233 (2014)

K. Jiao, N. Borghi, M. Moresco, T.J. Zhang, ApJ Suppl. 265(2), 48
(2023). https://doi.org/10.3847/1538-4365/acbc77

T.J. Zhang, C. Ma, T. Lan, Adv. Astron. 2010, 184284 (2010)
C.Z. Ruan, F. Melia, Y. Chen, T.J. Zhang, ApJ 881, 137 (2019)
A.A. Kjerrgren, E. Mortsell, MNRAS 518(1), 585 (2022)

G. Bargiacchi, M.G. Dainotti, S. Capozziello, arXiv:2408.10707
(2024)

A. Favale, M.G. Dainotti, A. Gomez-Valent, M. Migliaccio,
arXiv:2402.13115 (2024)

D. Wang, X.H. Meng, ApJ 843(2), 100 (2017)

J. Gao, Y. Chen, L. Xu, arXiv:2408.10560 (2024)


www.cs.toronto.edu/duvenaud/cookbook/index.html
www.cs.toronto.edu/duvenaud/cookbook/index.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/denpar.html
http://hyperphysics.phy-astr.gsu.edu/hbase/Astro/denpar.html
http://arxiv.org/abs/1912.01607
http://arxiv.org/abs/2307.09501
https://doi.org/10.3847/1538-4365/acbc77
http://arxiv.org/abs/2408.10707
http://arxiv.org/abs/2402.13115
http://arxiv.org/abs/2408.10560

	Estimation of the Hubble constant using Gaussian process regression and viable alternatives
	Abstract 
	1 Introduction
	2 Observational datasets and H0 priors
	3 Statistical methods
	3.1 Established methods
	3.1.1 Gaussian process regression
	3.1.2 Markov chain Monte Carlo based on ?CDM

	3.2 Novel methods
	3.2.1 Markov chain Monte Carlo based on kernel hyperparameters
	3.2.2 Student's t-process regression
	3.2.3 Heteroscedastic regression


	4 Results and discussion
	5 Conclusion
	Acknowledgements
	References


