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Abstract A well-known problem in cosmology is the
‘Hubble tension’ problem, i.e. different estimates for the
Hubble constant H0 are not concordant with each other. This
work investigates different statistical methods for estimating
this value using cosmic chronometer, type Ia supernova and
baryonic acoustic data. We start by making use of methods
already established in the literature for this purpose, namely
Gaussian process regression and Markov chain Monte Carlo
(MCMC) methods based on the concordance ΛCDM model.
We also consider two novel approaches; the first makes use
of non-parametric MCMC inference on the hyperparameters
of a Gaussian process kernel, independently of any cosmo-
logical model. The second approach is Student’s t-process
regression, which is a generalised version of Gaussian pro-
cess regression that makes use of the multivariate Student’s
t-distribution instead of the multivariate Gaussian distribu-
tion. We also consider variants of these two methods which
account for heteroscedasticity within the data. A comparison
of the different approaches is made. In particular, the model-
independent techniques investigated mostly agree with pre-
dictions based on the ΛCDM model. Moreover, Gaussian
process regression is highly sensitive to the prior specifi-
cation, while Student’s t-process regression and the het-
eroscedastic variants of both methods are more robust to this.
Student’s t-process regression and both heteroscedastic mod-
els suggest a lower value of the Hubble constant. Across all
the estimates obtained for the Hubble constant within this
work, the median value is Ĥmed

0 = 68.85 ± 1.67 km s−1

Mpc−1.
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1 Introduction

The Hubble constant H0 is one of the fundamental constants
within cosmology and is sourced originally by the direct pro-
portionality relationship between the recessional velocity of
distant objects together with their radial distance. However,
whereas the linear relationship, initially made famous in [1],
has been widely accepted within the astrophysics commu-
nity, the exact value of H0 is still a matter of great debate,
with different techniques for estimating this parameter pro-
ducing different results that do not agree with each other.
This problem is known as the ‘H0 tension’ [2,3].

In recent years, there has been a marked increase in the
reported divergence of the Hubble constant. The discrepancy
originates in the measurement of the H0 parameter using
direct and indirect techniques and has now reached a criti-
cal statistical threshold [4–6]. The early Universe results in a
low estimation of the Hubble constant [4,7], when the con-
cordance model is used to interpret observations. On the other
end of the spectrum, direct measurements in the late Universe
produce higher corresponding estimates of H0 [8,9]. Inter-
nally, each survey shows a high level of internal consistency
making this a tension between surveys, and is particularly
relevant when the concordance model is used against direct
astrophysical data sets [10].

There has been a wide range of nonparametric approaches
in the literature where the evolution profile of the Hubble
parameter is reconstructed from observational data using sta-
tistical techniques. Gaussian process regression (GPR) is the
most applied of these techniques [11–25], where a nonphysi-
cal kernel is used to characterize the covariance relationships
between within a data set. This naturally leads to the ability to
broaden the Hubble reconstruction interval of a wider evolu-
tion profile. However, GPR suffers from some disadvantages
such as having to select a kernel function as well as possible
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overfitting [26] at low-redshift values. Student’s t-process
regression (TPR) offers a generalisation of GPR which has
several advantages including needing low amounts of data to
reconstruct underlying behaviour, as well as its better han-
dling of outliers [27–29].

In this work, we explore different statistical methods for
obtaining estimates for H0. We consider methods already
present in the astrophysical literature, such as GPR [16]
and Markov chain Monte Carlo (MCMC) methods based
on the ‘concordance’ Lambda cold dark matter (ΛCDM)
cosmological model [30]. We also consider some novel
approaches to estimating H0. In particular, these include
model-independent MCMC methods based on the kernel
hyperparameters of GPR, TPR, and variants of GPR and
TPR that allow for heteroscedasticity in the underlying data.
Other interesting approaches exist in the literature (such
as the “move” method where the iterations of the walkers
in the MCMC are updated in a novel way [31]), but the
fast and low uncertainty convergence of the hyperparameter
MCMC implies that this approach is competitive with other
fitting methods. All these novel methods have the advantage
of being independent from any pre-supposed cosmological
model such as ΛCDM, since they rely only on the data sup-
plied.

This paper is structured as follows. Firstly, in Sect. 2, we
introduce the datasets used throughout our analysis. Then,
in Sect. 3, we go into some detail on the statistical methods
used. This is followed by Sect. 4, where we summarise the
results and different estimates which we obtained for H0.
Lastly, in Sect. 5, we discuss our findings in relation to the
present literature on the H0 tension and suggest areas for
further research.

2 Observational datasets and H0 priors

Throughout this work, we shall be concerned with three main
data sources for H(z). These are cosmic chronometers (CC),
type Ia supernovae (SN), and baryonic acoustic oscillations
(BAO).

CC are used to obtain measurements for H(z) using red-
envelope galaxies [32]. These measurements are based on the
observed 4000Å break in the passively evolving galaxy spec-
tra, caused by the absorption of high-energy radiation from
metals and by a scarcity of hot blue stars [33]. According
to the CC approach, the expansion rate H(z) may be mea-
sured by using the redshift-time derivative dz

dt between these
galaxies [34], i.e.

H(z) = − 1

1 + z

dz

dt
≈ − 1

1 + z

Δz

Δt
. (1)

The CC approach has the advantage of not relying on any
cosmological models, since one is measuring only the red-
shift difference between ‘local’ galaxies. Moreover, it is ideal
for obtaining H(z) data at redshifts of z ≤ 2 [35]. For CC, the
data in Table 4 of the study by [36] is used. To avoid the effects
of cosmological model dependence and therefore retain inde-
pendence from any cosmological models, only those points
that are independent of BAO observations are considered.

For the SN data, the compressed Pantheon compilation
data (SN) [37] is used throughout most of this work. While
the compressed dataset consists of only six points, these data
points are effectively a compressed version of a set of around
1048 SN data points at z < 1.5 of the Pantheon compilation
[38] together with the 15 data points obtained by the HST
at z > 1.5 as part of the CANDELS and CLASH Multi-
Cycle Treasury programs [37]. The values given in [37] are
values for E(z) = H(z)/H0 instead of H(z), but these values
are still proportional to H(z), since H0 is a constant. The
compressed data point for z = 1.5 in Table 6 of [37] is
excluded, since the error is non-Gaussian. Moreover, the full
set of 1048 SN data points, which we will denote as SN∗,
is used in conjunction with the ΛCDM cosmological model
within Sect. 3.1.2 of this work. A more recent development in
this field is the release of the ‘Pantheon+’ dataset [39], which
combines the SN∗ dataset with other cosmological surveys.

The 1048 observations of the full Pantheon dataset [38]
are given in terms of the distance modulus μ(z), so the use
of SN∗ requires the distance modulus values to be converted
to H(z) values, which can only be done given a cosmolog-
ical model. Therefore, model-independent statistical meth-
ods, such as GPR and TPR, cannot be carried out using the
full Pantheon dataset. Converting the μ(z) values to H(z) is
quite an involved process that requires numerical integration.
In particular, defining the luminosity distance dL(z) by

dL(z) = c (1 + z)
∫ z

0

1

H(z′)
dz′,

where c is the speed of light and z′ is a variable of integration,
then

μ(z) = 5 log10 (dL(z)) + M,

for some arbitrary fiducial absolute magnitude M [30].
The BAO data points included are from the SDSS com-

pilation [40,41]. BAO observations are mainly constructed
from high resolution images of the distribution of galax-
ies at different redshifts across the Universe. In this way,
a map of the evolution of the large scale structure of the
Universe can be built which can then be used to infer the
expansion velocity at different redshifts. At lower redshifts,
BAO readings may be obtained by observing galaxy clus-
ters [42]. Another source of BAO measurements is from the
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Table 1 Values of different estimates for H0 to be used as ‘priors’

Value Ĥ0 (km s−1 Mpc−1) Source

Ĥ SH0ES
0 74.22 ± 1.82 [46]

Ĥ T RGB
0 69.8 ± 1.9 [47]

Ĥ HW
0 73.3+1.7

−1.8 [48]

ĤCM
0 75.35 ± 1.68 [49]

Ĥ P
0 67.4 ± 0.5 [4]

Ĥ DES
0 67.4+1.1

−1.2 [50]

Lyman-alpha (Ly-α) forest [43]; however, a significant ten-
sion of 2.5σ exists between galaxy BAO and Ly-α BAO.
A similar tension exists between Ly-α BAO and predictions
based on the widely accepted ΛCDM cosmological model,
while galaxy BAO measurements are consistent with ΛCDM
predictions. The mechanism behind obtaining BAO observa-
tions is more complicated than for both CC and SN. Essen-
tially, BAO are fluctuations in the density of matter of the
Universe and provide a ‘standard ruler’ for measuring large
distances within the Universe in the same way that SN of
known brightness provides a ‘standard candle’ [44,45].

For each of the statistical approaches discussed in this
work, the different data sources will often be amalgamated.
In particular, we shall consider the datasets CC, CC+SN,
and CC+SN+BAO, where + denotes the concatenation of
datasets. Moreover, for the MCMC ΛCDM approach, we
also consider the datasets CC+SN∗ and CC+SN∗+BAO. The
datasets are also combined with pre-established estimates
for H0 present in the literature, which we shall refer to as
‘priors’. The priors used are summarised in Table 1. Each of
the priors is presented in the form x±ykm s−1 Mpc−1, where
x is the point estimate and y represents the uncertainty of
this estimate. For each combination of dataset and statistical
method, we will consider each ‘prior’ H0 value separately
and also the priorless case.

3 Statistical methods

As mentioned towards the end of Sect. 1, we shall be consid-
ering a number of statistical methods for the purpose of esti-
mating the Hubble constant H0. Each of the methods obtains
an estimate for H0 by using the data available to reconstruct
the relationship between z and H(z) and extrapolating the
resulting reconstruction function to z = 0. These statisti-
cal methods can be broadly divided into two classes, namely
methods already established in the literature and novel meth-
ods.

The established methods include GPR [13,22] and MCMC
inference based on the ΛCDM model [30,51], using the
ensemble sampler [52,53]. Of these, the first method is said to

be model-independent, since it does not assume any cosmo-
logical model but is instead dependent only on the observa-
tional data. Oppositely, the latter method necessarily assumes
the ΛCDM concordance model. The remaining methods are
said to be ‘novel’ methods since, to our knowledge, they have
not yet been used within the astrophysical literature to obtain
estimates for H0. The novel methods to be discussed within
this paper include model-independent MCMC-based infer-
ence, TPR, and variants of both GPR and TPR that allow for
heteroscedasticity in the data reconstructions.

3.1 Established methods

3.1.1 Gaussian process regression

A GP is a stochastic process that is effectively a generalisation
of the multivariate Gaussian distribution, in the sense that any
finite sample of random variables from such a process has the
multivariate Gaussian distribution as its joint distribution. In
the same way that a multivariate Gaussian distribution can
be characterised by its mean vector and variance-covariance
matrix, a GP can be completely characterised by its mean
and kernel functions. If f is a GP with mean function m
and kernel function k, this is denoted by f ∼ GP(m, k)
for notational convenience. Since there is a one-to-one cor-
respondence between f and pairs (m, k) of mean and kernel
functions, then specifying m and k implicitly corresponds to
a ‘unique’ GP(m, k).

GPR, which has been extensively covered within the sta-
tistical literature [54], is a model-independent supervised
learning approach based on constraining a kernel function
[55], which can then be used to ‘reconstruct’ data, that is, to
smoothen out observed data and simulate unobserved data
points using interpolation and extrapolation. An example of
an admissible kernel function is the square exponential kernel

k(x, x′; σ f , l) = σ 2
f exp

[
−‖x − x′‖2

2l2

]
. (2)

For this kernel, the quantities σ f and l are the hyperparam-
eters, which allow for flexibility in the kernel specification.
For example, a larger value for the length scale l means that
the function values change more slowly and is therefore suit-
able for capturing a long-term trend. On the other hand, σ f

is a scale factor that determines the average distance of the
function from its mean [55].

GPR has been used extensively within the field of astro-
physics, for example in the analysis of light curves of stars
and active galactic nuclei [56,57]. GPs have also more
recently found use in the estimation of core cosmological
parameters, such as H0 and f σ8, with the goal of under-
standing better the tension between the different estimates
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for these parameters. In particular, GPR has been widely
used in the literature for smoothing Hubble data [16,35].

GPR may be viewed as a Bayesian inference problem.
The GP prior f ∼ GP(m, k) is combined with a Gaussian
likelihood function for each of the observed vectors. The
mean functionm is usually taken to be zero throughout, since
GPs are able to model the mean arbitrarily well [54]. The
combination of GP prior and Gaussian likelihood results in
a Gaussian posterior distribution of f . The hyperparameters
present in the mean and covariance structure of the GP, as
well as the posterior mean and covariance, are unknown a
priori; instead, they are inferred from the data.

In GPR, we are given the observations (xi , yi ), i ∈
{1, 2, . . . , n}. We use a regression model, i.e.

yi = f (xi ) + ε, (3)

where ε corresponds to random noise which is assumed to
follow a Gaussian distribution with mean zero and variance
σ 2

ε . The xi s can be rearranged as a data matrix X, and the
values yi can be joined into a vector y. Then, the log-marginal
likelihood can be derived [54] and is given by:

logP(y|X) = −1

2
yTK−1

y y − 1

2
log |Ky | − n

2
log 2π, (4)

where Ky = Cov(Y |X) = K + σ 2
ε IN is known as the kernel

matrix.
In the right-hand side, the first two terms represent the

data fit and model complexity respectively, while the last
term is simply a constant. Moreover, for GPR, the posterior
predictive mean is KT∗ K−1

y y.
We obtain a reconstruction of the relationship between

H(z) and z that is independent of any physical or cosmolog-
ical models through the minimisation of a Chi-squared statis-
tic that measures the discrepancies between the observed
points at redshifts z1, z2, . . . , zN [22], as in Eq. (5):

χ2
Ĥ

=
N∑
i=1

[
Ĥpred(zi ) − Hobs(zi )

]2

σ̂ 2
H (zi )

, (5)

where Ĥpred(zi ) and Hobs(zi ) are the reconstructed and
observed values of H at redshift zi , and σ̂ 2

H (zi ) is the esti-
mated variance of the observation Hobs(zi ). This Chi-squared
statistic reaches a minimum value of 0 when the observed and
reconstructed H(zi ) values are equal for each redshift value
zi . Minimisation of this statistic is equivalent to estimating
H(z) using maximum likelihood estimation [58].

3.1.2 Markov chain Monte Carlo based on ΛCDM

In this work, we consider a family of MCMC methods known
as ensemble samplers. The term ‘ensemble’ relates to multi-
ple samplers, or ‘walkers’, of the standard MCMC algorithms
(such as the Metropolis–Hastings algorithm or Gibbs sam-
pler) being run in parallel. Ensemble samplers that are invari-
ant under affine transformations of the coordinate space have
been proposed by [52]. These samplers have been used exten-
sively within cosmology, particularly for Bayesian inference
of the parameters of some pre-defined cosmological model
given a set of data [59]. In this paper, we consider the ‘con-
cordance’ ΛCDM model, the parameters of which are the
Hubble constant H0 and the matter density parameter ΩM0.

MCMC algorithms aim to sample from some desired joint
distribution f (a) = f (a1, a2, . . . , ap) in cases where sam-
pling directly from such a distribution is not possible or fea-
sible. MCMC algorithms achieve this by starting from some
initial state a(0) and iteratively sampling a(t) given the value
of a(t−1) for t = 1, 2, . . . until some stopping criterion is
achieved.

An ensemble
−→
A consists of L random vectors known as

‘walkers’ {A1,A2, . . . ,AL}, each of which is in Rp. Hence,
the ensemble can be thought of as being inRp×RL . The idea
behind the ensemble sampler is to independently sample each
walker from f .

The term ‘ensemble MCMC algorithm’ arises from the
fact that the sampler is made up of a Markov chain on the
state space of ensembles. The ensemble algorithm gener-

ates
−→
A (0),

−→
A (1), . . . ,

−→
A (T ) iteratively starting from the ini-

tial point
−→
A (0).

The ensemble algorithm obtains
−→
A (t) from

−→
A (t−1) by

updating one walker at a time, i.e. by cycling through each
of the L walkers in the ensemble. Each walker is typi-
cally implemented as a Metropolis–Hastings Markov chain,
although in theory any MCMC algorithm can be used [53].
For each i ∈ {1, 2, . . . , L}, the walker Ai is updated based
on the current positions of the other walkers, i.e. the walkers

making up the complementary ensemble
−→
A [i] := {A j : j 
=

i}. If, for each i , the single-walker move from A(t−1)
i to A(t)

i

preserves the conditional distribution of Ai |−→A (t)
[i] , then the

overall ensemble update from
−→
A (t−1) to

−→
A (t) preserves the

product density [52].
Three different types of moves which one may wish to

carry out on the individual walkers have been proposed by
[52]. The type of move most recommended by the authors
is the ‘stretch move’, where the walker Ai is updated using
one complementary walker, that is, using A j for some i 
=
j . Starting from A(t−1)

i , a new value A(t)∗
i is proposed as
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follows:

A(t)∗
i := A(t−1)

j + Y
(
A(t−1)
i − A(t−1)

j

)
, (6)

where Y is a scaling variable. This proposed value is then
accepted or rejected through the ‘usual’ Metropolis–Hastings
rule.

In this work, we consider the use of the ensemble sampler
as implemented in the Python package emcee [53] with the
aforementioned stretch move in order to obtain estimates for
H0 based on the ΛCDM cosmological model. The density of
the Universe at current time is expressed as a parameter Ω0

that is made up of three sub-quantities. The first is the mass
density of matter – including both baryonic matter as well
as dark matter – and is denoted by ΩM0. The second density
parameter, denoted by ΩR0, is the effective mass density of
the relativistic particles, i.e. light and neutrinos, while the
final density parameter ΩΛ0 is the effective mass density of
the dark energy:

Ω0 = ΩM0 + ΩR0 + ΩΛ0. (7)

Using observations from the Wilkinson Microwave
Anisotropy Probe (WMAP) and assuming the ΛCDM model,
it was found that ΩM0 is around 0.3, while ΩR0 is very close
to zero and ΩΛ0 is around 0.7 [60, p. 129]. Therefore, the
total mass density as defined in Eq. (7) is close to 1, sug-
gesting a Euclidean or ‘flat’ Universe. The dominance of the
mass and dark energy densities compared to that of the rel-
ativistic particles at current time is contrasted with that at
early times in the Universe. In fact, radiation was then dom-
inant over both mass and dark energy [61]. The true values
of the density parameters determine the shape and ultimate
fate of the Universe, with current research mostly in favour
of accelerating expansion [62].

According to [63], the first Friedmann equation relates
the different density parameters to the Hubble parameter and
Hubble constant, namely:

H(z)2

H2
0

= ΩR0(1+z)4+ΩM0(1+z)3+ΩK0(1+z)2+ΩΛ0,

where ΩK0 ≈ 0 so the third term may therefore be elimi-
nated. Similarly, the term containing ΩR0 can also be elimi-
nated, and ΩΛ0 may alternatively be expressed as 1 − ΩM0

from Eq. (7). Therefore, the model under consideration
becomes:

H(z) = H0

√
ΩM0(1 + z)3 + (1 − ΩM0).

Virtually all modern estimates of H0 lie in the range of
65 − 80 km s−1 Mpc−1, and ΩM0 is known to be very close

to 0.3 [64]. Therefore, we conservatively set a mostly unin-
formative prior on the parameters, defined by:

logP(θ) =
{

0 H0 ∈ [50, 100] and ΩM0 ∈ [0.1, 0.5]
−∞ otherwise,

(8)

where θ is the vector of parameters (H0,ΩM0)
T . As initial

points, we use Ĥ (0)
0 = 75 km s−1 Mpc−1and Ω̂

(0)
M0 = 0.3.

As was done with GPR, we fit the H(z)-against-z curve
by comparing the predicted and observed values of H(z). In
particular, for CC and BAO, our objective is analogous to
weighted least squares estimation. Therefore, the objective
function is proportional to

−
n∑

i=1

[
Ĥpred(zi ) − Hobs(zi )

]2

σ̂ 2
H (zi )

, (9)

where Ĥpred(zi ) and Hobs(zi ) are the predicted and observed
values of H at redshift zi and σ̂ 2

H (zi ) is the variance of the
observation Hobs(zi ). The idea behind such a function is to
minimise the distance between the predicted and observed
values for H at each of the redshifts zi present in the CC
dataset. This quantity reaches a maximum of 0 when the
predicted and observed values of H for each zi are equal.

For the SN data, the objective function is similar but it dif-
fers in that we use E(z) = H(z)/H0 values instead of using
H values directly, and additionally we need to incorporate
the 5 × 5 covariance matrix ˚SN of these readings [30].

Therefore, suppose that the five values of z form a vector
z = (z1, z2, . . . , z5)

T , and let the corresponding observed
values of E at these z-values form a vector Eobs(z), and sim-
ilarly for the predicted values. In this case, we have that the
objective function is proportional to

− (Êpred(z) − Eobs(z))T ˚−1
SN (Êpred(z) − Eobs(z)). (10)

For all three data sources, since we are assuming a regres-
sion structure with independent Gaussian errors, estimation
using the CC and BAO cases is analogous to ordinary least
squares regression, while the SN data takes a weighted least
squares structure since the SN error terms are correlated.

This is similar to the statistical technique of maximum
likelihood estimation; in fact, we inherit asymptotic consis-
tency and efficiency [58] for our estimates. Moreover, the
objective functions are often directly referred to as ‘likeli-
hood functions’ within the astrophysics literature [30]. We
denote the likelihood relating to each dataset as ΛCC , ΛSN ,
and ΛBAO respectively. The overall log-likelihood when all
the datasets are considered altogether is then given by the
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summation of the component log-likelihoods, i.e.:

log Λtot ( f |θ) = log ΛCC ( f |θ) + log ΛSN ( f |θ)

+ log ΛBAO( f |θ). (11)

Using Bayes’ rule, the posterior log-probability is propor-
tional to the summation of the log-prior and log-likelihood,
i.e.:

P(θ | f ) ∝ P(θ)Λtot ( f |θ)


⇒ logP(θ | f ) ∝ logP(θ) + log Λtot ( f |θ).

In order to obtain the parameter estimates Ĥ0 and Ω̂M0

for each combination of dataset and ‘prior’, we use the affine
ensemble sampler as implemented in emcee with 5000 iter-
ations and 200 walkers. Each walker is initialised close to the
point θ (0) := (

Ĥ (0)
0 , Ω̂

(0)
M0

)T = (75, 0.3)T , and the parame-
ter values are updated iteratively using the parallelised ver-
sion of the stretch move such that the log-likelihood function
of Eq. (11) is maximised with respect to θ .

3.2 Novel methods

3.2.1 Markov chain Monte Carlo based on kernel
hyperparameters

The first novel method investigated is a non-parametric
implementation of the ensemble MCMC sampler. In par-
ticular, we consider a GPR structure and use an ensemble
sampler to obtain estimates for the hyperparameters of the
kernel functions involved. These hyperparameter values are
then used to obtain estimates for the Hubble constant. When
compared to the approach of Sect. 3.1.2, this novel approach
has the advantage of being independent from any cosmolog-
ical model.

The module mcmcdgp within the Python package GaPP
[13] allows for a non-parametric reconstruction of the H(z)-
against-z function through MCMC inference on the hyper-
parameters of the kernel function. This reconstruction is car-
ried out in exactly the same way as in Sect. 3.1.1. In par-
ticular, we minimise the Chi-squared statistic between the
reconstructed/estimated and observed value of H(z) in each
case, as in Eq. (5). The only difference between the theo-
retical setup used here when compared to GPR is that the
values for the kernel hyperparameters are obtained using
the affine ensemble sampler described in Sect. 3.2.1 and as
implemented in emcee instead of the usual minimisation of
derivatives.

3.2.2 Student’s t-process regression

While GPR has been extensively used within the astrophys-
ical literature, including obtaining estimates for H0 [10,30],

this work also explores the use of TPR to obtain estimates for
this constant. As the name implies, TPs are highly similar to
GPs, but with the multivariate Student’s t-distribution replac-
ing the multivariate Gaussian distribution. A TP is therefore
characterised by its mean and kernel functions, as well as an
additional degrees of freedom parameter.

The main drawbacks of GPR include the normality
assumption taken on the observations, as well as the poor
performance of GPR when outliers are present in the data and
the tendency to overfit. The Student’s t-distribution has com-
paratively heavier tails than the Gaussian distribution [65, p.
2], so TPR can address these disadvantages [66,67]. In this
work, we consider a form of TPR that introduces dependent
Student’s t-noise, in that the variance of the noise is depen-
dent on how well the corresponding noise-free model fits
the data [68]. This is referred to as the Student’s t-process
regression with dependent Student’s t noise (TPRD) model.
Analogously to the Gaussian case, in TPR we let the latent
function f be a TP and assign a multivariate Student’s t-
distributed likelihood function, leading to a TP posterior.

The p-variate Student’s t-distribution [68] with mean
function m, (p × p) scale matrix K, and degrees of freedom
parameter ν > 2 has joint probability density function

P(x) = Γ (
ν+p

2 )

(νπ)
p
2 Γ

(
ν
2

) |K|− 1
2

×
[

1 + (x − m)TK−1(x − m)

ν

]− ν+p
2

, (12)

We denote this as X ∼ MVTp(m,K, ν).
Then, we define a TP in a similar manner to a GP, except

that the multivariate Gaussian distribution is replaced with
the multivariate Student’s t-distribution. In other words, any
finite sample of random variables from a TP is jointly mul-
tivariate Student’s t-distributed. Similar to the notation for
Gaussian processes, we denote a TP using f ∼ T P(m, k, ν).

Many of the properties of TPs follow from those of GPs,
since the Student’s t-distribution is closely related to the
Gaussian distribution. In particular, given some fixed m and
K, then a TP becomes equivalent to the corresponding GP at
the limit ν → ∞. This follows immediately from the fact
that the multivariate Student’s t-distribution converges to the
multivariate Gaussian distribution at this limit [69], and from
the definitions of GPs and TPs.

Moreover, the additional ‘degrees of freedom’ parameter
ν within the TP controls the degree of dependence between
jointly t-distributed variables [67] as well as the heaviness of
the tails, with smaller values of ν corresponding to heavier
tails. However, the behaviour of a TP becomes closer to that
of a GP as we increase ν. Additionally, the conditional dis-
tribution for the multivariate Student’s t-distribution can be
worked out analytically, and it then follows that the posterior
predictive distribution of a TP converges to that of a GP as
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ν → ∞. Therefore, assuming that the same kernel with the
same hyperparameters is used, the posterior predictive mean
of a TP has the same form as in a GP. However, the same
cannot be said for the predictive covariance. In fact, the pre-
dictive covariance for a TP depends on the observed values.
This allows for increased flexibility in using a TP when com-
pared with GPs, as in the latter case the predictive covariance
is independent of the training observations.

In the TPRD model [68], we let the noise vector ε :=
(ε1, ε2, . . . , εn)

T follow an n-dimensional MVT distribu-
tion with correlation matrix dependent on how well the
noise-free model y = f (X) fits the data. Define f :=
( f (x1), f (x2), . . . , f (xn))T . Then, assuming zero mean, the
noise vector is distributed as:

E|β ∼ MVTn

[
0,

(
1 + 1

ν
fTK−1f

)
1

β
In, ν + n

]
, (13)

where β is a constant scaling factor and In is the (n × n)

identity matrix. The quantity 1
β
In thus ensures that the covari-

ance matrix of the noise distribution is indeed a matrix, as
is required from the definition of the multivariate Student’s
t-distribution.

Given F ∼ MVTn(m,K, ν) and Eq. (13), we obtain
the likelihood derived from the multivariate Student’s t-
distribution:

Y|F, β ∼ MVTn

[
f,

(
1 + 1

ν
fTK−1f

)
1

β
In, ν + n

]
. (14)

The joint distribution of y and f is therefore given by

P(y, f |β) ∝
[

1 + β

ν + n
yT

(
I − β

ν + n
A−1

)
y

+ (f − f̄)TA(f − f̄)
]− ν+2n

2

, (15)

where A = 1
ν
K−1 + β

ν+n I and f̄ = β
ν+nA

−1y, resulting in the
marginal log-likelihood

logP(y|θ ,K) = −ν + n

2
log

[
1 + 1

ν
yT˚−1y

]

− 1

2
log |˚| + log

[
Γ (ν+n

2 )

(νπ)
n
2 Γ

(
ν
2

)
]

,

(16)

as shown by [68].
Comparing with Eq. (4) for the GPR case, the log-

likelihood in this case is highly similar. In fact, the first
term is related to the data-fit term yT˚−1y, while the second
and third terms are a model complexity penalty and a nor-
malisation constant respectively. The main difference from
GPR in this case is that the first term in the TPRD marginal

log-likelihood is a logarithmic, rather than linear, function
of yT˚−1y. This provides further evidence in favour of the
robustness of TPRD, as any outliers in y would disturb the
marginal log-likelihood for TPRD less than the equivalent in
GPR. The kernel hyperparameters and the optimal value for
ν can then be inferred through numerical optimisation of the
derivative of Eq. (16), similarly to the GPR case.

3.2.3 Heteroscedastic regression

Another novel method considered for estimating H0 is het-
eroscedastic GPR and TPR as described by [70]. The idea
behind heteroscedastic GP and TP modelling is to simulta-
neously model the mean and variance, while allowing the
error terms εi to have a different variance for each element.
In other words, given a vector of observations (xi , yi ) for
i ∈ {1, 2, . . . , n} and f ∼ GP(m, k) or f ∼ T P(m, k, ν),
the basic model yi = f (xi )+ εi shown in Eq. (3) is assigned
error terms εi ∼ N (0, σ 2

i ) for each i instead of assuming that
the error terms are independent and identically-distributed
for all i .

This method, as implemented in the R package hetGP
[70], also allows for some optimisations based on the
‘stochastic kriging’ (SK) predictor [71], which lead to large
computational savings especially when a large number of
observations are available at each xi . However, this assump-
tion of repeated readings is often prohibitive when modelling
real-world data. While replication can still help speed up the
computation, use of the SK predictor does not inherently
require a set minimum dataset size or numbers of replicates.

The log-likelihood for the SK predictor is defined by [72,
p. 10] as:

log Λ = c−1

2

n∑
i=1

[
(ai−1) log λi+log ai

]−1

2
log |Kn|. (17)

The SK predictor already includes some in-sample het-
eroscedasticity by independently calculating the moments
for each element; therefore, a different variance value will
be assigned to each of the sampled elements. However, this
is not extended out-of-sample and is therefore not useful
for heteroscedastic interpolation. [71] suggest to incorporate
out-of-sample heteroscedasticity fitting another GP or TP
on the variances of the sample points to obtain a smoothed
variance for use in interpolation. However, [70] go a step
further and propose introducing latent variables under a GP
or TP prior and performing MCMC inference on their joint
distribution in order to obtain this smoothed variance. Let
´r = Diag(δ1, δ2, . . . , δr ) be made up of the latent variance
variables corresponding to the r ≤ n unique observation
points. We assign a GP or TP prior to this matrix, i.e.:

´r ∼ MV Nr (β0,K
−1
(g)),
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or analogously:

´r ∼ MVTr (β0,K
−1
(g), ν(g)),

where K(g) := C(g) + gA−1
r . Here, the subscript (g) is used

to distinguish this process from the one on the latent func-
tion f . As for β0, the natural estimator to use is β̂0 =
´T
r K

−1
(g)´r (1

T
r K

−1
(g)1r )

−1. As described by [72], one can opt to
use log(´r ) in place of ´r to ensure that δi remains positive
for each i ∈ {1, 2, . . . , r}.

In heteroscedastic GPR, a joint log-likelihood function
over both GPs is defined, i.e.:

logP(y|Kr ,K(g)) = c − 1

2

r∑
i=1

[(ai − 1) log λi + log ai ]

− 1

2
log |Kr | − 1

2
log |K(g)|,

(18)

and this likelihood may be optimised numerically with
respect to any unknown parameter by differentiating it with
respect to that parameter and setting the derivative to zero.
For TPR, we can similarly use a joint log-likelihood func-
tion over both TPs. In the event that replication is present, the
maximum likelihood estimates obtained using the r unique
points are equivalent to the full-n estimates [72].

For the application of these techniques on our data, we
use the R package hetGP [70], in particular the subroutines
mleHetGP and mleHetTP for heteroscedastic GPR and
TPR.

4 Results and discussion

For each of the methods investigated, reconstruction plots of
H(z) against z were obtained. As an example, Fig. 1 shows
the reconstruction obtained using GPR with the square expo-
nential function, for the dataset CC+SN+BAO and for the
priorless case.

The results are also presented in tabular form; for exam-
ple, Table 2 shows the Ĥ0 values obtained after running the
regressions on the different datasets and using the square
exponential kernel function, for each of the priors discussed
in Table 1. Only the results for the square exponential kernel
function are presented here, since each of the kernel func-
tions trialled gave very similar results. The full set of results
obtained is available in the Supplementary Material.

For the MCMC-based methods, trace plots showing the
evolution of the walkers at each iteration provided a visual
confirmation that the desired convergence of the parameter
estimates was achieved. An example of one of the trace plots
obtained is given in Fig. 2.

Fig. 1 Reconstruction of Ĥ(z) against z: GPR, square exponential ker-
nel, CC+SN+BAO data, no prior

Table 2 H0 estimates: GPR with square exponential kernel

Dataset Ĥ0 (km s−1 Mpc−1)

CC 67.448 ± 4.753

CC+SN 68.104 ± 1.786

CC+SN+BAO 68.903 ± 1.595

CC+Ĥ SH0ES
0 73.833 ± 1.728

CC+SN+Ĥ SH0ES
0 71.646 ± 1.334

CC+SN+BAO+Ĥ SH0ES
0 71.547 ± 1.248

CC+Ĥ T RGB
0 69.602 ± 1.773

CC+SN+Ĥ T RGB
0 69.011 ± 1.315

CC+SN+BAO+Ĥ T RGB
0 69.295 ± 1.226

CC+Ĥ HW
0 72.998 ± 1.622

CC+SN+Ĥ HW
0 71.269 ± 1.278

CC+SN+BAO+Ĥ HW
0 71.225 ± 1.202

CC+ĤCM
0 74.970 ± 1.611

CC+SN+ĤCM
0 72.624 ± 1.290

CC+SN+BAO+ĤCM
0 72.409 ± 1.213

CC+Ĥ P
0 67.393 ± 0.497

CC+SN+Ĥ P
0 67.432 ± 0.481

CC+SN+BAO+Ĥ P
0 67.517 ± 0.475

CC+Ĥ DES
0 67.366 ± 1.070

CC+SN+Ĥ DES
0 67.533 ± 0.931

CC+SN+BAO+Ĥ DES
0 67.831 ± 0.896

Additionally, corner plots showing the distribution of the
parameters in each case were produced. The corner plot for
the dataset CC+SN+BAO and the priorless case is presented
in Fig. 3. This plot provides a visual confirmation of the
decrease in Ω̂M0 with increasing Ĥ0, i.e. from the shape of
the ‘oval’ in the bottom-left corner of each subplot.
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Fig. 2 Trace plot: MCMC ΛCDM, CC+SN+BAO data, no prior

Fig. 3 Corner plot: MCMC ΛCDM, CC+SN+BAO data, no prior

Since there is a large number of possible combinations of
kernel function, method, prior, and dataset, a large number
of estimates for H0 were obtained. The different approaches
were compared using whisker plots. For example, Fig. 4 con-
tains all the H0 estimates obtained using the CC+SN+BAO
dataset, irrespective of the method and prior used. This allows
us to determine the effect of different methods and priors
given a fixed dataset. Similarly, we present the estimates
obtained using the GPR method across all datasets and priors
in Fig. 5. We also show the estimates obtained using the pri-
orless case as well as the SH0ES and Planck priors in Figs. 6,
7, 8. Similar figures and tables for the other priors, datasets,
and methods considered are presented in the Supplementary
Material.

In each case, the estimate for H0 presented is the median of
estimates obtained using a given dataset, method, and prior.
The same applies for the standard error of this estimate. For
each estimate, the actual estimated value is shown using the

dot, while the errors are shown using the whisker plots. More
uncertain estimates, i.e. those with a higher standard error,
consequently have longer whiskers than estimates with low
standard error. The pre-established SH0ES and Planck priors
Ĥ SH0ES

0 and Ĥ P
0 are superimposed on the plot as the blue

and red bars respectively.
In order to calculate the ‘distance’ between two estimates

of H0, we make use of the σ -distance as in Eq. (19):

d(Ĥ0,i , Ĥ0, j ) := Ĥ0,i − Ĥ0, j√
σ̂ 2
Ĥ0,i

+ σ̂ 2
Ĥ0, j

, (19)

where Ĥ0,i and Ĥ0, j are the two estimates for H0, and σ̂Ĥ0,i

and σ̂Ĥ0, j
are their corresponding standard errors. Here, the

denominator has a normalising effect since it takes the esti-
mators’ variances into account. This is the same methodology
used in [30].

The distance between each H0 estimate and the pre-
established SH0ES and Planck priors is also shown in the
whisker plot. In particular, for each H0 estimate presented in
Figs. 4, 5, 6, 7, 8, 9, the distance between the estimate and
the Planck prior is shown on the left of the box and whisker,
while the distance between the estimate and the SH0ES prior
is shown on the right. A figure of 1.5 on the left-hand side,
for example, means that the estimate obtained is at 1.5 units
of distance larger than the Planck prior. Lastly, at the bottom
of each plot, we show the median of all the values shown in
that plot. The median H0 estimate for each plot is also pre-
sented within Tables 3, 4, and 5. In order to obtain a suitable
standard error for each median value, the median standard
error of the relevant estimates is taken.

From these figures, one can immediately notice some
patterns. In particular, the estimates obtained using GPR,
MCMC ΛCDM, and MCMC GPR are highly dependent
on the prior specification. For these methods, the tensions
between each estimate and the pre-established SH0ES and
Planck priors are often more than 2σ , and even exceed 4σ in
some cases. On the other hand, TPR as well as heteroscedas-
tic GPR and TPR are less sensitive to the specification of the
‘prior’ Ĥ0 value, so that the estimates obtained for the Hubble
constant using each of the different ‘priors’ are closer to each
other. However, for TPR, only a few of the estimated values
have more than 2σ tension with either the SH0ES or Planck
priors, owing to the larger standard error associated with the
TPR estimates. Therefore, further investigation of TPR with
larger datasets is required so that these standard errors are
reduced. Regardless of the method used, the standard errors
for the priorless case are understandably much larger than
for the cases where a prior Ĥ0 value was specified. This can
be seen, for example, by comparing Fig. 6 to Figs. 7 and 8.
Additionally, a striking observation that can be made from
Fig. 8 is that the estimates for all methods when considering
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Fig. 4 Comparison of estimates and errors obtained using
CC+SN+BAO dataset

the Planck prior are very close to each other. In this case, the
evidence suggests a lower H0 value and one that is very close
to Ĥ P

0 .
Additionally, in Fig. 9 we further summarise the results by

presenting the median Hubble constant estimates obtained
by prior, dataset, and method. In other words, given a fixed
‘prior’, we present the median of all the estimates involving
that prior irrespective of the kernel, dataset, and method used.
Similarly, given a dataset, we calculate the median over all
priors, kernels, and methods, and given a method we get
the median over all priors/kernels/datasets. At the bottom of
this plot, we present the median estimate obtained across all
methods, datasets, kernels, and priors. This value is Ĥmed

0 =
68.85±1.67 km s−1 Mpc−1. As can be seen from the bottom
part of Fig. 9, this value is less than 1 standard deviation from
the Planck prior Ĥ P

0 but is at a tension of more than 2σ from
the SH0ES prior Ĥ SH0ES

0 , which is further evidence in favour
of a lower value for the Hubble constant.

We can also compare the median Ĥ0 value obtained for
each method, prior, and dataset in order to determine the
effect of the particular method, prior, or dataset on the esti-
mates obtained. The table comparing the different datasets
is presented as Table 3, and similarly Tables 4 and 5 respec-
tively compare the methods and priors.

Fig. 5 Comparison of estimates and errors obtained using GPR method

From these tables, we can see that larger datasets gen-
erally lead to more confident predictions, i.e. estimates with
lower uncertainties. However, it should be noted that only the
MCMC ΛCDM method was applied to the datasets CC+SN∗
and CC+SN∗+BAO. When it comes to the method used, we
see that GPR, MCMC ΛCDM, and MCMC GPR give very
similar results, indicating that the model-independent GPR
is in agreement with the widely-accepted ΛCDM cosmo-
logical model. From the bottom part of Fig. 5, we can see
that the median value obtained for GPR is at a distance of
1.3072 standard deviations from Ĥ P

0 , while there is a ten-
sion of 2.2341σ with Ĥ SH0ES

0 . This provides some evidence
in favour of a lower value for the Hubble constant. The rest
of the methods considered, namely TPR and heteroscedas-
tic GPR and TPR, produced even lower estimates for H0.
Therefore, these methods provide further evidence in favour
of a lower value of H0 that is closer to the Planck and DES
priors.

As for the prior used, this naturally has a great effect on
the H0 estimates obtained, as the effect of adding a prior is
to consider an additional ‘artificial’ data point at z = 0. As
expected, using the Planck and DES priors produced lower
values than the SH0ES, H0LiCOW, and CM priors. How-
ever, it is to be noted that the estimates obtained when no
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Fig. 6 Comparison of estimates and errors obtained in priorless case

prior was included are closer to the Planck and DES priors
than the SH0ES and H0LiCOW priors – this also suggests a
lower value for H0. This is arguably the main finding of our
research.

5 Conclusion

In this work, we explore the comparative reconstruction
methods as applied to expansion data against a baseline
ΛCDM MCMC approach. We do this using late time sur-
vey data involving direct CC data, the Pantheon sample, and
BAO data, which collectively have been shown to give strong
constraints on cosmological models. In our case, we only
consider the ΛCDM model, which serves as our benchmark
for other constraints on cosmological parameters including
the increasingly contentious value of H0. These data sets are
described in detail in Sect. 2 while the reconstruction methods
are explained in Sect. 3. Here, we consider several methods
which reconstruct the Hubble diagram independently of a
physical cosmological model. This includes GPR which is
based on a kernel function that is optimized through a learn-
ing process to mimic the underlying data and has been used
exhaustively in data analysis pipelines to reduce noise. We
also describe our implementation of MCMC and how we use

Fig. 7 Comparison of estimates and errors obtained using SH0ES prior

it to fit the GPR kernel hyperparameters. We then describe
the TPR method which is a generalization of GPR in that it
can address the assumption of Gaussianity in GPR and thus
is more applicable to real observational data. This can also
help address the problem of overfitting in GPR. Finally, we
use the heteroscedastic regression method where both the
GPR and TPR methods are reevaluated through the prism of
allowing the uncertainty of each reconstructed point to have
a separate variance in the determination of its uncertainty.
This produces a much more precise reconstruction when
tested against real data. The general consistency between the
methods helps strengthen the broader coherence of model-
independent approaches, and may be useful in constructing
parametric models and obtaining constraints on those cos-
mologies.

The results of each of the different methods with the
plethora of data sample combinations and possible trial prior
values (Table 1) on the value of the Hubble constant are laid
out in Sect. 4. For a square exponential kernel, we show the
reconstructions of the Hubble constant in Table 2. Firstly,
these are largely invariant up to 1σ in the choice of ker-
nel function. Another point to appreciate is that the stud-
ies that contain a prior are highly dependent on that choice
which can readily be observed for the best fits containing a
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Fig. 8 Comparison of estimates and errors obtained using Planck prior

Ĥ SH0ES
0 prior. In all cases, the uncertainties were reason-

ably good except for the sole instance where only CC data
was considered. This is further emphasized when comparing
the best fits for specific data sets as in Table 2 as compared
with the corresponding result for the scenario in which pri-
ors are placed on these analyses, as in Table 5. In Table 4,
the methods described here are shown comparatively against
their estimates on their constraint value of H0. It is observed
that GPR overfits this parameter due to a generic overfitting
problem in the method for low redshifts, while TPR fits the
real uncertainties much better.

We conducted an exhaustive study of the data set com-
binations together with priors on H0 and the reconstruction
methods, which are shown in Figs. 4, 5, 6, 7, 8, 9. This con-
firms our previous discussion on the overfitting issue of GPR

which is corrected by the TPR method which contains
larger uncertainties that are more consistent with the under-
lying data. As for the heteroscedastic regression method, this
produces intermediary uncertainties which tend to a medium
value between the two quoted Hubble constants from litera-
ture. We plan to extend this work to probe the comparative
behaviour of these methods for large scale structure data,
which expresses a mild tension in the value of the S8 param-
eter. Another important future prospect is to include updated

Fig. 9 Comparison of estimates and errors obtained: median values
for each prior, dataset, and method

Table 3 Median H0 estimate and error obtained by dataset

Dataset Median Ĥ0 value (km s−1 Mpc−1)

CC 68.806 ± 2.215

CC+SN 68.751 ± 1.885

CC+SN+BAO 68.933 ± 1.465

CC+SN∗ 68.7621.517
1.524

CC+SN∗+BAO 69.8501.241
1.248

Table 4 Median H0 estimate and error obtained by method

Method Median Ĥ0 value (km s−1 Mpc−1)

GPR 69.222 ± 1.301

MCMC ΛCDM 69.8501.324
1.331

MCMC GPR 69.670 ± 1.691

TPR 68.057 ± 5.335

Heteroscedastic GPR 68.436 ± 2.117

Heteroscedastic TPR 68.002 ± 1.913

data sets in a future study [73–78], as well as other types
of observational data including gamma-ray bursts [79,80]
and HII galaxy [81,82] data samples. We also aim to include
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Table 5 Median H0 estimate and error obtained by prior

Prior Median Ĥ0 value (km s−1 Mpc−1)

No prior 67.7772.953
2.959

Ĥ SH0ES
0 71.4801.781

1.780

Ĥ T RGB
0 68.8911.727

1.730

Ĥ HW
0 71.1581.658

1.657

ĤCM
0 72.4631.640

1.638

Ĥ P
0 67.4210.513

0.510

Ĥ DES
0 67.4631.104

1.106

more reconstruction methods and expand our diagnostic tests
of these methods in future work.
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