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Abstract

Vision and Language are two essential capabilities by which we can talk about
what we see and communicate it to others, ultimately allowing us to perform tasks,
and understand the world. Modeling such interaction is critical to creating agents
able to understand, at least to some extent, the world we perceive. This challenge
is generally known as multimodal grounding and corresponds to the capability of
a model to create meaningful connections between different modalities to solve a
task. Ungrounded models do not properly interleave the two modalities yet they
can perform well on downstream tasks, leading to misleading and potentially harm-
ful behaviors. Among other fields, Explainable Artificial Intelligence research has
moved forward in recent years, proposing methods able to help scrutinize the inner
workings of these models and therefore, also assess their grounding capabilities.
However, these methods have some relevant limitations, especially on generative
models and they are still unpopular in Vision and Language research.

Vision and Language research has mostly focused on performing and evaluat-
ing tasks involving the identification and recognition of objects and entities, as they
represent the most basic meaningful information represented in a visual scene that
can be used as a building block to compose complex multimodal relations, espe-
cially on the visual modality. However, in the textual modality, objects represent
only a limited amount of linguistic information as language is enriched by words
and expressions that do not always correspond to concrete physical objects. Some
linguistic expressions can represent complex contexts and situational knowledge
that goes beyond the objects visible in the images. For example, describing a pic-
ture as a “picnic” (high-level) triggers a whole set of expectations about the scene,
making the mention of the objects and entities, totally redundant and uninformative
e.g. “people eating food on the grass” (low-level). The latter description is object-
centric and it is most likely generated by an automatic captioning system, whereas
the former is more human-like and naturally used by humans. The general lack of
interest in this relevant aspect by the research community created a potential gap
in the overall assessment of the capability of the large-scale models to fully under-
stand the “language”, in the “vision and language”, preventing a potential gain in
terms of overall output quality for multimodal models in generative settings.

In this thesis, we dive into this direction with the aim to discover whether large
pre-trained Vision and Language models can handle high-level linguistic descrip-
tions and to what extent they are able to effectively ground them into the visual
modality; implications for both language understanding and generation are of in-
terest in this work. Moving away from object-centric descriptions we potentially
change the paradigm used to assess multimodal grounding. We analyze poten-
tial changes in terms of tasks and evaluation methods introducing an explainability
framework designed to complement the currently available tools to assess models’
multimodal grounding capabilities in generative settings.
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Introduction

1.1 | Vision and Language Modeling
Vision and Language (VL) research lies at the intersection of Computer Vision (CV) and
Natural Language Processing (NLP). Its primary goal is to develop algorithms able
to jointly understand two intrinsically different modalities, namely textual, and visual.
Algorithms of this kind have many applications as they can perform multimodal tasks,
like, among others, text-image retrieval, whose goal is to find the most similar image to
a given text; or generative tasks like image captioning, where the system automatically
generates textual descriptions of images. In order to perform these tasks the algorithms
need to meaningfully create connections across the two modalities, this capability is
known as multimodal grounding and it is essential to handle multimodal tasks.

Given the above, one could state that a well-performing model on a downstream
task (e.g. image captioning), has also strong grounding capabilities. However, many
studies have shown that VL models can perform well on downstream tasks, though
lacking grounding capabilities, by simply exploiting spurious correlations in the data
(Ribeiro et al., 2016b). This raises questions regarding current evaluation strategies,
which fail to provide an adequate assessment of the grounding capabilities of VL mod-
els. In other words, there is a lack of a thorough assessment of the models’ capability of
aligning linguistic expressions with visual representations, as current evaluation meth-
ods are oftentimes task-based. Recent research has been focusing on designing new
benchmarks and methods to assess specific linguistic aspects of VL models. This work
follows this direction. Our approach to multimodal grounding assessment attempts
to provide a different angle, to reason about multimodal grounding, in terms of data,
models and tasks. The standard approach to multimodal grounding focuses mainly on
the multimodal alignment of visual and textual representations of objects. In this work,
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we broaden our focus to the grounding of linguistic expressions in visual representa-
tions involving not only objects but also their visual configurations at different levels of
abstraction.

1.2 | Motivation

1.2.1 | Language in isolation is not grounded in the world
When humans use language with communicative intent, such as the intention to convey
a message, they rely on concepts and contexts grounded in the world. This capability
cannot be obtained by unimodal systems, like a Language Model (LM). As shown in
the famous Chinese room experiment (McDermott, 1982; Searle, 1984), an agent that can
only access linguistic symbols does not have any experience of the world, as it cannot
perceive it. It may be able to produce sensible text and may appear to have "understand-
ing" capabilities. However, it is in fact just relying on linguistic regularities or patterns.
Visual data is one of the modalities we can use to model the grounding relationship,
enabling models to learn meaning representations that are not entirely unimodal.

1.2.2 | High-level expressions are grounded in shared experiences
VL research has always focused on grounding linguistic entities, objects, and attributes
into the visual modality (Hodosh et al., 2013a). Textual descriptions of this kind (e.g.
“people eating food on the grass”) are also called conceptual descriptions, because they
focus only on the visible content (Hodosh et al., 2013c), and differ from contextual de-
scriptions (e.g. “people having a picnic”) which provide additional situational infor-
mation, derived from the experience of the world. These kinds of descriptions require
cognitive capabilities and are closer to how humans communicate. Successful linguistic
communication relies on a shared experience between the interlocutors, which is ob-
tained by building semantic representations on the basis of what we perceive of the
world (Bisk et al., 2020).

Perception is the process whereby sensory stimulation is translated into organized
experience (Dember et al., 2023). Such a process is influenced by subjective factors that
inform what we assume. For example, Figure 1.11 shows four subjects: a man, a woman,
and two kids; however, an observer would probably describe them as a family. They
can be perceived both ways, but the latter description is definitely based on a subjective
assumption (Van Miltenburg, 2016).

1Image source https://pxhere.com/en/photo/1091373
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High-level: A family.
Low-level: A man, a woman, and two kids.

Figure 1.1: Example of high-level and low-level descriptions. The latter is an objective
description as it describes the only subjects present in the picture, whereas the former
conveys additional information regarding the social relationships among the subjects,
namely inferring that they are a family.

In other words, we all perceive the same things, but our experiences of them dif-
fer according to our beliefs and knowledge of the world, e.g. in Figure 1.1, the visual
configuration of the subjects, makes us think of a family.

As a consequence, grounding language into perceptions inform on the knowledge
and the biases we use in our interpretation. Such biases can be seen as schemas, put
in place to structure and simplify the process of elaborating the perceptual world into
experiences and new knowledge. As long as these biases are bound to a shared ex-
perience, they are beneficial for communication, as they provide shared patterns and
expectations easing the communication that we express through the language.

We constantly rely on these expectations to compose cognitive scripts of scenes and
situations helping us in the decision-making process, as described in the well-known
script theory (Schank and Abelson, 1975). In language, such expectations are reflected
in linguistic expressions that convey additional contextual information. In this work,
we shall refer to these as high-level descriptions, as opposed to expressions that convey
information only regarding the visible content, namely objects, and entities, which we
call low-level descriptions. Importantly, this distinction varies based on context and the
level of abstraction, therefore it is not rigidly binary; instead, it exists and develops
along a continuum.

As shown in Figure 1.1, the high-level description provides additional information
regarding the social relationships among the subjects. This information is subjective,
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as no proof is provided; however, it is a reasonable assumption that can be considered
part of common sense. Although, VL datasets are constructed with specific instructions
designed to avoid the introduction of such biases, Van Miltenburg (2016) show that they
can still be present, confirming that performing inferences is a process that people make
routinely.

Current VL approaches aim at grounding object-level, namely low-level expressions,
and consider high-level ones a mere source of bias. We argue that object-level informa-
tion constitutes an essential but limited experience of the world and that high-level in-
formation could help VL models enhance their world representation, resulting in a more
robust grounding. Nevertheless, the low-level information is critical to make sense of
the high-level information; e.g. in Figure 1.1 the reasoning about how the subjects are
relating with each other, is triggered by the presence of such individuals and their con-
figuration in the scene.

In this work, we explore this direction, particularly we provide resources and tools
to analyze VL models’ understanding of high-level information and their impact on the
multimodal representation, hoping to foster interest in this line of research.

1.2.3 | The role of Explainable AI in assessing VL grounding
Integrating vision and language provides a test-bed for assessing both natural language
understanding and goal-oriented visual understanding; indeed VL tasks can demand
many disparate CV and NLP tasks to be used simultaneously. Most VL benchmarks
capture only a fraction of the requirements of a visual Turing test. In such a test, a system
is interrogated on an image with random questions, following a storyline, similar to
what humans do when they look at a picture. However, a rigorous evaluation should
test each capability required for visual and linguistic understanding independently, so
as to help in assessing the right model for the right reason and not for just some spurious
correlations. Several studies demonstrated that these systems are affected by dataset
biases and a lack of robustness to handle uncommon visual configurations (Choi et al.,
2012; Liu et al., 2021a; Thrush et al., 2022; Vedantam et al., 2021). However, although
these benchmarks help in identifying such flaws, they do not provide any clue on the
reason behind such failures, thus leading to a general lack of transparency in the way
grounding is achieved by the models.

In this context Explainable Artificial Intelligence (XAI) is re-emerging as a research
trend, with the intent to produce methods able to support, at different granularities,
users and researchers in demystifying AI models. However, these days this line of re-
search still places limited emphasis on the VL domain, especially in generative settings.
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Moreover, current XAI methods are limited to fine-grained explanations of the linguis-
tic input, namely token-wise, preventing any possible attempt to explain high-level lin-
guistic expressions at the sentence level.

In this work, we focus on a new set of challenges that expand the current view of
XAI methods towards generative VL models. with the aim of fostering research in this
direction and promoting these methods in the VL field.

1.3 | Research Questions
The uncertainty in VL models’ performance in different settings mirrors a lack of ro-
bustness in their internal representations, due in part to an inconsistent grounding of
linguistic expressions in non-visual (perceptual) data and biases in the textual modal-
ity towards object-centric descriptions. This thesis focuses on generative vision-to-text
models, seeking to thoroughly investigate the following research questions:

1. To what extent do current VL generative models ground high-level information?

2. How can XAI methods be extended to provide a reliable window on model per-
formance with linguistic expressions at different levels?

In order to address research question (RQ) 1 we need to first design a dataset that
provides a controlled environment enabling to evaluate VL models against human an-
notations at multiple levels of linguistic abstraction (high/low-level).

1.4 | Roadmap
The remainder of this work is structured as follows. In the next Chapter, we will in-
troduce key concepts related to multimodal grounding and VL models, and how mul-
timodal grounding is enforced. We will give an overview of datasets and tasks and
XAI methods. The subsequent three Chapters will be dedicated to answering the two
research questions:

■ In Chapter 3 will introduce the High-Level (HL) dataset, a new dataset collected
to provide high-level descriptions along three axes, namely: scene, actions, and
corresponding rationales, aligned with object-centric captions (RQ1).

■ Chapter 4 provides a thorough analysis of the capability of VL models to handle
high-level descriptions (RQ1).
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■ In Chapter 5 we introduce a new framework based on XAI methods designed to
assess the grounding capabilities of VL models in generative settings leveraging
semantic priors (RQ2).

Finally, we give our conclusions and future work in the last chapter.

1.5 | Publications
The following publications are the results of the work conducted during this doctoral
study:

1. What Vision-Language Models “See” when they See Scenes, Michele Cafagna, Kees
van Deemter, Albert Gatt, 2021, ArXiv preprint 2109.07301;

2. Understanding Cross-modal Interactions in V&L Models that Generate Scene Descrip-
tions, Michele Cafagna, Kees van Deemter, Albert Gatt, Proceedings of the Work-
shop on Unimodal and Multimodal Induction of Linguistic Structures, The 2022
Conference on Empirical Methods in Natural Language Processing (EMNLP2022);

3. HL Dataset: Visually-grounded Description of Scenes, Actions and Rationales, Michele
Cafagna, Kees van Deemter, Albert Gatt, Proceedings of the 16th International
Natural Language Generation Conference (INLG2023);

4. Interpreting Vision and Language Generative Models with Semantic Visual Priors, Michele
Cafagna, Lina M. Rojas-Barahona, Kees van Deemter, Albert Gatt, 2023, Frontiers
in Artificial Intelligence Journal;

5. VALSE: A task-independent benchmark for vision and language models centered on lin-
guistic phenomena, Letitia Parcalabescu, Michele Cafagna, Lilitta Muradjan, Anette
Frank, Iacer Calixto, Albert Gatt, Proceedings of the 60th Annual Meeting of the
Association for Computational Linguistics (Volume 1: Long Papers) (ACL2022);

6. TextFocus: Assessing the Faithfulness of Feature Attribution Methods in Natural Lan-
guage Processing, Ettore Mariotti, Anna Arias-Duart, Michele Cafagna, Albert Gatt,
Dario Garcia-Gasulla, Jose Maria Alonso-Moral, IEEE Access Journal;

7. VILMA: A Zero-Shot Benchmark for Linguistic and Temporal Grounding in Video-Language
Models, Ilker Kesen, Andrea Pedrotti, Mustafa Dogan, Michele Cafagna, Emre
Can Acikgoz, Letitia Parcalabescu, Iacer Calixto, Anette Frank, Albert Gatt, Aykut
Erdem, Erkut Erdem, Proceedings of the Twelfth International Conference on Learn-
ing Representations (ICLR2024);
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1.6 | Code and Resources
Multimodal Semantic Ablation is an ablation method introduced in Cafagna et al.
(2021) which allows performing targeted semantic visio-textual ablation. Ablation of
text is performed at noun-phrase rather than token level to preserve the input’s gram-
matical correctness. The method detects the noun phrases and removes them from
the text generating a new ablated input, generating all the possible combinations of
ablated inputs. The visual ablation is performed semantically based on a reference
text. The algorithm identifies objects and entities in mentioned in the text and ab-
lates them automatically based on semantic relevancy. The code is available at: https:
//github.com/michelecafagna26/vl-ablation

HL Dataset introduced in Cafagna et al. (2023b) and discussed in this thesis in Chap-
ter 3, is a VL resource aligning object-centric descriptions from an existing VL dataset
with high-level descriptions crowdsourced along 3 axes: scenes, actions, and rationales.
The HL dataset contains 14997 images from COCO and a total of 134973 crowdsourced
captions (3 captions for each axis) aligned with 749984 object-centric captions from
COCO. The high-level descriptions capture the human interpretations of the images.
These interpretations contain abstract concepts not directly linked to physical objects.
Each high-level description is provided with a confidence score, crowd-sourced by an
independent worker measuring the extent to which the high-level description is likely
given the corresponding image, question, and caption. The higher the score, the more
the high-level caption can is close to commonsense (on a Likert scale from 1-5). The
dataset is officially released at: https://github.com/michelecafagna26/HL-dataset/
tree/main; and available on the HuggingFace Hub at: https://huggingface.co/datasets/
michelecafagna26/hl.

A dataset explorer for the HL Dataset is provided at: https://huggingface.co/

spaces/michelecafagna26/High-Level-Dataset-explorer.

The dataset is further extended with the HL-Narratives; a new dataset containing
synthetic narratives of the image, generated by combining the three axes of the HL
Dataset. The dataset is generated by an automatic hybrid procedure involving an LLm
and human feedback. The HL-Narratives is available at: https://huggingface.co/

datasets/michelecafagna26/hl-narratives.

We release a total of 14 baseline models for both datasets, available at: https://

huggingface.co/michelecafagna26.
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VL-SHAP is an explainability method for VL generative models introduced in Cafagna
et al. (2023a) and thoroughly discussed in Chapter 5- The method is based on the Ker-
nelSHAP method and implements several features: (1) a deterministic approximation
method to compute Shappley values; (2) sentence-based visual explanations allowing
the explanation of the whole generated caption rather than token-based explanations,
(3) explanations exploiting visual semantic priors learned by the model (4) The method
is model-agnostic and efficient. The code is available at: https://github.com/michelecafagna26/
vl-shap.
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2

Background

2.1 | What is Multimodal Grounding?
What does grounding mean? The problem of making the semantic interpretation of a
symbol intrinsic to a system is known in cognitive science as the symbol grounding problem
(Harnad, 1990). Harnad (1990) in his influential work poses a fundamental question:
How can the meaning of symbols, manipulated solely based on their arbitrary shape be grounded
in anything other than symbols?

This problem is analogous to Searle (1984)’s thought experiment, consisting of trying
to learn Chinese only from a Chinese dictionary. It is hypothetically possible to become
fluent in Chinese by finding patterns in the symbols, but how could you understand the
meaning of those symbols without connecting them to the world?

A plausible solution to the symbol grounding problem is to rely on non-symbolic
representations, namely representations built upon non-arbitrary structures. Represen-
tations of such kind, referred to as “iconic representations” by Harnad (1990), origi-
nate from the elaboration of the sensory signal perceived from objects and events of the
world; thus they are good candidates to connect symbols to nonsymbolic world repre-
sentations. Therefore, a system able to perform grounded symbol manipulations would
be driven not just by symbolic tokens, e.g. linguistic tokens, but by non-arbitrary iconic
representations, e.g. visual inputs, in which those symbols are grounded (see also Ben-
der et al., 2021).

What does multimodal mean? With the term modality, we usually refer to some form
of representation conveying information of the world through specific channels, such
as visual, auditory, and textual. A multimodal system must process and relate several
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Figure 2.1: Image from the MS-COCO 2014 validation set. One reference caption is: a man in a
chefs hat chopping food [reproduced verbatim from the dataset].

modalities together. This requires acquiring a semantic representation of concepts re-
lated to the world, based on such modalities.

Multimodal grounding can be defined as the capability of a multimodal system to
find meaningful connections across multiple modalities.

In this work, we focus on vision and language models (VL), namely systems pro-
cessing images and text. Grounding, in this context, means building meaningful links
between linguistic expressions and visual features. To achieve this goal, VL models
process the textual and visual modalities in modules called encoders which create nu-
merical representations of the inputs. Encoders will be fully described in Section 2.2.2.
Grounding is performed by enforcing multimodal interactions between these numeri-
cal representations. This happens mainly through two mechanisms: attention and pre-
training objectives. The former is an architectural component of the model and can be
implemented in several variations. These will be thoroughly discussed in Section 2.2.3.
The latter is a loss function optimized by the learning algorithm. The most relevant
pre-training objectives will be discussed in depth in Section 2.2.5.

Grounding language in visual representations is fundamental for human communi-
cation, as such representations cannot be acquired uniquely by linguistic symbols (Bein-
born et al., 2018). This process is not trivial as vision and text have different character-
istics, which also implies that one modality can provide complementary, redundant, or
conflicting information with respect to the other. For example Figure 2.1 shows a bird
on the shoulder of the chef which is not mentioned in the corresponding caption. The
captions may have different levels of abstractions and granularity e.g. a description
such as “a man cooking” for Figure 2.1 though quite abstract, provides enough context
to describe the image.
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Multimodal grounding is critical for ensuring trust and transparency in VL systems.
While downstream task performance is commonly used for evaluation, true ground-
ing, essential for understanding visual content, cannot be guaranteed solely based on
task success. As Ribeiro et al. (2016b) showed in their influential work, a model per-
forming well on a specific task does not necessarily have grounding capabilities, as it
may solve the task purely based on spurious correlations in the data. Neglecting proper
grounding assessment can lead to misleading and potentially harmful behaviors, espe-
cially in domains such as healthcare and navigation. Therefore, performing a rigorous
assessment of the multimodal grounding is fundamental to ensure trustworthiness and
transparency in VL systems.

Moreover, current VL models can be pre-trained on large amounts of data and easily
adapted to many different tasks and domains. This incredible flexibility of pre-trained
VL models raises questions regarding the effective capability of these models to ground
and generalise representations of unknown data, making the proper assessment of mul-
timodal grounding a critical and necessary requirement.

2.1.1 | Outline of this Chapter
In the remainder of this Chapter, we will set the stage for the whole work. We will
provide the background on key aspects related to VL modeling and grounding helpful
to understand the research problems tackled in this work. However, a related work
section will be included with each Chapter to discuss the relevant literature there.

In Section 2.2, we will give an overview of current multimodal architectures and the
strategies implemented to enforce grounding across modalities. Section 2.3 will provide
a brief overview of the main VL tasks and datasets, and evaluation techniques. The end
of this Section is dedicated to introducing the main concepts related to XAI methods,
emphasizing the potential benefits of these methods in assessing the extent to which
multimodal grounding is successful.

2.2 | Vision and Language Modeling
VL models are neural networks that can process both visual and textual inputs such as
images and captions. In this Section, we will discuss the main VL architectures pro-
posed for a wide range of VL tasks such as image-sentence matching, image captioning,
visual question answering, and visual dialog. We review the main datasets, tasks and
strategies implemented to enforce multimodal grounding, highlighting their strengths
and limitations.
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This Section is structured as follows: in Section 2.2.1 we discuss macro-architectures,
then we go into detail in Section 2.2.2 on the major architectural building blocks while
Section 2.2.4 provides an overview of the major micro-architectural differences. In Sec-
tion 2.2.3 and Section 2.2.5 we discuss respectively modality fusion mechanisms and
pre-training objectives. In light of what was discussed in the preceding sections, Sec-
tion 2.2.6 briefly summarises the major strategy implemented to enforce multimodal
grounding in VL modeling. Section 2.2.7 concludes with a brief historical overview
marking the transition from task-specific to large-scale models.

2.2.1 | Architectures
VL architectures can be grouped into two categories, namely single- and dual-stream
models (Long et al., 2022). Single-stream models fuse the two modalities at an early
stage (e.g. UNITER (Chen et al., 2020b), VisualBERT Li et al. (2020c)) to produce multi-
modal representations. Dual-stream models (e.g. CLIP Radford et al. (2021b), ViLBERT
(Lu et al., 2019)), process the modalities separately, and then they enable multimodal
interactions only at a later stage. This allows the creation of intermediate unimodal
representations that can be fused (e.g. LXMert (Tan and Bansal, 2019), CoCa (Yu et al.,
2022)) or aligned (e,g. ALIGN (Jia et al., 2021), Florence (Yuan et al., 2021)) together to
solve multimodal tasks.

In terms of performance, they have proven to perform roughly on par (Bugliarello
et al., 2021a). However, these two architectures feature relevant pros and cons. The
main advantage of single-stream models is their efficiency as they have usually a smaller
number of parameters with respect to the dual-stream counterpart. However, the dual-
stream models are more versatile, as their unimodal encoders can be used separately to
perform unimodal tasks, or combined to compose more complex architectures, as also
shown by Singh et al. (2022). This great reusability may balance the higher resource cost
linked to running larger models.

2.2.2 | Encoders
Textual Encoders VL models encode the textual input using Transformer-based en-
coders (Vaswani et al., 2017b) following BERT (Devlin et al., 2019a), ROBERTA (Liu
et al., 2019) and GPT (Brown et al., 2020a). The latter differs from the first two both
in that it has an autoregressive self-attention mechanism (bidirectional for BERT and
ROBERTA) and in its pre-training objectives. Nevertheless, they all share the same gen-
eral architecture.
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The input sentence is first split into sub-words (Kudo and Richardson, 2018) and
then bounded by special tokens at the beginning and the end of the sentence. Occasion-
ally, another special separator token is added to separate multiple sentences in the same
sequence. The text is encoded into position-aware learnable embeddings that are then
fed into successive text-specific layers before fusion (dual-stream) or directly into a fu-
sion module (single-stream) in order to obtain multimodal representations. Pre-trained
BERT-based textual encoders produce semantic textual representation and can provide
a good starting point for pre-training on multimodal tasks. In some models, these rep-
resentations are used with minimal or no fine-tuning, as in Flamingo (Alayrac et al.,
2022) where a large pre-trained LM is kept frozen during multimodal few-shot tuning,
achieving impressive results on downstream tasks.

Visual Encoders process the visual input to produce meaningful features encoding the
relevant visual information. Gan et al. (2022) identifies three types of vision encoders:

■ Object Detector (OD) models are trained on CV datasets such as Objects365 (Shao
et al., 2019) and Visual Genome (VG) (Krishna et al., 2017a) and OpenImages
(Kuznetsova et al., 2020) on the object detection task. In VL they are used to
provide pre-trained visual features as they provide meaningful representations
for objects, entities, and their spatial location in the image, as in Bottom-up and
top-down attention (BUTD) (Anderson et al., 2018). The FasterRCNN (Ren et al.,
2015b) is the most used OD; it generates features representing bounding boxes
of objects detected in the image. Other popular OD encoders are based on the
ResNet’s architecture (He et al., 2015a) such as VinVL (Zhang et al., 2021), where
the use of a more capable visual backbone on CV tasks, was shown to have a pos-
itive impact on the performance of VL tasks.

■ Plain CNNs are usually ResNets pre-trained on the image classification task, on
datasets such as ImageNet (Deng et al., 2009). Differently from ODs, they produce
visual representations linked to semantic concepts (Rombach et al., 2020), captur-
ing visual features (Collins et al., 2018) that can be extracted from the intermediate
layers. Despite the lower popularity with respect to the ODs, they have compara-
ble performance to OD-based visual backbones. Examples of VL models adopting
CNN-based visual backbones are PixelBERT (Huang et al., 2020), SimVLM (Wang
et al., 2021) and the ResNet version of CLIP (Radford et al., 2021b).

■ Vision Transformer (ViT) (Dosovitskiy et al., 2020b) is a Transformer model adapted
to process visual inputs. Since its introduction, it has shown comparable perfor-
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mance to CNN-based models, achieving state-of-the-art performance in CV and
VL tasks with the benefit of being more efficient to train. In a ViT, the image is split
into equally sized square patches, which are flattened out. Then they are linearly
embedded with position embeddings and fed into the vanilla multilayer Trans-
former. Since its introduction ViT-based visual backbones have gained popularity
in VL, among the many models we mention DeiT (Touvron et al., 2022), BEiT (Bao
et al., 2021a), Swin Transformer (Liu et al., 2021b) and CLIP-ViT (Radford et al.,
2021b).

2.2.3 | Multimodal Fusion
The success of Transformer models is due to the attention mechanism. The attention
allows to capture short- as well as long-distance relations in the input sequence. The
idea behind the attention is that all the elements in a sequence should interact with each
other to some extent, though this varies depending on the training objective. For exam-
ple, in the autoregressive scenario, more common in VL generative models, each input
element is forced into attending only the preceding ones. This interaction is regulated
by learned parameters that dynamically modulate the extent to which an input feature
affects another one, namely the attention weight. This mechanism is naturally suitable
for performing modality fusion and enforcing multimodal grounding, as it allows inter-
modal interactions between the modality-specific features. In this Section 2.2.3.1 we will
provide a formal definition of the general attention mechanism implemented in Trans-
former layers, usually referred to as self-attention. In Sections 2.2.3.2 and 2.2.3.2 we will
discuss how this mechanism is implemented and adapted to different VL architectures.

2.2.3.1 | Transformer Layer

A Transformer-based architecture is composed of a stack of Transformer layers. Fol-
lowing the Bugliarello et al. (2021a) notation, a Transformer layer can be decomposed
in two main components: a Multi Head Attention Block (MAB) and a Feed Forward
Block (FFB):

Attention Head Given Nq query vectors, each of dimension dq, Q ∈ RNq×dq , and Nv

key-value pairs K ∈ RNv×dq , V ∈ RNv×dv , the attention head Att(Q, K, V) maps queries
to output vectors through a scaled dot product:

Att(Q, K, V) = ω(QKT) (2.1)
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where ω is a row-wise scaled softmax: ωi(·) = so f tmax(·/
√

dq). The attention head
computes a similarity matrix between queries and keys: S = QKT ∈ RNq×Nv , then
weighted with V.

Multi-head Attention projects Q, K, V into H different matrices and then computes
the attention (Eq. 2.1) on each projection. The H different outputs are then concatenated
togeter (||) and projected with another transformation WO:

MHA(Q, K, V) = [O1||...||OH ]WO,

where Oh = Att(QWQ
h , KWK

h , VWV
h )

(2.2)

The projection matrices WQ
h , WK

h , WV
h and WO are learned parameters. Note that

usually, dq = dv = d and da = d/H, therefore WO ∈ Rd × d and WQ
h , WK

h , WV
h ∈ RNxd.

Multi-head Attention Block can now be defined as:

MAB(X, Y) = LN(X + MHA(X, Y, Y)) (2.3)

where X, Y ∈ RNxd are given inputs and LN is layer normalization (Ba et al., 2016),.
with X being the residual connection.

Feed forward Block for an input matrix M ∈ RN×d is given by:

FFB(M) = LN(M + ReLU(MW1)W2) (2.4)

Where the projection matrices W1, WT
2 ∈ Rd×d f are learnable parameters and ReLU

is the Rectified Linear Units activation function (Agarap, 2018).

Transformer Layer performing self-attention can finally be defined as:

fθ = FFB(MAB(X, X)) (2.5)

A Transformer Encoder is built by stacking up a sequence of Transformer layers
namely:

E(X) = fθL ◦ ... ◦ fθ1(X) (2.6)

2.2.3.2 | Attention-based Fusion

In VL modeling Transformer-based models build upon two main implementations:
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Figure 2.2: Visualization of attention mechanism implemented in Transformers-based
models. 2.2a single-stream using self-attention; 2.2c dual-stream using co-attention 2.2b
dual-stream using self-attention. The modalities are processed separately and fused at
a later stage with a different mechanism, e.g. a pre-training objective. Figure elaborated
from Bugliarello et al. (2020).

Self-Attention Transformer Layer Self-Attention is the traditional attention mecha-
nism employed in the Transformers which the single-stream architectures rely on. The
visual and the textual features are concatenated and processed together in the Trans-
former block. Therefore, the input matrix XVL is defined as follows: XVL = [XV ||XL] ∈
RNxd with N = NV + NL, where V and L denote visual and textual respectively. As
shown in Figure 2.2a, a single-stream model executes Eq. 2.6 with no modification,
namely E(XVL)

In the first layer, the modalities start interacting, producing multimodal representa-
tions at each intermediate layer. Models implementing self-attention include UNITER
(Chen et al., 2020b), VisualBERT (Li et al., 2020c), LEMON (Hu et al., 2022b), GIT (Wang
et al., 2022a) and Unicoder-VL (Li et al., 2020a).

Co-attention Transformer Layer Co-attention is widely used in dual-stream architec-
tures. The visual and textual inputs are processed into separate Transformer blocks,
and then a cross-attention technique is used to force multimodal interactions. It allows
unimodal representations to affect each other at multiple stages. Assume XV ∈ RNV xd

and XLRNLxd the visual and the textual input respectively; the inputs are processed in
separate encoders EV(XV), EL(XL). To perform co-attention, the MAB computes the
similarity matrix S over queries and key-value pairs of different modalities. Without
loss of generality, let’s consider the visual encoder EV . Following Eq. 2.3, we obtain
MABV(MV , ML). Hence, Eq. 2.2 is computed as:

MHAV(QV , KL, VL) (2.7)
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where QV are the queries computed over the visual input and KT, VT are the key-value
pairs computed over the textual signal. The same applies to the textual encoder EL. A
schematic representation of the method is shown in Figure 2.2c.

This mechanism is used in models like VilBERT (Lu et al., 2019), LXMert (Tan and
Bansal, 2019), (Yu et al., 2022), BLIP (Li et al., 2022c) and ALBEF (Li et al., 2021b) to name
a few.

In some dual stream models like CLIP (Radford et al., 2021b) and ALIGN (Jia et al.,
2021), the encoders use traditional self-attention Transformer layers, keeping the com-
putation of the two modalities separate in the whole architecture. A schematic example
is shown in Figure 2.2b. In these models, the fusion of the two modalities is performed
by a multimodal pre-training objective, namely the dot-product between two modality-
specific vector representations. This mechanism forces the unimodal encoders to project
their representation into a joint multimodal space. Differently from the attention-based
fusion mechanism, in this method, the multimodal grounding enforcement relies en-
tirely on the optimization of a multimodal objective task. The pre-training objective and
their role in grounding enforcement will be tackled more in depth in Section 2.2.5.

2.2.4 | Encoder-Only vs. Encoder-Decoder
A large number of VL models follow an encoder-only architecture (Figure 2.3a), where
the two modalities, are fused in a fusion model that then generates the final outputs.
This design is naturally suitable for VL understanding tasks like VQA and Visual Spatial
Reasoning (VSR) (Liu et al., 2023). However, it can be adapted to generative vision-to-
text tasks, by manipulating the attention masks to autoregressively generate sequences
of text, resulting in a Decoder-only architecture (Figure 2.3b), such as in Oscar (Li et al.,
2020e) and LEMON (Hu et al., 2022b).

In Encoder-Decoder architectures (Figure 2.3c), the encoder generates a cross-modal
representation that is fed into a decoder that produces the final output. This architecture
was originally adopted by LSTM-based models for text generation tasks and it has been
popularized by Tranformers (Vaswani et al., 2017a) in Machine Translation and later
in Natural Language Generation (NLG) by models like BART (Lewis et al., 2019) and
T5 (Raffel et al., 2020). In VL the use of Encoder-Decoder architectures can enable the
unification of VL understanding and generative VL tasks; examples of VL Encoder-
Decoder models are OFA (Wang et al., 2022b), mPLUG (Li et al., 2022a) and MDETR
(Kamath et al., 2021). A schematic representation of the architectures described is shown
in Figure 2.3
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(a) Encoder-only (b) Decoder-only (c) Encoder-Decoder

Figure 2.3: Schematics of Transformers-based architectures. 2.3a Encoder-only with
fully visible attention masking outputting a multimodal representations (hk) the in-
put consisting in the concatenation of visual tokens (vk) and textual tokens (tk). 2.3b
Decoder-only using causal attention masking to autoregressively generate text starting
from visual and optionally a textual tokens, e.g. a prompt. 2.3c Encoder-Decoder ar-
chitecture combining both mechanisms to generate a text. Note that NV and NL are the
total number of visual and textual tokens respectively. The figure is elaborated from
Raffel et al. (2020).

2.2.5 | Pre-training Objectives
We can group the pre-training objectives into intra-modality and inter-modality objectives.
The former enforces unimodal understanding and thus it helps the model to build rela-
tionships among the inputs of the same modality, though in some variants this process
takes advantage of the other modality. The latter enforces interaction between textual
and visual representations with the goal of building multimodal relationships.

The main intra-modal objectives are:

■ Masked Language Modeling (MLM), introduced by Devlin et al. (2019a) as a tex-
tual pre-training task and then adopted also in VL pre-training. MLM consists in
replacing a portion of the input tokens (Devlin et al. (2019a) originally replaced
15% of the total number of tokens) with a special [MASK] token. The model is opti-
mized to reconstruct the input sequence by predicting the masked tokens with the
original tokens. Dual stream models use this objective to learn robust textual rep-
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resentations (e.g. CLIP (Radford et al., 2021b)), however in single-stream models
(e.g. SOHO (Huang et al., 2021), UNITER (Chen et al., 2020b) and VisualBERT(Li
et al., 2020c)), this task also exploits multimodal interactions, since the model has
access to visual tokens and therefore the masked token prediction is conditioned
on the visual information.

■ Masked Image Modeling (MIM), conceptually similar to MLM, but applied to
the visual modality; it optimizes the model to reconstruct visual patches or regions
given the remaining visible ones. There are some variations of this task: Tan and
Bansal (2019) and Chen et al. (2020b) randomly replace the visual feature vector
with zeros and train the model to regress the original feature with a mean squared
error loss. Li et al. (2020e) and Lu et al. (2019), additionally, predict the object
labels to which the regions correspond, leveraging labels obtained by an off-the-
shelf object detector. BEiT (Bao et al., 2021a) uses MIM in combination with Vector
Quantization (VQ) namely, the model is trained to reconstruct discrete visual to-
kens. A similar strategy is adopted in DALL-E (Ramesh et al., 2021) to perform
text-to-vision generation, as this variation of MIM seems to help learning stronger
visual representations.

On the other hand, the main inter-modality objectives in VL are:

■ Image-Text Matching (ITM), where given an image-caption pair, the model has
to predict whether they match; this task is usually framed as a binary classifi-
cation problem. Following Devlin et al. (2019a), most single stream VL models
use the special [CLS] token prepended to the input sequence as a global input
representation and feed it to a classification layer to predict a binary label (i.e.
match/no-match). The native support for this task makes it a useful tool to per-
form systematic zero-shot evaluations on these models. We will go into detail
on such techniques in Section 2.3.4. A notable variation of ITM is implemented in
VisualBERT (Li et al., 2020c), where the model needs to predict whether an always-
matching image-caption pair matches a second caption concatenated to the input.
This implementation follows the Next Sentence Prediction (NSP) task originally
used in Devlin et al. (2019a). Word Region Alignment (WRA) is a fine-grained
version of ITM, introduced in UNITER (Chen et al., 2020b). The model has to opti-
mize the alignment between image regions and words via the Optimal Transport
algorithm. The aim is to minimize the cost of transporting the embedding distri-
bution from image regions to words in a sentence. Chen et al. (2020b) shows that
this method produces better joint embeddings for downstream tasks.
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■ Image-Text Contrastive Learning (ITC), where given a batch of N image-text
pairs, the model is trained at the same time, to maximize the cosine similarity
of the vector representations of the matching pairs and minimize the similarity
between the non-matching pairs. Jointly optimizing the cosine distance of the
unimodal representations forces encoders to project the textual and visual em-
beddings in the same vector space, creating de facto a multimodal joint vector
space. This technique was conceptually known in NLP (Mikolov et al., 2013b)
and initially introduced in VL by Cao et al. (2017). It was later popularized by
CLIP (Radford et al., 2021b) and ALIGN (Jia et al., 2021) to pre-train large-scale
dual stream VL models, as at least at large scale, it produces extremely robust and
meaningful unimodal representations, which are comparable in the same vector
space. Later on, it became a standard in VL pre-training; examples are ALBEF (Li
et al., 2021b), BLIP (Li et al., 2022c), UNIMO (Li et al., 2020d), VLMo (Bao et al.,
2022), CoCa (Yu et al., 2022), and FIBER (Dou et al., 2022) to name a few.

2.2.6 | How do VL models enforce multimodal grounding?
As discussed so far, we can identify two main mechanisms in VL modeling enabling
multimodal grounding: (i) the attention-based fusion module (discussed in Section 2.2.3)
that acts at an architectural level and enables explicit interactions at multiple levels be-
tween the modalities and (ii) via objective optimization (discussed in Section 2.2.5) where
the model is forced to leverage multimodal information to optimize its parameters.
However, several models implement only a number of these mechanisms in different
settings and data. Thus, identifying the most effective ones in every condition is hard.
Hendricks et al. (2021) directly address this issue by comparing VL datasets, objectives,
and architectures in the same training conditions and evaluating on downstream tasks.
They show that visual unimodal objectives like MIM do not improve the models’ per-
formance on downstream tasks. They also show that contrastive objectives like ITC are
extremely beneficial to dual-stream models with no cross-modal attention (e.g. CLIP
(Radford et al., 2021b) and ALIGN (Jia et al., 2021)). However, if the dual stream model
is equipped with cross-modal attention and optimized on ITM, it does not gain any
advantage from the contrastive loss optimization (i.e. ITC). Moreover, they find that
dual-stream models with co-attention (e.g. LXMert (Tan and Bansal, 2019) and VilBERT
(Lu et al., 2019)) perform roughly on par with single-stream models with self-attention
(like UNITER (Chen et al., 2020b) and Unicoder-VL (Li et al., 2020a)) as also found by
Bugliarello et al. (2021a).
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2.2.7 | From task-specific to large-scale models
VL research has witnessed a gradual evolution marked by the exponential growth of
model and dataset sizes. Gan et al. (2022) provides a historical overview, identifying
two main stages marking the progressive transition from task-specific to large-scale pre-
trained models. The main difference between these stages is in the increasing amount of
data dedicated to the pre-training stage and in the constant scale-up of model sizes. This
trend is motivated by findings on scaling laws governing large LMs training. Empirical
observations suggest that models performance benefits from more data and parameters
according to a predictable relationship (Chung et al., 2022; Kaplan et al., 2020). Although
these observations were made on unimodal models, they inspired VL research to follow
this direction.

Small-scale task-specific models are an important line of work based on pre-extracted
visual features (e.g. FasterRCNNs (Ren et al., 2015b) and ResNets(He et al., 2016)) and
pre-trained textual features (e.g. Word2Vec (Mikolov et al., 2013a) and GloVe (Penning-
ton et al., 2014)). These models were mostly based on Long Short-Term Memory (LSTM)
(e.g. BUTD (Anderson et al., 2018)) for generative tasks such as image captioning and
Fully Connected Network (FCN) (e.g. Visual Question Answering (VQA), (Antol et al.,
2015)) for classification tasks. The idea was to reuse unimodal semantic representations
from pre-trained models and successively train a decoder or a classifier on specific do-
main data. Curated datasets are usually used to pre-train unimodal feature extractors.
Such datasets hardly exceed hundreds of thousands of samples, whereas the number of
parameters typically does not exceed a million.

Medium and Large-scale pre-trained models draw inspiration in VL by the success
of BERT (Devlin et al., 2019a) in NLP and the successive adoption of Transformer-based
models (Vaswani et al., 2017b) in CV research. The shift from medium (e.g. VisualBERT
(Li et al., 2020c), LXMert (Tan and Bansal, 2019), OSCAR (Li et al., 2020e)) to large-
scale pre-training, is mainly due to a consistent improvement of the performance of
Pre-trained Vision and Language Models (PVL) on downstream tasks (e.g. CLIP (Rad-
ford et al., 2021b), Flamingo (Alayrac et al., 2022), SimVLP (Wang et al., 2021)) and the
possibility to adapt larger models to downstream task with none (i.e. zero-shot and
in-context learning) or only a few samples (e.g. few-shot learning), obtaining equal or
superior performance to regular fine-tuning. Here, both the pre-training data and mod-
els’ number of parameters increase massively, ranging from millions to billions for both.
However, this approach produces noisy and biased datasets leading to serious risks in
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terms of harmful content and biases in the models (Birhane et al., 2021; Schuhmann
et al., 2022).

In the next Section (2.3), we will discuss the role of the data in current VL modeling,
providing an overview of current tasks, datasets, and evaluation techniques.

2.3 | Data, Tasks, and Evaluation

2.3.1 | Pre-trainig Datasets
Data is the raw material to craft VL models. Large-scale models are trained on top
of two stages: pre-training on general tasks (i.e. pre-training objectives as described in
Section 2.2.5), and fine-tuning on downstream tasks. In the recent past, pre-training has
become central in the development of large-scale VL models as it was shown that better
pre-training can completely eliminate (zero-shot and in-context learning) or extremely
reduce (one- or few-shot learning; ) the amount of data needed to adapt the model on
downstream tasks (Fei-Fei et al., 2006).

Large pre-trained VL models have triggered a paradigm shift in the dataset creation
process, which started from small crowd-sourced curated datasets to move towards
large web-crawled noisy datasets. Below we report the main VL datasets surveyed; for
an overview see Table 2.1.

Crowd-sourced datasets are small-scale datasets, commonly used in academic set-
tings (Gan et al., 2022). The size of these datasets is in the order of a few hundred to
hundreds of thousands of image-caption pairs, collected by tasking human annotators
to describe images by emphasizing mostly the objects and the entities depicted in the
image. This is enforced by means of specific guidelines that prevent the annotators from
introducing any kind of additional subjective information (Hodosh et al., 2013b). De-
spite that, biases stemming from subjective interpretations can still be found as shown
by Van Miltenburg (2016).

Our survey expands Ferraro et al. (2015) on crowd-sourced datasets. A popular
example is the Pascal Dataset (Farhadi et al., 2009), one of the first datasets aligning
images with textual descriptions; it contains 1k images each associated with 5 captions.
The Flickr8k (Hodosh et al., 2013b) and its extension, Flickr30k (Young et al., 2014b),
containing 159k crowd-sourced captions, describe people involved in everyday activ-
ities and events. Microsoft Common Objects in Context (COCO) dataset (Chen et al.,
2015b) is one of the most popular VL datasets describing common objects and people
in naturally occurring contexts. It contains 91 basic object types labeled in 328k im-
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Pre-training Dataset Images Text Scale

Crowd-sourced

Pascal (Farhadi et al., 2009) 1k 5k S
Flickr8k/30k (Hodosh et al., 2013b; Young et al., 2014b) 8k/32k 40k/159k S
COCO (Chen et al., 2015b) 328k 1.64M S
Déjà Images (Chen et al., 2015a) 180k 4M S
VG (Krishna et al., 2017b) 108k 5.4M S
LN (Pont-Tuset et al., 2020) 628k 650k S

Web-crawled

CC3/12 (Changpinyo et al., 2021; Sharma et al., 2018c) 3.3M/12.4M 3.3M/12.4M M
SBU Captions (Ordonez et al., 2011b) 1M 1M M
WIT (Srinivasan et al., 2021) 11.5M 37.6M M
WenLan (Huo et al., 2021) 30M 30M M
*ALT200M (Hu et al., 2022b) 200M 200M L
LAION 400M/5B (Schuhmann et al., 2021, 2022) 400M/5B 400M/5B L
COYO 700M (Byeon et al., 2022) 747M 747M L
*CLIP (Radford et al., 2021b) 400M 400M L
*ALIGN (Jia et al., 2021) 1.8B 1.8B L

Table 2.1: Statistics for the small- (S), medium- (M), large- (L) scale pre-training datasets
reviewed. We report the size in terms of thousand/million/billion (respectively with
k/M/B) of image and text instances. All the datasets are publicly available except for
ALT200M and those used in CLIP and ALIGN (denoted with *). Table adapted from
(Ferraro et al., 2015).

ages, each associated with 5 captions. The Déjà Images Dataset (Chen et al., 2015a) is
composed of 180k user-generated captions coupled with 4M Flickr images, by using a
combination of rules, such as high-frequency nouns and human judgments collected on
Amazon Mechanical Turk (AMT).

Visual Genome (VG) (Krishna et al., 2017b) is a densely annotated dataset, partially
based on existing datasets, containing 108k images and 50 region caption annotations
per image for a total of 5.4M region captions; making it probably the largest curated VL
dataset, in terms of textual annotations. The dataset is provided with many different
annotations like scene graphs, objects, attributes and relationship labels, and question-
answer pairs to perform a number of different VL tasks. Localized Narratives (LN)
(Pont-Tuset et al., 2020) is another remarkably large annotated dataset. It comes with
628k images coupled with 650k captions. Differently from previous works, the LN
provides highly descriptive textual captions of images temporally aligned with mouse
tracks pointing to the area described by the annotators.

Image-text pairs in crowd-sourced VL datasets have a high quality as they are col-
lected in a controlled environment, and usually manually or semi-automatically quality
checked during collection, however, they have a limited size usually due to high costs
in terms of annotations, collection time, and quality monitoring. This makes them hard
to scale, especially in limited resource settings like academic ones.
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Web-crawled datasets are automatically collected by scraping from the web, allow-
ing to easily collect a large amount of data at low or no cost. Web-crawling VL data
has caught on in academic settings to boost VL research as it allowed the creation of
medium-scale datasets (sized in the range of a few million image-text pairs). Conceptual
Captions (CC) (Sharma et al., 2018c), for instance, is collected by scraping alt-text at-
tributes and the corresponding images. The automatic pipeline included automatic fil-
tering and heuristics to remove possible harmful content (e.g. pornography and profan-
ity) and image-text pairs where there is little overlap between textual and visual content
based on object labels extracted with an off-the-shelf OD. With this method, they col-
lected 3.3M image-text pairs in the wild, subsequently extended to 12.4M (Changpinyo
et al., 2021). SBU Captions (Ordonez et al., 2011b), contains 1M images coupled with
user-generated captions, collected by performing semantic querying on Flickr similarly
to Chen et al. (2015a). The captions are collected by querying for specific terms such as
objects and actions.Wikipedia-based Image Text (WIT) (Srinivasan et al., 2021) a collec-
tion of 11.5M images and 37.6M alt-texts collected from Wikipedia content pages 108
languages. WenLan (Huo et al., 2021) is a dataset of 30M web-crawled image-text pairs.
The sophisticated content-cleaning pipeline takes into account topic words and topic
distributions.

This approach has gained interest also in industrial settings, giving rise to large-
scale datasets (from hundreds of millions to billions of image-text pairs) (Gan et al.,
2022). Examples of large-scale datasets are: COYO-700M (Byeon et al., 2022), containing
747M image-text pairs, collected following Sharma et al. (2018c) and LAION-400M/5B
(Schuhmann et al., 2021, 2022), which contains 400M image-text pairs, later extended
to 5B. Differently from the previous datasets, the cleaning pipeline does not rely on
handcrafted filtering rules, in fact, they use CLIP (Radford et al., 2021b) to automatically
filter out poor matching image-text pairs, by computing the cosine similarity of their
vector representations. However, the lack of proper curation can lead to datataset with
potentially harmful contents as found by Birhane et al. (2021), analysing LAION-400M.

Other large-scale datasets not released to the public are: the dataset used in CLIP
(Radford et al., 2021b), consisting of 400M image-text pairs, built upon a set of 500k
queries containing terms occurring at least 100 times in the English Wikipedia. The
dataset used originally in ALIGN (Jia et al., 2021), and later in SimVLM (Wang et al.,
2021) and CoCa (Yu et al., 2022) is composed of 1.8B image-text pairs collected similarly
to CC, but with looser cleaning steps. The cleaning pipeline consists of setting image-
size limits, fixing alt-text frequencies, and excluding rare words. Hu et al. (2022b) uses a
similar data collection pipeline collecting 200M image-text pairs, called ALT200M, used
to train LEMON (Hu et al., 2022b), a state-of-the-art (SOTA) VL model. A recent ap-
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proach, further expand the pre-training dataset by perfornibg bootstrapping with syn-
thetically generated data. This method called CapFilt (Li et al., 2022c) and further ex-
tended in (Li et al., 2023b) uses a captioning generator to produce alternative captions
which are then filtered by a filtering model trained separately.

2.3.2 | What kind of linguistic information is present in current VL
datasets?

A common aspect of crowed-sourced and web-crawled datasets is the object-centricity
of the captions, namely captions that focus only on objects visible in the image. In
crowd-sourced datasets (e.g. COCO (Chen et al., 2015b)), this is enforced by instruct-
ing the annotators to explicitly mention only the visible content, in order to prevent the
introduction of any additional information that might come from subjective interpreta-
tion. In web-crawled datasets, this happens implicitly by using filtering methods that
favor captions mentioning objects and entities present in the image, like in CC (Chang-
pinyo et al., 2021; Sharma et al., 2018c). However, language is not only composed of
concrete words, such as objects and entities, in fact, as pointed out in Section 1.2, hu-
mans use language to express complex and abstract ideas. This kind of linguistic in-
formation is hardly found or It is not systematically highlighted in current curated and
web-crawled datasets. However, in the latter, we could observe its presence to a small
extent as medium- and large-scale datasets are collected with loose filtering pipelines. In
this work, we explore this direction. In Chapter 4 we try to shed light on the capability
of current VL models to handle and acquire such linguistic information.

2.3.3 | Downstream Tasks and Metrics
As described in Section 2.3.1, it is common practice to pre-train VL models on general
tasks (i.e. pre-training objectives described in Section 2.2.5) and then fine-tune and evaluate
on downstream tasks. VL research encompasses a broad range of tasks and applications.
In this section, we provide definitions, datasets, and metrics for the main tasks currently
studied in VL research. This is not intended to be a comprehensive review of VL tasks;
however, it aims to provide a brief overview of the main VL problems studied in the
literature. We follow Li et al. (2022b) and we group VL tasks into four categories, that
we describe below. For a schematic overview see Table 2.3.3.

Retrieval tasks are image-text matching (ITM) tasks. This is one of the fundamental
tasks in multimodality, indeed it is also used as a pre-training task for VL models (as

25



Chapter 2. Background 2.3. Data, Tasks, and Evaluation

Task Input Output Datasets Metrics

Retrieval
Image-Text/Text-Image

image/text text/image
COCO (Chen et al., 2015b)

Recall@KFlickr30k (Young et al., 2014b)
Retrieval Flickr8k (Hodosh et al., 2013b)

Grounding

Phrase Grounding image+text bounding boxes
VG (Krishna et al., 2017a)

Recall@K, AccuracyFlickr30k (Young et al., 2014b)
Flickr30k Entities (Plummer et al., 2015)

Reference Expression
image+text bounding boxes

RefCOCO (Kazemzadeh et al., 2014)
AccuracyTalk2Car (Deruyttere et al., 2019)

Comprehension Visual7W (Zhu et al., 2016).

Visual Understanding

Visual Question
image+text text VQA (Antol et al., 2015) VQA Accuracy

Answering

Visual Reasoning image+text+graph text

VCR (Zellers et al., 2019)

Accuracy
CLEVR (Johnson et al., 2017).
NLVR (Suhr et al., 2017b).
NLVR2 (Suhr et al., 2018).
GQA (Hudson and Manning, 2019).

Visual Entailment image+text label SNLI-VE (Xie et al., 2019) Accuracy

Generative
Image Captioning image text

COCO (Chen et al., 2015b) BLEU (Papineni et al., 2002a)
Flickr8k (Hodosh et al., 2013b) ROUGE (Lin, 2004a)
Flickr30k (Hodosh et al., 2013b) METEOR (Banerjee and Lavie, 2005)
SBU Captions (Ordonez et al., 2011b) CIDEr (Vedantam et al., 2015)

SPICE (Anderson et al., 2016)

Text-to-Image text image
COCO (Chen et al., 2015b) FID (Heusel et al., 2017),
CUB (Wah et al., 2011) Inception score (Mao et al., 2016)

Table 2.2: Overview of the main VL downstream tasks, metrics, and datasets surveyed
in this section. Table adapted from (Li et al., 2022b).

described in Section 2.2.5). Given a query in a certain modality (i.e. textual or visual),
the goal is to match or retrieve the closest element in the other modality. In VL this can
be performed in two directions, namely image-to-text and text-to-image. Ranking metrics
are used for evaluation, such as Recall@K. The main benchmarks for VL retrieval are
COCO (Chen et al., 2015b), Flickr8k (Hodosh et al., 2013b) and Flickr30k (Young et al.,
2014b).

Grounding tasks are designed the assess the capabilities of VL model to find connec-
tions between the two modalities. There are two main very similar tasks, namely, phrase
grounding and referring expression comprehension. They both aim at identifying a bound-
ing box in the image in relation to a given text, however in phrase grounding the goal is
to find the region in the image that is better aligns with the text, whereas, in the referring
expression comprehension the text is an expression that points to a specific subject or entity
in the image, and the goal is to identify the region of the image the text refers to. Both
tasks can be evaluated on an accuracy-based metric. The model predicts a bounding box
for the input text: if the Intersection over Union (IoU) (Plummer et al., 2015) is greater
than a specific threshold it is considered as a true positive. In Phrase Gounding, however,
Recall@K is also used as the task can be framed as a ranking problem, where multiple
boxes can be proposed as candidates for matching the input text. Common benchmarks
for the phrase grounding task are VG (Krishna et al., 2017a), Flickr30k (Young et al., 2014b)
and Flickr30k Entities (Plummer et al., 2015), whereas for the reference expression compre-
hension task the main benchmarks are RefCOCO (Kazemzadeh et al., 2014), Talk2Car
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(Deruyttere et al., 2019) and Visual7W (Zhu et al., 2016).

Visual Understanding tasks have the ultimate goal of providing a system that can
"reason" about the visual content. These tasks are typically framed as classification tasks
and therefore the evaluation metrics are accuracy-based. Here we describe examples of
such tasks.

Visual Question Answering task (Antol et al., 2015) where given an image-question
pair, the model has to predict the correct answer among the possible ones; the evalua-
tion is based on the accuracy metric proposed by Antol et al. (2015), based on human
judgments. The task is proposed in two versions, namely multi-choice and open-ended
generation. The assessment of the generative version is performed by converting gold
and the model answers into bag-of-words. The answer is chosen to select the text among
the choices available that overlap the most with the models’ output. Then an accuracy-
based metric is applied.

Visual Reasoning task is framed as a visual question-answering task, similarly to VQA
(Antol et al., 2015), however, the model has to perform compositional reasoning requir-
ing advanced semantic representations and thus the model is also provided with scene
graph annotation to ease this process. For instance, in the Visual Commonsense Reason-
ing (VCR) (Zellers et al., 2019) benchmark the model has to infer actions, goals, and men-
tal states. In the Compositional Language and Elementary Visual Reasoning (CLEVR)
and Natural Language Visual Reasoning (NLVR) (Johnson et al., 2017; Suhr et al., 2017b)
the model has to answer questions regarding objects’ attributes and their relationships,
such as spatial and logical operations in synthetic scenes. Cornell Natural Language
for Visual Reasoning for Real (NLVR2) and GQA (Hudson and Manning, 2019; Suhr
et al., 2018) are two visual reasoning datasets that expand this idea using real-world
image captions. NLVR2 introduces a new task consisting of judging whether a caption
is correct with respect to two images. GQA consists of automatically generated visu-
ally grounded questions leveraging scene graph annotations from VG. By using scene
graphs annotations the authors where able to generate a large variety of questions, re-
quiring very different reasoning skills.

In the Visual Entailment task, given an image-text pair, the model has to tell whether
the image semantically entails, is neutral, or contradicts the input text. It relies on the
notion of logical entailment and it is formulated as a classification problem. The SNLI-
VE (Xie et al., 2019), is the main dataset to benchmark VL models on this task. Vu
et al. (2018) provide a variation of this task called Grounded Entailment. In this setup,
the premise is composed of image and text rather than only text, resulting in a more
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difficult task as the model has to correctly ground both the textual information in the
premise and the hypothesis.

Generative tasks differ from classification tasks inasmuch as the output is not a nu-
merical prediction, but is a signal in a specific modality (i.e. text or images). In VL,
generative tasks can be performed in two directions: image-to-text and text-to-image.
Differently from text-to-image, which has recently witnessed a surge of interest in the
community (Frolov et al., 2021; Li et al., 2019; Ramesh et al., 2021), image-to-text, com-
monly known as image captioning is a classical VL problem as well as of primary interest
for this work.

Text-to-image generation consists in generating an image from an input text. The eval-
uation is based on CV metrics, such as FID (Heusel et al., 2017) and Inception score
(Mao et al., 2016) which measure the similarity of the image with the training distribu-
tion. This task is commonly assessed on VL datasets such as COCO (Chen et al., 2015b)
and Caltech-UCSD Birds (CUB) (Wah et al., 2011).

The image captioning task consists in generating a textual description for an image
given as input. Evaluating textual outputs is a well-known problem in NLG (Gatt and
Krahmer, 2018; Howcroft et al., 2020; Sai et al., 2022). In image captioning the output eval-
uation often relies on n-gram-based automatic metrics such as BLEU (Papineni et al.,
2002a), ROUGE (Lin, 2004a), METEOR (Banerjee and Lavie, 2005) and CIDEr (Vedan-
tam et al., 2015), or on additional scene graph annotations like SPICE (Anderson et al.,
2016), However, this is often combined with a human evaluation to obtain more consis-
tent results. The main datasets used to benchmark models in the image captioning tasks
are: COCO (Chen et al., 2015b), Flickr8k and Flickr30k (Hodosh et al., 2013b; Young
et al., 2014b), SBU Captions (Ordonez et al., 2011b).

2.3.4 | Assessing Multimodal Grounding
While performance on downstream tasks is impressive, it is yet not clear what informa-
tion models capture in their multimodal representations (Salin et al., 2022). Task-based
evaluation is insufficient to assess the grounding capabilities of VL models as they can
often solve tasks by exploiting artifacts and spurious correlations in the data (Ribeiro
et al., 2016b; Wu et al., 2021; Yang et al., 2021, 2023). For example, in Natural Language
Inference (NLI), where the model has to determine whether a premise entails, is neutral,
or contradicts a hypothesis, the presence of a negation, such as “never” correlates with
a contradiction in many NLI benchmarks (Gururangan et al., 2018; McCoy et al., 2019).
Interpretable machine learning is a multidisciplinary field encompassing efforts from
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computer science, human-computer interaction, and social science, with the goal of de-
signing user-oriented and human-friendly explanations for machine learning models
(Rudin et al., 2022).

Interpretable machine learning can be defined as the set of techniques, designed to
extract the relevant knowledge concerning relationships learned by machine learning
models. Such knowledge is considered relevant when it provides insights for a particu-
lar audience into a chosen domain (Murdoch et al., 2019). As a consequence, they help
enhance the trust and confidence in these models. In this work, we focus on the applica-
tion of interpretability techniques to validate and debug grounding capabilities models
in the VL domain.

Interpretability techniques for Deep Neural Network (DNN) can be grouped into
two categories: white box methods which exploit the knowledge of the internal struc-
ture of the model to generate the explanation and black-box methods, also called model-
agnostic, which operate only on the inputs and the outputs.

Among the many white box methods, in this work, we focus on the following:

Attention-based analyses rely on the analysis of attentional mechanisms (Clark et al.,
2019b) to identify relations between multimodal inputs. Aflalo et al. (2022) proposes a
comprehensive tool to analyze multimodal interactions in attention-based VL models.
Similar analyses are often performed to analyze different attentional patterns and cor-
relations between visual and textual tokens (Chen et al., 2020b; Li et al., 2020c,e; Tan
and Bansal, 2019). However, while on the one hand it provides interesting qualitative
visualizations, on the other, it is not clear how to aggregate and interpret information
from deeper attention heads, though some methods have been proposed to track the
attention flow across all the Transformers layers (Abnar and Zuidema, 2020). Moreover,
it can be applied only to attention-based methods.

Probing tasks are alternative approaches that allow inspecting information embedded
in the multimodal representations. A probe is a classification model trained to solve a
simple task using the information stored in the models’ representation for the specific
aspect tested by the task. The rationale behind this method is that a good probe per-
formance is an indication of a meaningful representation. This approach has gained
success in NLP, to test Transformer-based models (Penha and Hauff, 2020; Wallat et al.,
2023) and subsequently adopted in VL. An example is the inter-modality probing pro-
posed by Salin et al. (2022), which is used to quantify the interaction between vision
and language modalities by training probes at intermediate layers, in order to be able
to track the impact on the modality fusion across the model. Similarly, Cao et al. (2020)
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design an extensive set of probes to test intermediate layer representations. Rather than
focusing on the final output of the model, they use the attention layers as a proxy to
observe intermediate cross-modal interactions. They find visual-explainable patterns
revealing relations between the text segments and image regions.

In this work, we focus on the following black box methods:

Behavioural benchmarks are often employed to assess specific visio-linguistic capa-
bilities. Shekhar et al. (2017) show that VL models lack fine-grained linguistic under-
standing when the caption is minimally edited, by replacing one of the mentioned en-
tities with another one (foiling task). Along the same lines Hendricks and Nematzadeh
(2021b) design a benchmark to test for verb understanding showing that VL models fail
to ground verbs as they focus mostly on nouns, as previously observed by Tanti et al.
(2018). This is in part due to the capability of the visual backbone to capture object-level
information, as recently shown by Zhang et al. (2021). Using a similar method Thrush
et al. (2022) design a task to test VL models for compositionality, whereas Parcalabescu
et al. (2020) test models’ counting capabilities. These tasks show that VL models per-
form poorly on tasks relatively simple for humans, highlighting a severe lack of multi-
modal grounding and the inadequacy of task-based evaluations. An example of a case
study we contributed to, developed in parallel with this thesis, is VALSE (Parcalabescu
et al., 2022a). VALSE is a benchmark designed for testing general-purpose pre-trained
VL models on specific linguistic phenomena requiring visio-linguistic capabilities. The
benchmark provides tests for five different linguistic phenomena (i.e. existence, plurality,
counting, relations, actions, coreference) framed as a foiling task. The foils are automatically
generated accounting for distributional biases, and extensively validated (automatically
and with human validations).

Input Ablation is a technique consisting of measuring variations in the model’s out-
put by perturbing the input (Fernandes et al., 2021; O’Connor and Andreas, 2021). In
multimodal settings, it can be used to analyze the impact of a modality-specific input or
a portion of it. For example, Li et al. (2020e) performs an ablation study on the OSCAR
model, to analyze the impact of object tags, added to the input to improve the model’s
capability to bridge the visual and the textual modality. Frank et al. (2021b) use a cross-
modal input ablation to measure the extent to which VL models rely on one rather than
the other modality.
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SHAP (Lundberg and Lee, 2017) is a framework considered by many to be the gold
standard for local explanations, thanks to its solid theoretical background. SHAP lever-
ages the concept of Shapley values, first introduced by Shapley et al. (1953), used to
measure the contribution of players in a cooperative game. This was later extended
by (Lundberg and Lee, 2017) for the purpose of explaining a machine learning model.
Using the models’ input features as players of a cooperative game where the models’
output is the outcome of the game, SHAP estimates feature attributions, i.e. the Shap-
ley values, that quantify the contribution of each input feature to the final output of the
model.

In the scope of this thesis, we develop an automatic method based on input ablation
(described in depth in Section 4.3), that combined with zero-shot evaluations allows us
to analyse VL models behaviors based on the ablation of entities present in the visual
and textual modality. In Section 4.4, we leverage probing tasks and extend attention-
based analyses to understand the impact of the model’s representations when exposed
to particular linguistic information. Finally, in Chapter 5 we propose a flexible hybrid
framework based on SHAP, which benefits from properties typical of black-box methods.
At the same time our method shares features with white-box approaches since, when
possible, it takes advantage of certain internal components of the model.
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Grounding actions, scenes and
rationales: The HL Dataset
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ings of the 16th International Natural Language Generation Conference (INLG2023);

Contributions: Michele Cafagna: collecting, processing and analysing the data; im-
plementing and running the experiments; writing and revising the paper. Albert Gatt
and Kees van Deemter: supervising the research, writing, and revising the paper.
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Image Axis Caption

scene the picture is shot in a ski
resort

action they are just relaxing after
a round of skiing

rationale they want to have a good
time together

object-centric (COCO) a woman and a boy sitting
in the snow outside of a
cabin.

Table 3.1: Example of High-Level captions. It is shown one of the three captions avail-
able for the three axes collected: scene, action, rationale, combined with the object-centric
captions from COCO.

3.1 | Introduction
Conceptual grounding broadly refers to the idea that symbols (e.g. language) are grounded
in perception (Barsalou et al., 2008). As discussed in Section 1.2.2, perceptually grounded
communication is made possible by the fact that perceptual experiences are largely
shared. However, individual experience can also license subjective inferences which
inform not just what we express through language, but also what we choose to assume
and leave unexpressed (Bisk et al., 2020).

Among the many modalities available in the perceptual spectrum, visual grounding
has always been of primary interest as it provides the easiest and most readily accessible
way to link linguistic expressions to physical objects. As pointed out in Section 2.3.2, a
glance at many widely used datasets and models in image captioning reveals a bias
towards “object-centric” descriptions, whereby models are trained on image-text pairs
where the text consists of explicit mentions of objects visible in the scene. However,
experience and perception also motivate other, non-object-centric ways of talking about
the world, for example, when we talk about scenes, or when we describe actions or
their underlying rationales. While such “high-level” descriptions are also perceptually
grounded, they incorporate world knowledge and subjective experience.

For example, the object-centric description in Table 3.1 certainly describes the visual
content, though it is based mainly on the recognition of objects, and their spatial layout
in the scene. By contrast, the three high-level captions (scene, action, rationale, from the
HL-Dataset described below), provide three different perspectives of the scene among
the many possible ones, which are triggered by expectations and assumptions based on
subjective experience and world knowledge.

34



Chapter 3. Grounding actions, scenes and rationales: The HL Dataset 3.2. Related work

In this Chapter, we tackle the issue of grounding high-level linguistic descriptions
in the visual modality, proposing the High-Level (HL) Dataset: a resource for Vision
and Language (VL) modeling that aligns existing object-centric captions with human-
collected high-level descriptions of images along three different axes: scenes, actions and
rationales. The high-level captions capture the human interpretation of the scene which
are complementary to object-centric captions used in current VL datasets, e.g. in COCO
(Lin et al., 2014c). We took a step further, and we collected confidence scores from in-
dependent annotators, which serve to shed light on the extent to which the high-level
captions in the dataset correspond to widely-shared assumptions, or to idiosyncratic
interpretations. Finally, we considered the task of generating captions that incorporate
these different axes, yielding a more narrative-like description of images. Our contribu-
tions are:

■ We presented and released the HL Dataset, a new VL resource, grounding high-
level captions in images along three different axes and aligned with existing object-
centric captions;

■ We described the collection protocol and provided an in-depth analysis of the data;

■ We presented baselines for the High-Level Captioning task and described further
potential uses for our data.

3.2 | Related work
As pointed out in Section 2.3.2 current VL datatets tend to focus on grounding ob-
jects and entities. As a result, the range of linguistic phenomena enriching VL models’
grounding capabilities is significantly narrower then what potentially exploitable.

In this Section, we expanded on this issue, by analysing the historical reasons of
object-centricity in VL and elaborating on the need for a change of focus that is in line
with long-run goals initially set for the VL research.

Hodosh et al. (2013c), in their influential work, argue that image captioning is mostly
interested in “conceptual descriptions”, which focus on what is actually in the image
and differ from the so-called non-visual descriptions, which provide additional back-
ground information. This line of thought has been broadly followed in the field, result-
ing in datasets emphasizing object-centric content in VL tasks involving text generation,
like image captioning (Agrawal et al., 2019; Lin et al., 2014c; Sharma et al., 2018b) and
visual question answering (Antol et al., 2015; Zhu et al., 2016). However, especially in
crowd-sourced datasets where these conditions are explicitly enforced, annotators keep
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making inferences based on their personal experiences (see e.g., Van Miltenburg (2016)
for evidence). This supports the fact that humans find it natural to describe images by
bringing to bear their knowledge and experience, using also more complex expressions
conveying situational information e.g. a woman holding a child’s hand is usually re-
ferred to as the child’s mother or grandmother depending on the perceived age of the
woman.

For instance, in the instructions used to collect COCO (Lin et al., 2014c), the anno-
tators are explicitly asked to mention entities visible in the image. This is beneficial
to enhance cross-modal interactions: Zhang et al. (2021) show that improving the vi-
sual backbone on object recognition tasks improves the performance of visio-linguistic
models in downstream tasks. Li et al. (2020e) show that using object labels to bridge
the two modalities improves the grounding capabilities of VL models. In a previous
work, Wang et al. (2018) shows that in highly object-centric datasets such as COCO (Lin
et al., 2014a) and FLickr30k Young et al. (2014b), image-captioning can be performed by
replacing the visual information with object labels.

As discussed in Section 2.3.2, object-centricity is also a feature of widely-used web-
scraped datasets: in the Conceptual Captions dataset for instance, Sharma et al. (2018b)
filtered out all captions that did not overlap with object labels automatically identified
by a computer vision model in the corresponding image.

Some efforts have been made to understand how low-level concepts improve gener-
alization capabilities and connect to high-level concepts. Object-centric captions help to
improve the generalization over unseen objects (Hu et al., 2021b) and play a role in the
model understanding of abstract concepts (Cafagna et al., 2022; Wang et al., 2022c). In
our work, we are interested in the relationships between what Hodosh et al. (2013c) re-
fer to as “conceptual” and “non-visual” descriptions, which we re-frame as a distinction
between low-level (object-centric) and high-level descriptions in multimodal learning.
We released a novel dataset to foster research in this direction.

Motivation for the present Chapter is also provided by recent research exploring the
visual correlates of inferences, temporal and causal relationships (e.g., Park et al., 2020),
which also have implications for generation. In visual storytelling, for instance, a model
has to understand actions and interactions among the visually depicted entities (Hong
et al., 2023; Hu et al., 2020; Huang et al., 2016; Lukin et al., 2018). Identifying actions is a
prerequisite for predicting their motivations or rationales as well as explaining automat-
ically generated descriptions of images (Hendricks et al., 2018). Actions and intention
are paramount to performing commonsense and temporal reasoning on visual inputs.
Along these lines, Park et al. (2020) create dynamic stories on top of static images, where
the task is to predict previous and subsequent events such as actions and rationales with

36



Chapter 3. Grounding actions, scenes and rationales: The HL Dataset 3.3. Data

respect to a given situation depicted in the image. Our work is similar in spirit, as we
align high-level descriptions of actions and rationales with low-level descriptions of static
images.

Some work has also been done to test multimodal model grounding capabilities
from a more linguistic perspective. Parcalabescu et al. (2022c) built a benchmark to test
models on a variety of linguistic phenomena, like spatial relations, counting, existence,
etc. Pezzelle et al. (2020b) assess the integration of complementary information of VL
models across modalities, while Thrush et al. (2022) test multimodal models on com-
positional reasoning. In this context, the HL Dataset proposed here, can offer another
benchmark for VL models’ understanding of high-level descriptions of images, though
in this Chapter we will focus only on the generative aspect. Such descriptions are li-
censed by the entities depicted in the visual modality and the relationships between
them but they do not mention them explicitly.

3.3 | Data
In this section, we describe the protocol used to collect annotations for scenes, actions
and rationales and the subsequent collection of confidence scores through crowdsourc-
ing. Differently from previous works, such as COCO, where human annotators are
instructed to be objective and to mention only the objects clearly visible in the picture,
we elicited high-level captions by encouraging the annotators to rely on their subjective
interpretation of the image.

3.3.1 | Data collection
The task of collecting high-level descriptions is by nature hard to define and requires
a clear and careful formulation, therefore we ran a preliminary pilot study with the
double goal of collecting feedback and fine-tuning the task instructions.

Pilot The pilot was run with six participants who were trained on the task, with high
proficiency in English and a background in computer science and linguistics. The par-
ticipants were selected from our network (4 females and 2 males), with age ranging
between 41 − 50 for 5 participants and 1 in the range 18 − 30.

With the feedback received from the pilot we designed a beta version of the task and
we ran a small batch of cases on the crowd-sourcing platform. We manually inspected
the results and we further refined the instructions and the formulation of the task be-
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Figure 3.1: Annotation form presented to workers during the high-level captions collec-
tion. The instructions (shown in Figure A.1), are always visible to the annotators.

fore finally proceeding with the annotation in bulk. We show in Figure 3.1, the final
annotation form.

Annotation Procedure The participants were shown an image containing at least one
human subject and three questions regarding three aspects or axes: scene, actions and
rationales i,e. Where is the picture taken?; What is the subject doing?; and Why is the subject
doing it? We explicitly asked the participants to rely on their personal interpretation
of the scene and add examples and suggestions in the instructions to further guide the
annotators. Moreover, differently from other VQA datasets like (Antol et al., 2015) and
(Zhu et al., 2016), where each question can refer to different entities in the image, we
systematically asked the same three questions about the same subject for each image.
See Appendix A.1 for the full instructions and Appendix A.2 for details regarding the
annotations costs. The annotation collection was ultimately performed by a total of 1054
annotators.
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Figure 3.2: The confidence scores annotation form. We show the instructions, the image,
the question, and the corresponding answer.

Images As mentioned in Section 3.1 the COCO dataset has a very explicit object-
centric orientation, therefore it provides a good starting point to select images, such
that we could couple object-centric and high-level captions in a resource-lean approach.
Moreover, the alignment of object-centric and high-level captions permits an investiga-
tion of the relationship between them.

We randomly selected 14,997 images from the COCO 2014 train-val split. In order to
answer questions related to actions and rationales we needed to ensure the presence of a
(human) subject in the image. Therefore, we leveraged the entity annotation provided
in COCO to select images containing at least one person.

The whole annotation was conducted on AMT. We split the workload into batches
in order to ease the monitoring of the quality of the data collected. Each image was
annotated by three different annotators, therefore we collected three annotations per
axis.

3.3.2 | Confidence Scores
The high-level descriptions were collected by asking the participants to interpret the
scene leveraging their personal experience. The element of subjectivity led us to ex-
pect some variation in the resulting descriptions, especially where annotators needed
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to infer actions and rationales. In order to distinguish what can confidently be consid-
ered widely-shared, or “commonsense” descriptions, from more idiosyncratic interpre-
tations, we conducted a separate study where we crowd-sourced confidence scores for
each high-level caption. We asked independent participants to score the likelihood of a
high-level description given the image and the corresponding question on a Likert scale
from 1 to 5. For a detailed example of the form see Figure 3.2.

Agreement-based worker selection The confidence scores were collected following
the same protocol used to collect the high-level descriptions. Using the data from our
pilot study, which was carried out with participants who had been thoroughly briefed
on the task, we ran a preliminary qualification task where we employed an automatic
worker selection method to hire qualified annotators from the crowd-sourcing platform.

Let’s consider the participants of the pilot as gold-standard annotators (as they were
trained on the task) and their annotations as reference annotations. The inter-annotator
agreement computed on the reference annotations can be seen as the gold-standard
inter-annotator agreement αgold of the task.

We ran the qualification task using the same set of items used in the pilot, then for
each worker w we re-computed the inter-annotator agreement (Hayes and Krippen-
dorff, 2007), combining the workers and the reference annotations, obtaining αw. We
computed an agreement ratio

r =
αw

αgold
(3.1)

Then, we selected a worker w if r > t, where t is a threshold empirically set to 0.5. This
is equivalent to choosing workers such that their contribution does not negatively affect
αgold by a factor greater than t. In other words, the workers were selected if they were
relatively compliant with the gold annotators. With this procedure we hired a total of
50 workers.

3.4 | Dataset Analysis
In this section, we analyse all the captions collected in the High-Level Dataset with
the goal of exploring connections between our captions and the object-level captions
already present in COCO. We analysed the distribution of the captions across different
axes, also comparing them with the object-centric COCO captions1.

1The analysis is performed by using Spacy v.3 pipeline for English using the en_core_web_md model
to analyse the part of speech of the texts.
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Data # Tok Avg Len # Uniq # Cap
actions 271168 6.02 7326 44991
scenes 233232 5.18 4157 44991
rationales 306396 6.81 8301 44991
HL (tot) 810796 6.00 12296 134973
COCO 857218 11.42 13300 75019

Table 3.2: HL dataset caption statistics compared the COCO captions (object-centric)
for the shared set of images. We report the number of tokens (# Tok), average length
(Len), number of unique tokens (# Uniq), and number of captions (# Cap).

3.4.1 | High-Level descriptions
We collected 3 annotations per axis over a set of 14,997 images for a total of 134,973
captions. An example of high-level descriptions aligned with the original object-centric
caption from COCO is shown in Table 3.1, whereas Table 3.2 reports a more detailed
comparison of the statistics. We expected to observe shorter texts in the high-level cap-
tions as annotators were not giving highly descriptive details typical of object-centric
captions. This is visible in Figure 3.3, which shows that the length of the high-level cap-
tions is roughly half of the object-centric COCO captions. Though shorter, they have a
comparable number of unique tokens (i.e. types) over all the axes (as reported in Ta-
ble 3.2); this suggests that the high-level captions are not repetitive and contain a fair
amount of lexical variability.

Moreover, as already mentioned, the COCO captions are object-centric, namely, these
captions are collected to objectively represent the visual content. Although this is con-
venient in recognition-oriented tasks, they lack the situational knowledge required to
contextualize scenes. Such knowledge is an essential part of the cognitive processes un-
derlying the grounding of language in vision. Indeed, as shown in Figure 3.4, the most
frequent lemmas in the original COCO captions for the images used in the HL Dataset
denote mostly objects visible in the picture. The high-level captions represent the same
visual content with the addition of situational knowledge coming from the three axes,
and this is also visible in different lexico-semantic choices in the texts. For example, Fig-
ure 3.5 shows the most frequent lemmas found in the scene axis. Because we align them
to the same images, the dataset gives us a clean way to explore the relationship between
objects and high-level axes.

Disentangling the content across the axes Asking the same three questions, i.e. where-
what- and why, about the same main subject of the image allows us to consistently com-
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Figure 3.3: Caption length of the HL captions divided per axis (action, scene, rationale)
in comparison to the object-centric COCO captions (object).

pare the content of our captions across three well-defined axes. We analysed the most
frequent nouns in the scene axis in order to characterize the kind of scenes mentioned
in the captions collected. This will allow us to identify and quantify the distribution of
scene types collected. The top most frequent scenes include street, room and road. These
are scene types that can encompass a very broad variety of objects. However, we can
also identify scenes for which a narrower range of objects is likely to occur with some
regularity, for example, those related to sports activities like baseball, tennis, ski, ground
and court, or domestic environments like house, kitchen and living (referring to ‘living
rooms’). For a more complete view see Figure 3.5 where we report the top 20 most
frequent scenes in the HL dataset.

Similarly, we can characterize also the action and the rationale axes. We identified
the action distribution by analysing the verbs contained in the captions. In Figure 3.6
we observe that the most frequent actions are related to sports activities, similarly to
what observed in the scene axis distribution. The most frequent verbs are play, ski, surf,
skateboard, but we can also find generic actions like hold, walk, sit and eat.

In the rationale axis we analysed both nouns and verbs. In this axis we expected to
observe more subjectivity and content variability, with more lemmas denoting intents,
mental states and events, including psych verbs. Our hypothesis is that the annotators
leverage their personal experience to infer these answers to a greater extent than they
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Figure 3.4: The most frequent nouns in the
COCO captions of the shared set of images
with the HL dataset.
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Figure 3.5: The most frequent lemmas of
the captions in the scene axis of the HL
dataset.

do for scene descriptions.

The majority of the rationales express intentions; in fact, want is by far the most
frequent term in the lemmas distribution. As observed with the other two axes, terms
related to sports activities are more frequent (play, game, tennis, practice), but also related
to leisure (enjoy, fun, vacation, love, family) along with generic activities (work, wait, try,
eat). For more details see Figure 3.7.

The systematic disentanglement of the content along three axes can serve as a filter
to identify or analyse sub-samples of the data with specific characteristics. For instance,
as observed so far, we can confidently say that sports-related activities are predominant
in the dataset.

Connecting high- and low-level descriptions One of the main goals of this resource is
to enable the discovery of connections between high- and low-level captions, which are
descriptions of the same images at different levels of abstraction. By construction, the
alignment provided by the HL Dataset allows us to identify concrete objects in images
which provide “support” for inferring high-level concepts such as scenes, actions and
rationales.
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Figure 3.6: The most frequent verb lemmas
of the captions in the action axis of the HL
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Figure 3.7: The most frequent noun and
verb lemmas of the captions in the rationale
axis of the HL dataset.

We dive deeper into our analysis and study the connection between high-level con-
cepts related to scene, action and rationale, to low-level objects present in the aligned
COCO captions. We ask: “What are the most informative objects for a high-level con-
cept (e.g. enjoy) found in a specific axis (e.g rationale)?”

We leveraged the Pointwise Mutual Information (PMI) (Church and Hanks, 1990)
to find the most informative objects linked to a high-level concept. This was helpful
to discover connections between concepts across different levels of abstraction but also
gave clues on the content distributions within the axes. We filtered out object mentions
which had a frequency less than 100 in the low-level captions. This left 475 object-
denoting lemmas. Then, we computed the PMI between content words in the high-level
captions and all these lemmas. For example, Figure 3.8 shows the nouns in the object-
centric captions which have the strongest PMI with the verb ‘enjoy’ in the rationale axis.

We can observe that high-level captions can express different nuances of the same
abstract concept. To take another example, love (in Figure 3.9) can refer to the love
between an animal and its owner, between two partners (e.g. wedding) or the love for
sports (e.g. skate, snowboard). In the same way, as shown in Figure 3.8 a general concept
like enjoy can be characterized by object-level concepts leaning toward a specific nuance
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Figure 3.8: Most informative objects for the
word enjoy in the rationale axis. Font size is
proportional to PMI.

Figure 3.9: Most informative objects for the
word love in the rationale axis. Font size is
proportional to PMI.

of meaning, like sports activities (e.g. kite, snowboarder, skier) or places (e.g. sandy shore,
ocean, lake).

Figure 3.10: Most informative objects for
the word restaurant in the scene axis. Font
size is proportional to PMI.

Figure 3.11: Most informative objects for
the word kitchen in the scene axis. Font size
is proportional to PMI.

The PMI analysis provides interesting insight into the connection between object-
level and high-level captions on all the three axes available.

On the scene axis, for instance, the PMI gives some clues on the extent to which an
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Figure 3.12: Most informative objects
for the word look in the action axis.
Font size is proportional to PMI.

Axis Top Lemmas Top Objects (PMI)

scene
street intersection, decker, meter

room living, wii, nintendo

road traffic, decker, intersection

action
play nintendo, wii, swing

ride rider, carriage, wave

hold controller, remote, rain

rationale
want mirror, bathroom, sink

enjoy wave, kite, ocean

fun wii, nintendo, controller

Table 3.3: Top most informative objects of the
top most frequent lemmas in the three axes
(scene, action, rationale) according to PMI.

object can be considered diagnostic for a scene. For instance, two semantically sim-
ilar scenes like restaurant (see Figure 3.10) and kitchen (see Figure 3.11) share several
diagnostic objects, as we would expect. However, we can identify important semantic
nuances: the scene restaurant contains objects related to the food (i.e. pizza, cheese, wine,
sandwich) whereas kitchen contains objects related to the preparation of food (i.e. stove,
oven, tray, refrigerator). Another example is shown in Figure 3.12, where the most rele-
vant objects for the action look encompass a wide variety of contexts, like looking at a
screen or a device (e.g. device, screen, cellphone) or entertainment (e.g. zoo, zebra, giraffe).
For more examples see Table 3.3, which shows the top most relevant objects for the top
three lemmas in the scene, action and rationale axes2.

These semantic differences, while quite easy for humans to interpret, are not usually
present in object-centric VL datasets. They are made explicit and easy to identify in
the HL dataset, where captions with different levels of abstraction are aligned with the
same image.

3.4.2 | Confidence scores analysis
Our confidence scores are similar in spirit to the self-confidence scores collected in the
VQA dataset (Antol et al., 2015). However, they differ insofar as our scores are not self-

2Note that the PMI estimation is based on frequencies. This means that if an object has a relatively low
frequency but co-occurs always with a kind of scene, action or rationale, its PMI with the respective scene,
action or rationale will be very high. This is the case for objects like nintendo and controller.
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Figure 3.13: Axis-wise confidence score distribution of the high-level captions.

reported by the authors of the captions but collected from independent annotators. The
inclusion of an external judgment plays an important role in determining the reliability
of interpretation operated by the annotators in the caption collection and therefore, in
shedding light on the extent to which an annotator’s interpretation of a scene relies on
“shared” or “commonsense” knowledge, or is entirely idiosyncratic.

We observe an average confidence score of 4.47 on a Likert scale from 1 to 5 (with a
standard deviation of 0.78 and a median of 5) over all the axes. This suggests that, over-
all, according to independent judges, our high-level captions succeeded in capturing
shared or ‘commonsense’ high-level interpretations of the scene.

Furthermore, the confidence scores provide an additional perspective under which
our data can be characterized: by performing an axis-wise analysis of the confidence
scores distribution (see Figure 3.13), we observe that the scene and action captions feature
the highest overall confidence, while the rationale axis lags behind by a small margin. We
expect such differences, since determining the rationale of an action depicted in a static
image is challenging, in particular, because annotators can leverage significant visual
cues, but have no access either to temporal information or the subject’s stated intentions.
Therefore, they need to resort to their own priors and expectations which can also lead
to idiosyncratic interpretations which independent judges – as in our confidence score
analysis – would find relatively unlikely.

One important use of confidence scores is to provide a measure of uncertainty of the
data, which can be used, for instance, to identify hard samples; an example is shown
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Idx Scene caption Confidence
1 in the restaurant 1
2 in the entrance of the library 1
3 the picture is taken outside a library 3

Figure 3.14: Example of a “hard” sample in the HL dataset where the scene captions
have low confidence scores.

in Figure 3.14. The scene is hard to interpret even for humans and the scene captions
display more variability and have low confidence scores.

3.4.3 | Quantifying Lexical and Semantic Diversity

In Section 3.4.2, we showed that in the presence of low confidence, there can be vari-
ation or disagreement among high-level captions given by different annotators for the
same axis. In such cases, the captions focus on different aspects or refer to different
interpretations. Although this phenomenon has been observed for captions with a low
confidence score, it is conceivable that it might also happen with high-confidence cap-
tions, for example, two captions annotated by different annotators, while differing in
the interpretation of an image, could nevertheless be considered highly likely. To quan-
tify this phenomenon, in this section we further expand our analysis by studying the
lexical and semantic diversity of our captions.
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Purity score We leveraged the BLEURT score (Sellam et al., 2020), a trainable metric
used to evaluate semantic differences in NLG, to compute a score measuring the seman-
tic diversity among the high-level captions associated with an image. To do so, we first
computed such scores across each axis, and then we combined them to obtain a final
score for the item. In this way, we could unpack the semantic diversity item-wise and
axis-wise.

Let C be the set of high-level captions of a given axis (e.g. scenes) for a given image.
For simplicity, we do not report the index of the image and the axis in the following
notation. Given a caption ci, ∀ i = 0..|C|, we computed its purity score si as follows:

pi = BLEURT(ci, re f ) (3.2)

Here, re f is the set of reference captions defined as:

re f := {cj | cj ∈ C and j ̸= i} (3.3)

In practice, since for an image in a given axis in the HL dataset we have three cap-
tions i.e. |C| = 3, the purity score of a caption is the BLEURT score computed using
the other 2 captions as references. pi gives a measure of the semantic diversity of the
caption with respect to the other captions along the same axis.

By averaging the purity scores of all the captions across a single axis and across all
the axes we obtained respectively a purity score measuring the semantic consistency both
axis-wise and item-wise.

Diversity score Along the same lines, we propose the diversity score, to measure the
lexical diversity of the captions. The diversity score follows the same logic implemented
to compute the purity score introduced in the previous paragraph, but the BLEURT score
in Eq. 3.2 is replaced by the BLEU score (Papineni et al., 2002b) and then normalized
between 0 (similar) and 1 (very different). This is achieved by performing a min-max
normalization to the BLEU scores and then inverting the normalized score, namely com-
puting d f inal

i = 1 − dnorm
i . Here dnorm

i is the min-max normalized BLEU score computed.

Our score is similar in spirit to self-BLEU (Zhu et al., 2018) as it measures the simi-
larity of the captions within their own distribution. However, its computation concerns
only axis-wise and item-wise captions.

Results and discussion As shown in Figure 3.15 the purity scores obtained are mostly
negative, this is due to lexical variations, which the BLEURT score is known to be sen-
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sitive to (Sellam et al., 2020). However, BLEURT is not defined in any specific interval
thus, it is usually hard to interpret (Sellam et al., 2020) if not considered in relative terms.
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Figure 3.15: Axis-wise purity score distri-
bution.
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Figure 3.16: Axis-wise diversity score dis-
tribution. The scores have been normal-
ized between 0 and 1.

Based on that, we use it to compare the semantic purity across items and axes within
our dataset. As shown in Figure 3.15, action and scene share similar purity score distri-
butions whereas the rationale is more skewed to the left than the scenes and actions. This
shows that the rationales feature a higher semantic diversity (lower overall BLEURT)
than the other axes.

The rationale axis is also the one featuring the highest lexical diversity, whereas the
scene and the action have similar distributions. This is shown in Figure 3.16 where the
rationale density estimate (in green) has a higher peak skewed on the right-hand side
than scene and action density estimate (respectively in orange and blue).

We have similar observations for both purity and the diversity scores and this con-
firms what was observed in the confidence score analysis in Section 3.4.2, namely that
the task of determining the rationale of an action from a static image produces more
variation and divergent interpretations leading to higher semantic and lexical diversity.
This is partly confirmed by the general observation that, purity and confidence scores
positively correlate with each other, whereas diversity has a slight negative correlations
with the two scores (See Figure 3.17).

For more details on the item-based analysis see Appendix A.3.
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Figure 3.17: Pearson correlation between confidence, diversity and purity scores.

Original Review Type of Error
it wants to take rest it wants to take a rest prepositions/articles

he eat he eats verb conjugation

is travelling to a particular
place

he is travelling to a partic-
ular place

pronoun omission

Table 3.4: Examples of the most common errors found by the annotators in the HL
dataset’s captions. We highlight in red the wrong part of the original captions collected
and in blue the part corrected or added by the annotators.

3.4.4 | Quantifying grammatical errors
Despite constant monitoring of the annotation quality during data collection, we also
performed a post-hoc assessment of the grammatical quality in order to evaluate the
reliability and validity of the annotated data and identify potential sources of error. We
asked two Master students in linguistics to correct grammatical errors in a sample of
9900 captions, 900 of which are shared between the two experts. They were shown the
image-caption pairs and they were asked to edit the caption whenever they identify a
grammatical error. The most common errors reported by the annotators are:

■ Misuse or lack of prepositions/articles

■ Wrong verb conjugation;

■ Pronoun omissions.

Examples of each error are shown in Table 3.4.
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In order to quantify the extent to which the corrected captions differ from the origi-
nal ones, we computed the Levenshtein distance (Levenshtein, 1966) between them.

We observe that 22.5% of the sample has been edited and only 5% with a Levenshtein
distance greater than 10. This suggests a reasonable level of grammatical quality overall,
with no substantial grammatical issues. This can also be observed from the Levenshtein
distance distribution reported in Figure 3.18. Moreover, the human evaluation is quite
reliable as we observe a moderate inter-annotator agreement (α = 0.507, (Krippendorff,
2018)) computed over the shared sample.
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Figure 3.18: Distribution of the Levenshtein distance computed between the original
and the corrected high-level captions in a sample of 9900 captions.

3.5 | Generating high-level captions
In this section, we show how the dataset can be used to fine-tune models to gener-
ate high-level, aspect-specific descriptions, e.g. image-to-scene or image-to-action. Be-
low, in Section 3.6, we also describe a data augmentation and generation experiment, to
merge the three axes into more “narrative-like” descriptions of images.

We split the HL dataset reserving 90% for training and 10% for testing, accounting
respectively for 13498 images and 121482 captions for training and 1499 images and
13491 captions for testing. In our experiments we reserved 10% of the train set for val-
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Model Axis CIDEr SacreBLEU Rouge-L

GIT
action 110.63 15.21 30.43
rationale 42.58 5.90 18.57
scene 103.00 24.67 33.92

BLIP
action 123.07 17.16 32.16
rationale 46.11 6.21 19.74
scene 116.70 26.46 35.30

ClipCap
action 176.54 27.37 39.15
rationale 78.04 11.71 25.76
scene 145.93 36.73 42.83

Table 3.5: Automatic metrics for baselines (GIT, BLIP, and ClipCap) fine-tuned along
the three axes (scene, action, and rationales) of the HL dataset. The results are the average
of 5 evaluation runs, by keeping the same decoding strategy and parameters for all the
models.

idation. We provided baselines for this task by fine-tuning three models, namely GIT
(Wang et al., 2022a), BLIP (Li et al., 2022c), and ClipCap (Mokady et al., 2021) on each
separate axis. In the choice of the baselines models we try to find a good trade-off be-
tween performance on one hand and size and efficiency on the other. Below, we give an
overview of the models. All the baselines were fine-tuned for a maximum of 10 epochs
using a learning rate of 5e−5, Adam optimizer, and half-precision (fp16).

GIT (Wang et al., 2022a) follows a standard and simple approach by employing a
Transformer-based encoder-decoder architecture, not relying on any external OD or
Optical Character Recognition (OCR) model. The model uses a pre-trained image en-
coder to generate visual tokens which are concatenated to textual tokens. The whole
sequence is fed into a textual decoder which is trained from scratch using a causal at-
tention mask to generate text. GIT is trained on a mix of open source and web-scraped
data for a total of 0.8B image-text pairs using only the MLM objective. The model ac-
counts for a total of 700M parameters.

BLIP (Li et al., 2022c) uses a quite sophisticated training schema. An image and a text
encoder are jointly optimized using an ITC objective. Moreover, an image-grounded
text encoder and decoder are trained injecting visual information from the unimodal
image encoder using cross-attention. While the first is optimized on ITM, the second
is optimized on a LM objective. The pre-training dataset is bootstrapped by using a
method called CapFilt, consisting in using and image captioner to generate synthetic
captions and a filter model which selects the best candidates. This allows to improve
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the quality of the pre-training dataset which accounts to 129M images and 130M texts.
In spite of its complexity, this Vision and Language Pre-training (VLP) allows to train
four re-usable models (i.e. image encoder, text encoder, image-grounded text encoder
and image-grounded text-decoder) applicable to a wide variety of multimodal and uni-
modal tasks. Moreover, the heavy use of parameter sharing across the models, during
training, allows to keep down the total number of parameters, i.e. 252M.

ClipCap (Mokady et al., 2021) successfully re-uses a pre-trained LM for captioning by
exploiting prefix-based training. The method consist in training a simple mapping net-
work to project the visual representation from a pre-trained image encoder, i.e. CLIP
(Radford et al., 2021b), to a prefix to be fed into a pre-trained Large Language Model
(LLM). The LLM can be frozen or optimized along with the mapping network. This
method is simple, efficient and produces decent results when compared to more com-
plex and heavy-compute SOTA solutions.

Discussion: Table 3.5 displays automatic evaluation results for the three models, on
each axis. The first observation is that ClipCap outperforms by far the other models in
each separate axis. Differently from the other models, which are natively multimodal,
ClipCap leverages a LLM to generate captions, conditioning the text generation on a
prefix representing the visual information.

A second observation, consistent with the analysis presented in earlier sections, is
that over all the metrics, models fine-tuned to generate rationale-based descriptions re-
ceive lower scores than the other axes. We hypothesise that this is due in part to its
inherent difficulty, as reflected in lower confidence scores. As shown in Figure 3.19,
metrics obtained by models trained on the rationale axis, have smaller correlations with
diversity and purity scores than models trained on the other axes, i.e. scene and action,
while correlating similarly in terms of confidence scores. This partially confirms our hy-
pothesis on the difficulty of the task of inferring the rationale of a situation happening
in a scene. Indeed, lexical (diversity score) and content variety (purity scores) have a less
systematic covariance relationship on the rationale generation (lower correlation) then
on the other axes, despite having lower performance on the evaluation metrics. Future
work could leverage these scores as additional signal in fine-tuning models on captions
that require more inference, compared to more descriptive ones.
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Figure 3.19: Average Pearson correlation between the HL dataset scores (confidence,
diversity and purity) with the evaluation metric results (SacreBLEU, ROUGE, CIDEr)
obtained by averaging fine-tuned models results axis-wise across the single items.

Manually Annotated T5-generated
sitting as a group with colleagues inside
an office to take a group photograph

The group can be sitting within an office
together with colleagues to take a group
photograph.

He is surfing at the beach because he is
trying to have fun.

he is surfing on the beach he is trying to
have fun.

she is lying on the snow on the skating
field because she has lost his balance and
fell

He is lying on the snow on the Skating
Field and has lost balance & fell.

Table 3.6: Examples of manually annotated (narrative-like captions) obtained combined
the three axes, i.e. scene, action and rationale and T5-generated captions obtained with
the human-in-the-loop fine-tuning.

3.6 | Narrative-like generation
We now describe how we extended the dataset to combine the three axes to compose a
short “narrative”, which describes the scene, action and rationale in tandem. We called
this new dataset HL Narratives. To do this, we leveraged the individual axes and syn-
thesise this part of the data using a pre-trained language model. Since scenes, actions,
and rationales were elicited individually in a visually grounded and controlled setting,
a synthesised version of the three individual captions should also match the image to
the same extent (modulo the variations in confidence that we observe).
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3.6.1 | Data generation process
We framed the synthesis of narrative-like captions as a paraphrasing task. We used two
alternative approaches: human-in-the-loop fine-tuning and few-shot prompting.

We tested the following generation approaches:

Approach 1: Human-in-the-loop fine-tuning We followed a human-in-the-loop ap-
proach consisting of three stages: (i) we manually annotated a small sample of gold
data; (ii) we fine-tuned a LLM on our gold data; (iii) we used the fine-tuned model to
generate a sample of data, which is manually corrected and then (iv) added to the gold
annotations before fine-tuning again. This procedure allowed us to use only a few it-
erations to annotate quickly a considerable amount of data. Since the model improves
the quality of the generated data, it made the manual correction progressively easier to
perform.

We used a version of T5 (Raffel et al., 2020) already fine-tuned on paraphrase genera-
tion3 as our LLM data generator. We initialised the process with manually paraphrased
annotations for 50 images (3 × 50 = 150), fine-tuned the model for 2 epochs, and gener-
ated 150 captions for another 50 images, which were manually corrected and added to
the original 150. The model was then fine-tuned for further two epochs. In each itera-
tion, we reserved 10% as validation data. After two epochs, we observed that the vali-
dation loss did not improve further. Finally, in the last iteration, we used all gold data to
fine-tune the model and generate synthetic high-level captions for the whole HL dataset,
obtaining 14,997 synthetic captions for training and 1499 for testing. See Table 3.6 for
some examples of manually annotated and T5-generated narrative-like captions.

Approach 2: Few-shot prompting We built a data generation pipeline by leveraging
the in-context learning capabilities featured by the most recent LLM (Brown et al., 2020a;
Maeng et al., 2017; Touvron et al., 2023). This data generation approach has the advan-
tage of not requiring any model fine-tuning.

We designed a prompt for our task and we used it to generate data from the recently
developed LLaMA model (Touvron et al., 2023). The prompt consisted of the task de-
scription, followed by an example and the inputs of the task written in natural language.
The full prompt is shown in Figure 3.20. The resulting output was then post-processed
to extract the generated high-level caption.

3Details about the T5 fine-tuned on paraphrase generation are available at https://huggingface.co/
Vamsi/T5_Paraphrase_Paws.
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Given three sentences merge them into one sentence, and make sure that the
sentence is grammatically correct. Here is an example:’in a beach’,’ hold-
ing an umbrella’,’ so they won’t get a sunburn’ <holding an umbrella in
the beach so that they won’t get a sunburn.>\n The three sentences are:
<’scene’,’action’,’rationale’ >

Figure 3.20: Prompt used for the data generation. The parts in bold are replaced with
the corresponding high-level descriptions for the given sample.

Model SacreBLEU ROUGE-L Cider
GIT (PRE) 1.23 11.91 18.88
GIT (T5) 11.07 31.37 74.79
GIT (LLaMA) 10.96 24.71 65.05

Table 3.7: Automatic metrics computed over the gold annotated high-level captions;
the scores are the average results of 5 runs using the same decoding parameters for
all models. We compare the pre-trained model (PRE) with the model finetuned on T5-
generated (T5) and LLaMA-generated (LLaMA) data.

Synthetic data selection We evaluated the quality of the two data generation ap-
proaches by comparing the output of the same baseline model, when it was fine-tuned
on synthetic data which was generated with the two different methods. The goal was to
determine the best synthetic dataset to fine-tune the baselines on. We used GIT-base as
baseline image captioning model and fine-tune on the LLaMA- and T5-generated syn-
thetic data. We evaluated the two versions of the model on a combination of qualitative
models output inspections and automatic metrics (SacreBLEU (Post, 2018), ROUGE-L
(Lin, 2004b) and CIDEr (Vedantam et al., 2015)) computed against the gold data.

In Table 3.7, we show the results of the evaluation based on the automatic metrics.
First, we observe that the performance of the pre-trained model (PRE) is extremely
poor in the high-level caption generation task, highlighting the substantial difference
between captions of this kind with traditional object-centric captioning the pre-trained
model is trained on. Some examples are shown in Figure 3.21.

Second, focusing on the fine-tuned models, we observe that GIT fine-tuned on T5-
generated data performs better than the LLaMa-based counterpart on the automatic
metrics. We argue that the model trained on T5-generated synthetic data benefits from
the exposure of the model to the gold data distribution. However, we point out that the
few-shot data generation pipeline remains a valid alternative as it achieves comparable
performance without requiring any further fine-tuning.
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GIT (PRE): a group of people on the beach
GIT (FT-T5): people enjoying sunbathing,
the picture was taken on the beach and are
going to have fun and entertainment

GIT (PRE): two girls looking at their cell
phones
GIT (FT-T5): they are reading a text mes-
sage outside on the street, waiting for their
friend.

Figure 3.21: Comparison between the object-centric captions generated by GIT pre-
trained (PRE) and the high-level caption generated by the fine-tuned (FT-T5) model, on
T5-generated narrative-like captions. The generated high-level caption embeds high-
level information regarding action, rationale, and scene, depicted in the visual content.

Model SacreBLEU ROUGE-L Cider
GIT (PRE) 1.23 11.91 18.88
BLIP (PRE) 3.47 15.21 24.15
ClipClap (PRE) 8.72 19.45 40.47

GIT (FT) 11.11 27.61 75.78
BLIP (FT) 11.70 26.17 79.39
ClipCap (FT) 8.15 24.53 63.91

Table 3.8: Results of the narrative generation task, averaged over 5 runs using the same
decoding parameters for all models. PRE: pretrained models; FT: finetuned on the syn-
thetic data.

3.6.2 | Results
We built three baselines by fine-tuning the same three large pre-trained models used in
Section 3.5: GIT, BLIP, and ClipCap on our T5-generated synthetic narrative-like cap-
tions. We fine-tuned for 3 epochs with batch size 8, learning rate 5e−5, and Adam
optimizer with weight decay (Loshchilov and Hutter, 2017). We tested on our gold
human-annotated data.

Automatic metrics As shown in Table 3.8, where we report results for automatic met-
rics, overall the models achieve worse results than in the aspect-specific caption gen-
eration task (reported in Table 3.5). This further highlights the difficulty of generating
narrative-like captions of this kind for models trained on object-centric captions.
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GIT: he is riding a bike in the woods and
is going to work.
BLIP: he is riding a bike in a park he is
going to work.
ClipCap: He is riding a motorcycle on a
road, he is riding a motorcycle because he
wants to enjoy the ride.

GIT: the dog is jumping in the air, the
picture is taken in a park, he is jumping
BLIP: the dog is jumping in the air. the
picture is taken in a ground and he is
doing
ClipCap: He is riding a skateboard in the
snow, he wants to get to the top of the
mountain.

Figure 3.22: Randomly picked examples of narrative-like captions generated by our
baselines fine-tuned on the synthetic data.

Notably, the best-performing model in the aspect-specific caption generation task,
namely ClipCap, is the worst performing model in the narrative-like caption generation,
though by a small margin (Table 3.8). This suggests that although a conditioned LLM
can greatly adapt to generate high-level descriptions of specific aspects of the scene, it
struggles in generating comprehensive high-level descriptions involving multiple high-
level aspects of the scene. Ultimately, this suggests that the multimodal representations
learned by multimodal models are more robust and effective in generating natural cap-
tions than conditioned unimodal models such as ClipCap.

However, the exposure to a small amount of synthetic high-level captions is suffi-
cient to drive the models’ generated text toward more narrative-like outputs.

Qualitative assessment We manually inspected a batch of 100 randomly picked narrative-
like captions generated by our baselines. We performed a systematic error analysis, by
classifying hallucinations or errors found in the captions into five categories:

1. subject hallucination, namely hallucinations regarding the main subject of the
scene, such as misuse of pronouns;
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Error Type: Subject
Caption: he is cooking in a kitchen he is
hungry

Error Type: Action
Caption: they are discussing their com-
pany in a newly married building, they
need to understand the project.

Error Type: Scene
Caption: they are taking
a photo in an airport they
are on a trip

Error Type: Repetitions
Caption: the picture is
taken in a zoo, the zoo is a
zoo and the zoo is a zoo...

Error Type: Other
Caption: the sun is visible
because it is a beautiful
day in the city

Figure 3.23: Examples of hallucinations found in the baselines’ output for each error
type.

2. action hallucinations, meaning that the action described does not reflect the actual
action depicted in the image;

3. scene hallucination, concerning the wrong attribution of the location depicted in
the image;

4. word or sentence repetitions;

5. other kind of hallucinations or errors not falling in the above categories.

In the assessment of the presence of the hallucination, we took into account both
the image and the gold annotations. As already observed in Section 3.4 some axis-wise
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Figure 3.24: Type of hallucinations and errors observed in a sample of 100 manually
inspected narrative-like descriptions generated by our baselines (BLIP, GIT, ClipCap).
We also report report the number of captions for which no error is observed (marked as
’none’). Note that more then one error may be observed in a caption therefore the total
count may not add up to 100.

descriptions differ for the same image though being equally plausible. Therefore, a hal-
lucination was found when the caption contained information that was not mentioned
or anyway present in the gold annotations. Additionally, we excluded the rationale in-
formation in the narrative-like description from consideration as a possible source of
hallucinations because, as already argued in Section 3.4, rationales are very subjective
and most of that information cannot be unambiguously verified. In Figure 3.23 we show
some examples of errors found.

As shown in Figure 3.24, ClipCap’s generations feature a significant number of hal-
lucinations if compared with the other two models. This observation is consistent with
the automatic metric results shown in Table 3.8, where ClipCap the worst performing
baseline. Interestingly, the majority of the hallucinations observed in this model involve
mostly repetitions. If we consider only hallucinations concerning scene and action axes,
ClipCap produces the lowest number of hallucinations. Moreover, it is the only model
which does not produce any hallucination regarding the subject of the scene.

The results for this model are in contrast to what is observed in the axis-wise caption
generation performed in Section 3.5, where ClipCap was the best performing model.
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This suggests that differently from native multimodal models, such as GIT and BLIP,
ClipCap struggles to adapt to the narrative-like captioning style. However, it is unclear
why this is observed only with this kind of description. We speculate that this may be
related to the mechanism employed in ClipCap to adapt a unimodal model to process
the visual modality. Learning a prefix embedding to inform the language model on the
visual information may produce an information bottleneck, leading to an unexpected
output degradation. However, we also point out that the use of GPT-2 (Radford et al.,
2019) as textual decoder in ClipCap may have some limitation in its own right on longer,
narrative-like texts.

GIT and BLIP generate overall better quality narrative-like descriptions then Clip-
Cap, with BLIP being the best performing model (Figure 3.24). They both produce a
higher number of hallucinations than ClipCap, most of which concern the subject, the
scene and the action, with the latter being the most common hallucination found in
these models.

In Figure 3.24 we can observe that the number of correct captions (marked as ’none’)
in GIT is similar to ClipCap. This may seem in contrast with the automatic metric results
reported in Table 3.8. However, the high rate of repetitions and unclassified hallucina-
tions present in ClipCap’s outputs, has a higher impact on the general quality of its
generation outputs, resulting in overall better results in the automatic metrics for GIT
rather than ClipCap.

In Figure 3.22 we show two randomly picked examples. They fairly describe the
three axes (scene, action, rationale) in a single caption, though with some limitations in
terms of fluency, as the axis-wise information is often not properly connected. In fact
the axis-wise information in the narrative-like descriptions is oftentimes tied together
by punctuation and conjuctions. This causes the overall degradation of the perceived
quality of the narrative. However, we believe that this is in part due to the limited qual-
ity of synthetic data that does not match the quality of the human annotated captions
collected for the single axes. See Appendix A.4 for more examples from all models.

Further progress can be done in this direction, for example by incorporating confi-
dence scores during fine-tuning or extending the size of the manually annotated narrative-
like descriptions.

3.7 | Further uses of the HL Dataset
We envision a wide set of further use cases and tasks enabled by the HL Dataset.
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VL generative tasks Our captions support image captioning generation tasks which
encompass a broader range of visually grounded linguistic descriptions than the highly
object-centric, “conceptual” descriptions that dominate the captioning literature Ho-
dosh et al. (2013c). Moreover, the decomposition along three axes can be exploited to
compose narratives of the image, as in image paragraph generation (Wang et al., 2019)
and visual storytelling (Hu et al., 2020; Huang et al., 2016). They can be used in com-
bination with the question each axis corresponds to, in order to generate micro-dialog
scenarios.

We would also argue that the high-level captions are also more natural and human-
like, since they were collected without enforcing any restriction on the content to be
described. Given that the images are also aligned with object-centric captions, it is pos-
sible to envisage a scenario in which a model is trained to generate high-level captions,
which are “explained” or justified with reference to low-level, object-centric proper-
ties (see Hendricks et al., 2016, 2018, for some work in this direction). In this way, the
dataset can be leveraged to provide captions and explanations. Furthermore, the confi-
dence scores serve for the identification of hard samples in the data, both for evaluation
purposes and to provide additional training signals, as recently shown by Ouyang et al.
(2022).

Multimodal Grounding HL Dataset is also a useful resource to benchmark the ground-
ing capabilities of large pre-trained VL models. Along these lines, Cafagna et al. (2021)
study the capability of VL models to understand scene descriptions in zero-shot set-
tings, finding that only large-scale pre-trained VL models have enough generalization
capabilities to handle unseen high-level scene descriptions. Cafagna et al. (2022) analyse
the impact of exposure to high-level scene descriptions on multimodal representations
in models pre-trained on object-centric captions. They show that exposure to high-level
concepts mainly affects the model’s attentional resource allocation over the visual in-
put, even though the low-level concepts learned during pre-training provide enough
signal to support and easily adapt to scene descriptions during fine-tuning. This is also
supported by Wang et al. (2022c) who find that low-level concepts are needed to learn
higher-level concepts, though this does not hold in the other direction.

3.8 | Summary
In this Chapter, we introduced the High-Level (HL) Dataset. We extended 14,997 images
from the popular COCO dataset with 134,973 human-annotated high-level descriptions
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systematically collected over three axes: scene, action, and rationale. We aligned high-
level captions with object-centric captions and we provided human-collected confidence
scores to measure the degree of commonsense expressed in the high-level captions. We
also provided baseline results on generating captions for individual axes, as well as
synthesised narrative captions by combining these three high-level axes of description.

Differently from current VL captioning datasets, the high-level captions capture the
human interpretation of the scene allowing for inference and expectations. We dis-
cussed how they can be used also in combination with low-level captions to improve
research in visual commonsense reasoning and multimodal grounding of visual con-
cepts into linguistic expressions and for generative tasks. We will provide a practical
study of this aspect in Chapter 4. We further exploit the alignment between high- and
low-level captions in the HL dataset, in the explainability domain of VL models in gen-
erative settings, in Chapter 5. We also hope that the HL dataset would provide useful
ground to foster future research in this direction.

Ethical Considerations
The data collection received ethical approval from the University of Malta Research
Ethics Committee, with reference number 7607 − 18012021. This data is intended to
be used for training, fine-tuning, and performing experimental evaluations of machine
learning models. The dataset from which the images were originally sourced is a widely-
studied, publicly available resource. As far as we are aware, the data does not contain
harmful or offensive content. However, we acknowledge that any biases in the collec-
tion of images and/or captions in the original dataset will also be present in the HL
Dataset.
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Analysing VL models’ grounding
capabilities

The material in this Chapter is based on:

■ Michele Cafagna, Kees van Deemter, Albert Gatt. What Vision-Language Models
“See” when they See Scenes, 2021, ArXiv preprint 2109.07301;

■ Michele Cafagna, Kees van Deemter, Albert Gatt. Understanding Cross-modal Inter-
actions in V&L Models that Generate Scene Descriptions. Proceedings of the Work-
shop on Unimodal and Multimodal Induction of Linguistic Structures, The 2022
Conference on Empirical Methods in Natural Language Processing (EMNLP2022);

Contributions: Michele Cafagna: implementing and running the experiments; writing
and revising the papers. Albert Gatt and Kees van Deemter: supervising the research,
writing, and revising the papers.
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4.1 | Introduction
The HL dataset introduced in Chapter 3 enables a direct alignment of object-level de-
scriptive caption with high-level descriptions capturing the human interpretation of the
image along three axes: actions, rationales and scenes. As briefly discussed in Section 3.7,
this distinction allows a direct comparison of grounding capabilities of VL models when
exposed to descriptions at different level of abstraction.

In this context, we delved into the scene axis of our resource, exploring how VL
models ground scene descriptions. Specifically, we analyzed how these models relate
to the objects within scenes and their visual arrangement. This investigation aims to
shed light on how VL models ground scene descriptions in relations to the objects they
contain and their visual layout.

Current research on human perception suggests that humans do not perceive scenes
exclusively in terms of the objects they contain, and that visual salience is not exclu-
sively determined by bottom-up features such as colour and texture (Malcolm et al.,
2016). Rather, visual stimuli are considered “scenes” because their elements constitute a
meaningful whole, both in terms of their contents (e.g. one expects an oven in a kitchen,
but not in a living room) and in terms of their spatial arrangement (e.g. ovens do not
typically hang from the ceiling).

These observations have provided the impetus to work showing that violations of
scene “semantics” (content) and “syntax” (spatial arrangement) exact a cognitive cost
during perception (e.g. Biederman et al., 1982; Võ and Wolfe, 2013; Võ, 2021). For in-
stance, a typical scene of a dining room includes chairs around a table. Thus, a chair
hanging off the ceiling would be a syntactic violation. Such violations lead to higher
processing load in humans.

A related strand of modeling research in computer vision has shown that scene-
level priors generate expectations about objects and their configurations, impacting the
salience of objects in a way that classical, feature-based models of attention (e.g. Itti and
Koch, 2001) would not predict (Oliva and Torralba, 2007; Torralba et al., 2006). Indeed,
the problem of linking low-level features with high-level semantic information is an
instance of the problem referred to as the “semantic gap” in computer vision (Ma et al.,
2010).

Moreover, scene-level captions are less redundant with respect to the image they de-
scribe, but convey enough information to generate inferences about content and struc-
ture as they rely on implicit world knowledge. (For example, in a baseball field we typ-
ically expect to find players dressed in uniforms, placed in a certain way and spectators
located on grandstands.) Thus, understanding if models succeed in linking scene-level
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LN: This is the picture of a stadium. In the foreground, there is a person [. . . ] At the
back there are a group of people sitting [. . . ].
COCO: a baseball player getting ready to swing at a baseball game in a stadium packed
with people.
HL-scenes-1k: The picture is shot in a baseball field

Figure 4.1: An example of a scene with COCO and Localized Narrative (LN) object-level
captions, versus HL scene-level description.

and object-level descriptions helps to shed light on whether these models learned some
of the relevant inferential links.

In Section 2.3.2, we emphasized that data used for VL pre-training usually con-
tains highly descriptive text that mentions objects and their spatial relationships. For
instance, the COCO (Chen et al., 2015c) and Localized Narratives (LN; Pont-Tuset et al.,
2019) captions for Figure 4.1 are of this type, though they differ stylistically. By con-
trast, the third caption in the figure, from the scene-axis of the HL dataset introduced in
Chapter 3, is what we refer to as “scene-level”, focusing on what type of scene or location
is depicted.

In Figure 4.1 both the object- and scene-level descriptions describe the picture, al-
beit in different ways. Indeed, it would be expected that, for a VL model to display
true grounding capabilities, it should be able to match both types of descriptions with
the image. For models that do display this capability, a natural follow-up question is
whether their representations captures interesting connections between scenes on the
one hand and the objects within them on the other.

In this Chapter, we investigate the capability of VL models to handle object-level
and scene-level descriptions equally well. Positive evidence would suggest that such
models are learning useful associations between the elements of a scene and the overall
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scene type, as captured in textual descriptions. The Chapter is composed of two main
Sections:

In Section 4.3, we perform an in-depth analysis in a zero-shot setting on three state-
of-the-art pre-trained VL models with the goal of understanding what VL models learn,
as a function of the data they are pre-trained on and the model architecture.

In Section 4.4, we further proceed with our investigation, by trying to shed light
on the ability of VL models to reason about the relationship between scenes and their
components when directly exposed to such descriptions in generative settings.

4.2 | Related Work
Methods VL models have been extensively evaluated on tasks such as Visual Ques-
tion Answering (Goyal et al., 2017) or image retrieval (Lin et al., 2014b). More recently,
there has been increased interest in understanding the nature of the representations and
capabilities learned by large, pre-trained models, for example via probe tasks or investi-
gation of their attention heads (see Belinkov and Glass, 2019, for a survey). This has also
been done for VL models. For example, Li et al. (2020b) consider VisualBERT’s atten-
tion heads in a manner similar to Clark et al. (2019a), showing that it is able to ground
entities and syntactic relations (see also Dahlgren Lindström et al., 2020; Ilharco et al.,
2020). Hendricks and Nematzadeh (2021a) similarly seek to obtain an in-depth under-
standing of the representations learned by VL models, finding that they have difficulty
with grounding verbs in visual data, compared to other morphosyntactic categories.

The present Chapter has a similar motivation but focuses on models’ ability to rea-
son in a grounded way about the relationship between entities and scenes. We focus
on a number of methods: in Section 4.3 we develop an ablation method in the textual
and visual modalities to uncover asymmetries in the extent to which VL models rely
on textual or visual modalities, similarly to Frank et al. (2021a), which was developed
concurrently with ours.

In Section 4.4 we focus on three techniques for model analysis: attention analysis,
multimodal ablation and probing. Analyses of attention in pre-trained VLmodels in-
clude both quantitative methods (e.g. Abnar and Zuidema, 2020) and qualitative analy-
sis (e.g. Li et al., 2020c; Wei et al., 2021). We use both methods to study how generative
VL models deploy attention during the generation, of object-centric, versus scene-level
captions.

More generally, a number of tasks have been developed to test the ability of VL mod-
els to reason with a combination of linguistic and visual cues, including VCR (Zellers
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et al., 2019), SWAG (Zellers et al., 2018) and NLVR (Suhr et al., 2017a, 2019) which fo-
cus on visual common sense reasoning. VALSE (Parcalabescu et al., 2022b) tests specific
visually grounded linguistic capabilities such as counting, spatial relations and corefer-
ence. The Winoground (Thrush et al., 2022) benchmark focuses on the visio-linguistic
compositionality. Pezzelle et al. (2020a), in work complementary to our own, address
the relationship between visual and textual modalities, exploring a task in which the
text does not provide an object-level description of an image.

Models Scene recognition is a central task in computer vision, with extensive work on
scene categorisation systems (e.g. Anderson et al., 2021) and several datasets in addition
to the ones used in this work, including ImageNet (Deng et al., 2009), Places (Zhou et al.,
2014) and SUN (Xiao et al., 2010). However, there has been little work at the VL inter-
face, exploring the capabilities of models to link scene- and object-level representations.
Some precedents for the concerns addressed in this Chapter are found in the image
captioning literature. For example, an influential proposal by (Anderson et al., 2018)
combines top-down and bottom-up attention to combining local and global features.
CapWAP (Fisch et al., 2020a) conditions image captioning on questions that determine
which information is relevant to current communicative needs, going beyond object-
level description. Closer to the scope of the work presented here, a recent pre-trained
VL model, SemVLP (Li et al., 2021a), combines single- and dual-streams for feature-level
and high-level semantic alignment.

However, recent studies have shown that such architectural differences in VL mod-
els, i.e. single- and dual-stream, lead to roughly the same performance under the same
training settings (Bugliarello et al., 2021b). This is in line with the results of our analy-
sis, performed in Section 4.3. We test three SOTA VL models at the time of writing this
thesis, with different architectures and sizes, finding that training data and training ob-
jectives are relevant factors to achieve good scene grounding rather than architectures.

From the perspective of caption generation, the Oscar (Li et al., 2020e) single-stream
architecture has emerged as an influential model. Oscar enforces grounding between
image-caption pairs by using object labels as anchor points (a strategy also adopted by
Hu et al., 2021a). This makes it particularly suited to the goals of the work presented
in Section 4.4, namely, in-depth analysis of the cross-modal interactions in the treat-
ment of objects during generation. Oscar and its successors, VinVL (Zhang et al., 2021)
and LEMON (Hu et al., 2022a) achieved SOTA performance on captioning tasks such as
COCO and nocaps.
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Training size Model size Pretraining
(# image-sentence pairs) (# parameters) Objectives

CLIP 400M 151M ISA

VisualBERT 330k 112M ISA, MLM

LXMert 9.18M 228M ISA, MLM
MOP, VQA

Table 4.1: Comparison of training settings for the three models (ISA: Image-Sentence
Alignment, MLM: Masked Language Modeling, MOP: Masked Object Prediction,
VQA: Visual Question Answering)

4.3 | How do VL models “see” scenes?
In this Section, we investigate whether VL models are able to handle object-level and
scene-level descriptions equally well. We perform an analysis in a zero-shot setting on
three state-of-the-art pre-trained VL models. To our knowledge, this is the first system-
atic comparison of model capabilities on object- versus scene-level grounding.

The goal of this study is therefore not to establish new SOTA results, but to further
our understanding of what VL models learn, as a function of the data they are pre-
trained on and the model architecture. We chose three models differing in many settings
(including training set size, architecture, number of parameters, and model size). All of
the models were however optimized on the image-sentence alignment task.

4.3.1 | Models
Many VL models typically combine textual and visual features in a single or dual-stream
architecture. Though the two architectures have been found to perform roughly at par
when trained on the same data in comparable settings Bugliarello et al. (2020), in this
work we include widely-used representatives of both at the time of writing, as we are
interested in their zero-shot grounding capabilities in their original settings. We also
include a third model which differs in structure and is trained on a much larger and
more varied dataset. Table 4.1 gives an overview of some of the properties of the models
we consider.

LXMERT (Tan and Bansal, 2019) is a dual-stream model, which encodes text and vi-
sual features in parallel, combining them using cross-modal layers. LXMERT is trained
on COCO captions (Chen et al., 2015c) as well as a variety of VQA datasets, with an
image-text alignment objective, among others. We used the implementation of LXMERT
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in the transformers1 library.

VisualBERT (Li et al., 2020c) is a single-stream, multimodal version of BERT (Devlin
et al., 2019b), with a Transformer stack to encode image regions and linguistic features
and align them via self-attention. It is pre-trained on COCO captions (Chen et al., 2015c).
Image-text alignment is conceived as an extension of the next-sentence prediction task in
unimodal BERT. Thus, VisualBERT expects an image i and a correct caption c1, together
with a second caption c2, with the goal of determining whether c2 matches ⟨i, c1⟩. We
use the publicly available implementation of the model.2

CLIP (Radford et al., 2021a) combines a transformer encoder for text with an image
encoder based either on Visual Transformer (Dosovitskiy et al., 2020a) or a Resnet net-
work (He et al., 2015b) jointly trained using contrastive learning to maximise scores for
aligned image-text pairs. CLIP is trained on around 400M pairs sourced from the In-
ternet, a strategy similar to the web-scale training approach used for unimodal models
such as GPT-3 (Brown et al., 2020b). We note that the visual backbone for this model dif-
fers from that of LXMERT and VisualBERT, both of which use Faster-RCNN (Ren et al.,
2015a). In our setting we used the ViT-based visual backbone.

For all experiments, we truncated textual captions to a maximum length of 50 tokens,
following standard practice for such models, including CLIP.

4.3.2 | Data
We used four different datasets for our experiments, which overlap to different degrees
with the data that LXMERT and VisualBERT were trained on.3 The extent of overlap
is shown in Table 4.2. We used four datasets: two aligning descriptive captions (Local-
ized Narratives, COCO) and two aligning scene descriptions to images (HL-scenes-1k,
ADE20k). We used two different datasets per kind of caption (descriptive- vs scene-
level) to account also for stylistic differences within the same kind of captions.

Localized Narratives Localized Narratives (LN) Pont-Tuset et al. (2019) is a VL dataset
created by transcribing speech from annotators who were instructed to give object-by-
object descriptions as they moved a mouse over image regions. LN captions tend to be
highly detailed and stylistically similar to speech. We used LN as a source of object-level

1github.com/huggingface/transformers
2https://github.com/uclanlp/visualbert
3CLIP was trained on a web-harvested dataset not released to the public, thus its composition is un-

known.
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LXMERT VisualBERT CLIP

I C I C I C

COCO ✓ ✓ ✓ ✓ ? ?
LN ✓ ✗ ✓ ✗ ? ?
HL-scenes-1k ✓ ✗ ✓ ✗ ? ✗

ADE20K ✗ ✗ ✗ ✗ ? ?

Table 4.2: Presence/absence (<✓>/<✗>) of the (I)mages and (C)aptions of the datasets
used for the experiments in the training data of VisualBERT and LXMERT. Although the
composition of CLIP’s training data is unknown (marked with <?>), the HL-scenes-1k
captions are certainly not included in it, as they were collected after CLIP’s release.

captions. The images in LN come from pre-existing datasets; this allows us to align LN
captions with images and captions from datasets such as COCO and ADE20K.

COCO (Lin et al., 2014c) consists of images paired with captions and object annota-
tions. LN captions are also available for the same images. We used images and captions
from the 2017 COCO validation split, as well as the corresponding LN captions.

HL-scenes-1k High Level scenes is a subset of the scene axis of the HL dataset (Cafagna
et al., 2023b), introduced in Chapter 3. HL-scenes-1k is composed of 1k images, each
depicting at least one person, sampled from the 2014 COCO train split. As described in
Section 3.3 we crowd-sourced three annotations per image on Amazon Mechanical Turk,
showing crowd workers the image and asking them to write a description in response
to the question Where is the picture taken? Crowd workers were asked to respond using
full sentences and it was made clear to them that their answer to this question should
bring to bear their knowledge of typical, or common, scenes. Figure 4.2 shows an image
with three different scene descriptions. The scene-level captions are then aligned with
the original COCO captions.

ADE20K (Zhou et al., 2017) is a computer vision dataset containing 20k images com-
prehensively annotated with objects, parts and scene labels. We used ADE20K as a
source of scene-level captions. For our experiments, we filtered out images with scenes
that in the dataset are labeled as unknown. We produced captions for each image using
a simple template-based generation method, whereby a scene label is inserted into one
of the templates below:

■ it is a SCENE
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■ this is a SCENE

■ it is located in SCENE

We aligned the resulting scene-level descriptions and the corresponding ADE20K im-
ages to the corresponding object-level captions in LN.

Where is the picture taken?

■ in a bedroom

■ the picture is taken in a bedroom

■ this is the bedroom

Figure 4.2: COCO image with three HL-scenes-1k scene descriptions.

# images
caption # captions
source per source

HL-scenes-1k 1000
HL 1000

COCO 1000

ADE20k 19733
ADE20K 19733

LN 19733

COCO 5000
COCO 5000

LN 5000

Table 4.3: Statistics for the HL-scenes-1k, ADE20k and COCO.

We corrected the HL-scenes descriptions for possible typos using the Neuspell Toolkit
(Jayanthi et al., 2020). Finally, we paired our scene-level HL-scenes-1k captions with the
previously available COCO and LN object-level captions. Figure 4.1 provides an exam-
ple.
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LXMERT CLIP VisualBERT

Object
ADE20k + LN 28.4 96.8 39.0
COCO + LN 59.1 98.7 65.2
COCO Cap. 79.3 99.1 64.4

Scene
ADE20k 58.0 97.6 17.3
HL-scenes-1k 45.5 91.5 55.3

Table 4.4: Image-sentence alignment accuracy on object-level and scene-level captions.
Chance performance is at 50% (LN = Localized Narratives).

Dataset statistics are shown in Table 4.3. For ADE20k, the numbers are for images
that are not labeled as having an unknown scene. In COCO, there are five captions asso-
ciated with each image.

4.3.3 | Image-sentence alignment experiments
We first tested models in the image-sentence alignment task on both object- and scene-
level descriptions. Since we are interested in the capabilities of the pre-trained models,
and since pre-training included alignment for all models (see Table 4.1), we did not fine-
tune them. Rather, we used the models’ pre-trained alignment head to predict whether a
scene-level or object-level caption correctly describes an image, or not; negative samples
were randomly drawn. 4 See Appendix B.1 for full details.

Table 4.4 shows that LXMERT and VisualBERT perform adequately on object-level
COCO Captions, though performance is lower than would be expected, given that they
were pre-trained on this dataset. In the case of LXMERT, one possible explanation is
catastrophic forgetting, arising from the fact that this model is pre-trained for its final ten
epochs on VQA (similar observations are made by Parcabalescu et al., 2021). For both
models, performance drops dramatically on LN captions. This is likely due to a stylistic
difference: compared to COCO captions, LN captions are longer, more discursive, and
contain disfluencies.

In contrast, CLIP performs close to ceiling on all three datasets, possibly reflecting
the benefits accrued from the size and diversity of its pre-training data.

On scene-level captions, performance is somewhat above chance for LXMERT on
ADE20k template-based descriptions, and for VisualBERT on HL-scenes-1k. Otherwise,
performance is below 50% for both models. Once again, CLIP performs above 90%,
though there is a drop in performance from the template-based ADE20k descriptions to

4Note that this setting is the same used by the models in their pre-training.
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human-authored HL-scenes-1k scene-level captions, possibly reflecting the more pre-
dictable nature of the former.

4.3.4 | Ablation experiments on CLIP
CLIP is the only one of the three models which is successful at matching scene-level
and object-level captions to images. Motivated by findings in Section 3.4.1, showing
that scenes tend to be correlated with the presence of certain objects, we probed CLIP’s
capabilities further, paying particular attention to the question whether CLIP links scene
types (e.g. kitchen) to scene contents (e.g. oven, pizza) in image-text matching.

Whereas a standard image-text alignment setup compares the model’s success at
aligning actual versus random captions with images, here we directly compared the
preference of the model for scene- versus object-level descriptions, as a function of (i)
the entities mentioned in the object-level caption; (ii) the entities visible in an image.
To this end, we used textual and visual ablation on captions and images; an example is
shown in Figure 4.3.

Textual ablation Given an object-level caption, we identified all the Noun Phrase (NP)
in the caption and create new versions by removing each possible subset of the set of
NPs, with the restriction that the resulting caption must always contain at least one NP.
When NP removal resulted in dangling predicates, we removed them to preserve gram-
maticality. For example, in Figure 4.3, when the NP "A man" is ablated from the caption,
the dangling predicate "rides" was also removed. NPs were detected with Spacy v.3,
using the pipeline for English with the en_core_web_md pretrained models. The right
panel of Figure 4.3 shows the original caption and examples of ablated captions.

For a given image i with object-level caption o and scene-level caption s, we com-
pared how P(o|i) – CLIP’s estimate of the probability that o matched i – changes as
NPs were removed from o, and to what extent this caused CLIP to assign higher prob-
ability P(s|i), to s as the match for i. We report two comparisons, one on LN captions
versus ADE20K template-based scene descriptions; and one on COCO captions against
HL-scenes-1k scene-level descriptions.

To control for possible loss of grammaticality after ablation, we scored ablated cap-
tions with GRUEN (Zhu and Bhat, 2020), a BERT-based model which has been shown
to yield scores that correlate highly with human judgments.5 CLIP probabilities for ab-

5GRUEN returns a combined score consisting of a linear combinaton of grammaticality, focus and
Coherence. Here, we used only the grammaticality scores.
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Original Image

Occluded Image

COCO: A man rides a motorcycle on a road through
a grassy, hilly area.

Ablated Captions:

■ a grassy, hilly area (A man, a motorcycle, a road)

■ a road (A man, a motorcycle, a grassy, hilly area)

■ a road through a grassy, hilly area (A man, a
motorcycle)

■ A man rides a road (a motorcycle, a grassy, hilly
area)

■ a motorcycle a grassy, hilly area (A man, a road)

■ A man rides a grassy, hilly area (a motorcycle, a
road)

■ A man rides a motorcycle (a road, a grassy, hilly
area)

■ A man rides a road through a grassy, hilly area
(a motorcycle)

■ a motorcycle on a road (A man, a grassy, hilly
area)

■ A man rides a motorcycle on a road (a grassy,
hilly area)

■ A man rides a motorcycle a grassy, hilly area
(a road)

■ a motorcycle on a road through a grassy, hilly
area. (A man)

Figure 4.3: Example of visual and textual ablation. Left: Original image and image with
occluded object. Right: Original caption and different ablated captions. NPs removed
are shown in parentheses.

lated textual captions yielded a significant, but very low correlation with grammaticality
(Pearson’s r = 0.1, p < .01) suggesting that grammaticality did not affect the scores.

Visual ablation Given an object-level caption and an image, we extracted all nouns
from the caption and extract the embedding vector for each noun using pretrained Fast-
Text embeddings.6 We passed the image through the Faster-RCNN object detector7 to
detect entities. We extracted embeddings for each entity label. Then, we identified re-
gions to be masked by comparing embeddings for entity labels le against embeddings
for nouns ne in the caption, considering them a match if cosine(le, ne) ≥ 0.7. This thresh-

6We used the model with 2M word vectors trained with sub-word information from Common Crawl
https://fasttext.cc/docs/en/english-vectors.html

7Faster R-CNN ResNet-50 FPN pre-trained on COCO, available from the torchvision module in
Pytorch
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old was empirically determined by maximizing the number of correct matches in a rep-
resentative sample of data. Bounding box regions corresponding to matched entities
were occluded with a greyscale mask. The left panel of Figure 4.3 compares the original
and masked image.

Once again, we are interested in whether CLIP’s estimate of the alignment proba-
bility of object- versus scene-level captions, changes as elements of the visual input are
masked.

ADE20k HL-scenes-1k
T 205k 10027

V 10788 625

V+T 1078 625

Table 4.5: Total number of ablations generated per dataset, across all the ablations ex-
periments using T(extual) ablation, V(isual) ablation, and both (V+T).

Table 4.5 provides the number of ablations analysed in the study. For both ADE20k
and HL-scenes-1k, we obtained a number of ablated captions that is greater than the
respective dataset sizes in Table 4.3 because for each example we generated all the pos-
sible combinations of noun phrases. For the Visual and Visual+Textual ablations, the
number of ablated instances is lower than the dataset size, because we omitted all the
images where no object is detected.

Results The results of image-sentence alignment using CLIP, after ablation, are shown
in Table 4.6. With no ablation, the model assigns a higher probability to object-level
descriptions, suggesting that CLIP has higher confidence in aligning an image-text pair
when the text focuses on objects rather than scenes. This preference is far more marked
for COCO/HL-scenes-1k, in line with the observation (Table 4.4) that HL-scenes-1k
scene descriptions are somewhat more challenging for this model.

As entity-level information is removed from the object-level caption (row T in Table
4.6), the model assigns higher probability to the scene-level caption, suggesting that the
model leverages the visual information to align with the scene description.

In contrast, visual ablation (row V) results in the opposite tendency: when entities
are occluded in the image, the model assigns a higher probability to object-level captions
compared to scene-level descriptions.

These results suggest that CLIP aligns images to scene-level descriptions based on
the entities visible in the images. As these are masked in the image, entity-level captions
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ADE20k HL-scenes-1k
LN Scene COCO Scene

No ablation 55.6 44.4 95.7 4.3

T 22.0 78.0 67.2 32.8

V 74.9 25.1 71.2 28.8

V+T 68.4 31.6 63.3 36.7

Table 4.6: CLIP preferences for object-level versus scene-level captions for two different
image datasets (i.e. ADE20k and HL-scenes-1k). Within each sub-column we show the
model’s preference rate when the same image is paired with a scene-level (e.g. Scene) vs
object-level (e.g. LN) caption. Each row corresponds to different setups, namely when
performing no ablation, T(extual) ablation, V(isual) ablation, or both (V+T). Note that
each cell sums-up to 100.

(a) Scene: kitchen (b) Scene: road

(c) Scene: room (d) Scene: park

Figure 4.4: Visualisations of entities (e) in four different scene types (s). Font size is
proportional to P(s|e)

are aligned with higher probability. On the other hand, when both sources of informa-
tion are ablated, CLIP once again assigns a higher probability to object-level captions.
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4.3.5 | Scenes vs. entities
Our findings suggest that CLIP reasons about scenes on the basis of salient objects
within them. If this is the case, then the probability assigned by clip to an image-scene
caption pair should diminish as more salient entities are visually ablated in the image.
This is also motivated by the correlation found between scenes and diagnostic objects
present in the image, observed in the experiments in Section 3.4.1.

To investigate this further, we used scene labels extracted from the HL-scenes-1k
captions and the object detections produced for the visual ablation (Section 4.3.4). For
a scene label s and entity label e, we computed P(s|e) as follows. Let e be an entity
detected ne times in the dataset, of which ne,s times in images depicting scene s. We
computed:

P(s|e) = ne,s

ne

Figure 4.4 shows visualizations for entities detected in four example scene types
found in the HL-scenes-1k dataset.

For all images with at least three detected entities, we considered the image-sentence
alignment probability assigned by CLIP to the scene-level description, when the top 1,
2, or 3 most likely entities in the scene are masked. We therefore averaged over those
images containing at least three detected entities (53/174 total scenes).

Figure 4.5 displays the average alignment probability assigned by CLIP to images
and scene-level captions, as entities are progressively masked in the image. The fig-
ure displays a linear trend, with the probability dropping as more likely entities are
removed. A one-way Analysis of variance (ANOVA) comparing the change in log
probability as 1, 2, or 3 entities are removed showed that the difference is significant
(F(2, 156) = 4.25, p < 0.05).

Thus, when CLIP aligns images with scenes, it relies on object-level information in
the visual modality. This explains why the removal of object mentions in text results
in a higher preference for scene-level descriptions since the objects are detectable in the
image. By the same token, masking objects in images causes the model to rely more on
the entity-level information in the text.

4.3.6 | Effect of length and informativeness
So far, our analysis suggests that CLIP reasons about scenes based on object-level in-
formation. However, the length of the caption might be a possible confounding factor.
Some of our results might simply be due to the model assigning a higher alignment
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Figure 4.5: CLIP scene-level description probabilities after masking top 1-3 entities. Er-
ror bars represent standard deviations.

probability to a caption that is longer or more informative. This could provide an alter-
native explanation for the changes observed above in the alignment probabilities after
textual ablation.

To account for this, we replicated the alignment experiment using single words.
Once again, we used the scene labels extracted from HL-scenes-1k scene-level descrip-
tions and identify the top three most likely entities in a given scene, as in the previous
experiment (see Figure 4.5).

Given an image, we compared image-text alignment probabilities in CLIP for single-
word object labels (e.g. motorbike) and single-word scene labels (e.g. road). In this setting,
CLIP displays a moderate preference for scene labels (63%), suggesting that such labels
are more informative than object-level labels, for the one-word alignment task.

We performed a qualitative analysis, inspecting 5 cases where the model has a clear
preference for scene label or object label. Some examples are shown in Figure 4.6. CLIP
assigns a higher probability to object labels when images have salient, foregrounded
entities. When entities are less salient or in the background, the model prefers scene
labels. See Appendix B.2 for more examples.
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resort: 3% person: 97% resort: 99% snowboard: 1%

kitchen: 99% bowl: 1% kitchen: 11% knife: 89%

Figure 4.6: Scene vs entity one-to-one comparison. In the top left image, there are many
people in the foreground and the entity person is preferred over the scene label resort.
At the top right image, people are snowboarding in the background and the scene label
is preferred over the entity label snowboard. Similarly at the bottom, when the knife is
in the foreground (bottom-right), it is preferred over the scene label kitchen. When the
object is less evident, such as the bowl (bottom-left), the scene-label is preferred.

4.3.7 | Conclusions
In order to address the symbol grounding problem, VL models should be able to capture
the relationship between an “object-level” view of an image, focusing on objects and
their configuration, and the higher-level scene it corresponds to. In this study we found
that when models do this, they rely on object-level information in the visual modality,
to link images to scene descriptions in the textual modality; this is influenced by the
probability of entities occurring in particular scene types.

Of the models tested, we find that LXMERT and VisualBERT perform poorly on this
task, and also suffer when captions deviate stylistically from their pre-training data.
For these models, testing on ADE20k, amounts to a full zero-shot setting, whereas for
Localized Narratives and HL-scenes-1k, this only applies to the textual input, as the
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images are included in their training data. With the exception of HL-scenes-1k, a new
dataset, it is an open question, whether testing for CLIP was zero-shot since this model
was trained on web-scale data, which is often unfathomable (Bender et al., 2021). On the
other hand, model size is clearly not the determining factor; CLIP has fewer parameters
than LXMERT, for example (cf. Table 4.1).

We believe that two additional factors contribute to the success of CLIP. First, its con-
trastive learning objective may result in greater sensitivity to fine-grained distinctions
between captions for image-sentence alignment. A second feature is its visual back-
bone, which (in the version used in our experiments) is based on Vision Transformer
(ViT Dosovitskiy et al., 2020a). Recently, BERT-inspired architectures have achieved no-
table success on computer vision tasks (see also Bao et al., 2021b). Tuli et al. (2021) have
shown that ViT is more consistent with characteristics of human vision than a convolu-
tional network, extracting image features that are not strictly local. This could partially
underlie the model’s ability to use visual object-level information to align with scene-
level captions.

4.4 | Cross-modal relationships in scene descriptions
While in the previous Section, we investigate the models’ capability to create meaning-
ful object-scene relationships, here, we focus on generative VL model. In Chapter 3 we
showed that it is possible to fine-tune image captioning models to the different axes. In
this section, we delve into the underlying mechanisms within these models when such
fine-tuning is applied.

We present a study of object-centric versus scene-level captioning, focusing on the
impact of the exposure of pre-trained VL models to scene-level descriptions. We fo-
cus on VinVL (Zhang et al., 2021), a BERT-based model in the OSCAR family (Li et al.,
2020e) of models, which have recently dominated the state of the art in image caption-
ing.8. As already shown in Section 3.5, VL models trained on object-centric captions
can easily adapt to scene-level descriptions. In this study, we go beyond metric-based
results, diving into the mechanisms driving the model towards generating scene-level
descriptions. Moreover, we ask whether insights yielded by this analysis are compatible
with the findings reported in Section 4.3.

The main contributions of this Section are:

8At the time of this work, three OSCAR-based models (OSCAR, VinVL, LEMON) were among the top 5
in the leaderboard of the COCO image captioning task.
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i) We performed an in-depth investigation of the impact of fine-tuning on the pre-
trained model. The analysis is designed to thoroughly inspect object-scene rela-
tions by exploiting cross-modal attention (Section 4.4.3), coupled with probing
(Section 4.4.5) and ablation studies (Section 4.4.4).

ii) We show that (i) VinVL’s pre-trained representations are rich enough to support
scene-level captioning, but that (ii) fine-tuning results in a different deployment
of attentional resources. This bears parallels to the findings in Section 4.3, where
we show that scene descriptions understanding, relies on object-level information
and research on human scene perception.

4.4.1 | Data
We used the HL-scenes dataset, namely the entire scene axis of the HL dataset intro-
duced in Chapter 3. HL-scenes thus constitutes a superset of HL-scenes-1k presented
in Section 4.3.2. It is composed of 14,997 image-caption pairs, split into 11,999 for train-
ing and 1,499 each for validation and testing as described in Chapter 3. This dataset is
particularly suitable for the analysis presented here, as it aligns object-centric captions
from COCO, with crowd-sourced scene-level descriptions. Moreover, differently from
the study presented in Section 4.3, we are less interested in the stylistic variations within
the same kind of caption. In fact, we will be focusing on the multimodal interplay be-
tween images of a scene vs object-centric captions.

4.4.2 | Model
VinVL (Zhang et al., 2021) is a single-stream BERT-based model with a Faster-RCNN
(Ren et al., 2015b) visual backbone. It is an extension of Oscar (Li et al., 2020e). VinVL
implements a training strategy where object tags are used as anchor points between the
visual and textual modalities to facilitate cross-modal alignment. As pointed out by Li
et al. (2020e), this strategy is motivated by the fact that in the datasets used to pre-train
multimodal models, between 1 and 3 of the objects detected by the visual backbone
are mentioned in the caption. However, the object labels are provided by an off-the-
shelf object detector separately trained on Visual Genome (Krishna et al., 2017b). VinVL
was pre-trained on a combination of COCO (Chen et al., 2015c), Conceptual Captions
(Sharma et al., 2018a), SBU captions (Ordonez et al., 2011a), and Flickr30k (Young et al.,
2014a), as well as additional VQA data.
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COCO
Reference: a close-up of a kitten looking and a dog laying
in the background.
Generated: a cat and a dog sitting next to each other.

HL-scenes
Reference: in the home.
Generated: the picture is taken in a house.

Figure 4.7: Scene-level captions in HL-scenes, with corresponding object-centric COCO
caption. The generated captions are outputs from VinVL before and after fine-tuning
(see Section 4.4.2).

Fine-tuning We first established that VinVL can generate scene descriptions after fine-
tuning, before turning to an in-depth analysis of the model’s attention and internal
representations. We expected reasonably good results in view of the experiments con-
ducted in Section 3.5 with baseline models.

We noted that since the HL-scenes dataset extends the COCO dataset, the model has
been exposed to the images of the HL-scenes dataset during pre-training on COCO. On
the other hand, the scene descriptions are completely novel. We fine-tuned on scene
descriptions for 10 epochs. We used the standard configuration used by Zhang et al.
(2021) for image captioning. At inference time, we fixed the maximum generation length
to 20 tokens and use a beam size of 5.

We fine-tuned the VinVL pre-trained base version9 using the original configuration
for 10 epochs on scene descriptions. We refer to it as the fine-tuned model. Since the
HL-scenes dataset images are included in COCO, we used the pre-computed visual
features and labels provided in the original VinVL implementation. We refer to the
pre-trained model, as the base model trained on the image captioning task on COCO
captions optimized using cross-entropy. All the experiments involving the pre-trained

9https://github.com/microsoft/Oscar/blob/master/VinVL_MODEL_ZOO.md#
Oscarplus-pretraining
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Figure 4.8: Inbound attention of the [SEP] per input type token across the layers. Special
tokens correspond to [CLS], [PAD] and [SEP].

Epoch. Bleu-4 METEOR ROUGE-L CIDEr SPICE
2 49.3 29.3 67.1 161.8 32.6
4 49.7 30.1 68.1 168.5 34.0
6 48.5 29.8 67.3 164.9 33.5
8 48.9 30.2 67.6 165.8 33.9
10 49.1 30.4 67.7 168.0 34.4

Table 4.7: Automatic metrics computed over different epochs on the HL-Scenes valida-
tion set.

model were performed using the original configuration used in Li et al. (2020e). The
fine-tuning was carried out with batch size 32 on an NVIDIA GTX 2080 TI 11 GB.

VinVL shows a quick adaptation to the scene-level descriptions from the first epoch.
This adaptability recalls observations made for other transformer-based generative mod-
els (e.g. Brown et al., 2020a). We show an example in Figure 4.7. For completeness, Ta-
ble 4.7 reports the automatic evaluation metrics computed on the validation set over 10
epochs.
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[SEP]
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[SEP]
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(a) Attention matrix of the pre-trained model
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[SEP]
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[SEP]
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(b) Attention matrix of the fine-tuned model

Figure 4.9: Attention matrices comparison for the image in Figure 4.7. We highlight
the sub-blocks corresponding to vision-to-vision, vision-to-label and label-to-vision. In
the pre-trained model, attention mass is sharply focused on individual portions of the
input; after fine-tuning, a more even distribution is observed.

4.4.3 | How does attention to objects change from object-centric
to scene-level generation?

We first investigated the model’s self-attention before and after fine-tuning on the scene-
level caption generation task.

Method We focused on the self-attention patterns in the first layer, as they are directly
connected to the inputs and do not depend on higher-level interactions which might
obscure the fundamental changes in attention across the two modalities (visual features
and labels) in VinVL. A discussion of attention patterns at higher layers can be found
in Appendix B.3. We selected 100 random samples from the HL-scenes test-set and ex-
tracted the attention matrices before and after fine-tuning on scene descriptions. We ag-
gregated the attention values by taking the maximum across all the heads, as it allowed
us to observe where the model tended to assign a significant amount of attention, giving
us a better view of the potential impact of fine-tuning on scene-level captions. VinVL
prevents textual inputs from directly interacting with the other modalities during gen-
eration; therefore there is no interaction between caption tokens and visual features. On
the other hand, the model includes object tags as anchors and this allows us to study
the multimodal interactions between the visual features and these object labels.
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Figure 4.10: Kernel density estimate of distributions of standard deviations against at-
tention mass for pre-trained and fine-tuned VinVL.

VinVL acquires a holistic view of the scene after pre-training Figure 4.9 is a repre-
sentative example of self-attention matrices extracted from the pre-trained (4.9a) and
fine-tuned (4.9b) model with the image in Figure 4.7. The pre-trained model, which
generates an object-centric caption, focuses attention on individual input tokens in the
vision-to-vision, vision-to-label and label-to-vision sub-blocks. After fine-tuning, as the
model generates a scene-level caption, the self-attention appears to be more evenly dis-
tributed over the inputs (4.9b). This suggests that when generating scene-level captions,
the model leverages a wider range of visual features with less exclusive focus on indi-
vidual objects or labels.

We performed a quantitative analysis of the self-attention in the sub-blocks of the
matrix involving visual regions and object labels, computing a kernel density estimate
of the distributions of the standard deviations against attention masses for each of the
100 samples, where the attention mass is computed summing all the attention scores in
each location along the heads dimension. The result is shown in Figure 4.10. It is clear
that the fine-tuned model has an overall lower standard deviation than the pre-trained
model. This confirms that a similar attention mass is distributed more evenly after fine-
tuning. We take this as evidence that in the process of generating scene descriptions,
the fine-tuned model acquires a more holistic view of the input image, in contrast to the
highly object-centered deployment of attentional resources evident in the pre-trained
model.
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VinVL relies on diagnostic objects when generating scene-level captions VinVL re-
distributes self-attention over a wider range of visual features after fine-tuning. Never-
theless, previous work on scene perception (Self et al., 2019; Vo, 2021) leads us to expect
that in describing a scene, the model needs to rely on highly diagnostic objects. This is
consistent to our findings discussed in Section 4.3. We computed diagnosticity empiri-
cally, based on the occurrence of objects in scenes in our dataset.

As described in Section 4.3.2, during the data collection, the annotators were asked
to answer the direct question: Where is the picture taken? As a consequence, the scene
captions often have a regular structure, captured by the following three representative
examples:

■ the picture has been taken in a restaurant

■ on a beach

■ this is in an airport

Let S be the set of the k most frequent scene types mentioned in scene-level captions
in the HL-scenes dataset.

To extract the scene labels, we tokenized the scene captions and we removed punctu-
ation and stop-words (we added the word picture to the list of the standard stop-words).
Among the remaining tokens, we extracted all the nouns and we reduced them to lem-
mas, then we computed the frequencies of the remaining tokens. This allowed us to
extract the scene types (restaurant, beach and airport) from the captions, such as those
shown in the examples above. The whole procedure was performed using spaCy10.

We proceeded as follows:

1. ∀ s ∈ S we built Os
M = [os

1, os
2, ..., os

n], the ranked list of the n most attended objects
by the model M when generating a description of a scene of type s.

2. Similarly, ∀ s S we collected Os
D = [os

1, os
2, ..., os

n], the ranked list of the most
frequent objects in images depicting scenes of type s in the dataset D.

We measured the overlap between Os
M and Os

D by computing their Intersection over
Union (IoU), which is only sensitive to overlap in content, as well as their Rank Biased
Overlap (RBO) (Webber et al., 2010)11, which is a similarity metric for ranked lists.

10https://pypi.org/project/spacy/
11https://github.com/changyaochen/rbo
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Scene
RBO @ IoU @

3 5 7 3 5 7
station 0.88 0.84 0.87 0.5 0.66 1.0
road 1.0 0.9 0.91 1.0 0.66 1.0
room 0.27 0.25 0.24 0.2 0.11 0.18
sea 0.88 0.84 0.8 0.5 0.66 0.55
resort 0.72 0.7 0.7 0.5 0.42 0.55
house 0.38 0.5 0.53 0.5 0.42 0.55
restaurant 0.55 0.55 0.54 0.5 0.42 0.53

Table 4.8: Rank Biased Overlap (RBO) and Intersection over Union (IoU) of the most
attended objects and the most frequent objects for the top seven common scenes. Both
metrics range from 0 (no overlap) to 1 (perfect correspondence).

RBO computes the similarity of two ranked lists, as follows:

RBO(S, T, p) = (1 − p)∑ pd−1Ad (4.1)

where d is the depth of the ranking being examined, Ad is the agreement between S
and T given by the proportion of the size of the overlap up to d, and p determines the
contribution of the top d ranks to the final RBO measure. We used the standard value of
p = 1.

Table 4.8 shows RBO and IoU for the top 3, 5 and 7 objects in the lists. We observe
that the two metrics correlate strongly (r(19) = .81, p < .001). From this, we conclude
that during the generation of scene-level captions, the model attends more to diagnostic
objects, i.e. those that are common in a scene of a given type. Moreover, we observe
high scores for scene types such as station, road, resort, sea. In our dataset, these are
characterised by frequently occurring objects, which are therefore highly diagnostic of
scene type. In contrast, for scenes like room, house, restaurant we observe lower scores.
We hypothesise that this is due to the fact that such scenes can contain a wider variety
of objects, which individually have lower diagnosticity with respect to the scene type.

4.4.4 | How reliant is the model on diagnostic objects?
The results from the previous sections established that, following fine-tuning on scene-
level descriptions, VinVL distributes attention more evenly over objects in a scene. Nev-
ertheless, the objects that are most likely to be present in a scene attract the highest pro-
portion of the attention mass. Our findings in Section 4.3 show that robust VL encoders
like CLIP can be significantly affected by the ablation of diagnostic objects from the im-
age when aligning scene-descriptions. This raises the question whether, by removing
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Scene Top informative objects
restaurant french fries, fork, submarine sandwich
road vehicle number plate, traffic sign, traffic light
sea surfboard, watercraft, boat
room computer mouse, nightstand, tablet computer
station train, suitcase, luggage and bags

Table 4.9: Most informative objects for some scenes ranked using PMI.

highly diagnostic objects from an image, the model representations are still informative
enough to detect what type of scene is represented in an image in the generative setting.

We first address this issue from the perspective of generation: does a model fine-
tuned on scene descriptions still manage to correctly describe a picture at the scene
level, when highly diagnostic objects are unavailable? Given the more even distribution
of attention observed across scene components in the fine-tuned model, our hypothesis
would be that even in the absence of such highly diagnostic objects, the model can rely
on other information to detect the scene type. Hence, we expect the fine-tuned model
to be more robust to object ablation in the visual modality, compared to the model pre-
trained on object-level captions.

As explained in Section 4.4.2, in VinVL, two separate models are used to (i) extract
visual features corresponding to regions via the model’s visual backbone; and (ii) to de-
termine the object labels that function as anchors between the visual and textual modal-
ities. This means we do not have an exact correspondence between object labels and
visual features.

Visual feature tagging For simplicity we refer to vf as the bounding box a visual fea-
ture corresponds to, and ot as the bounding box an object label corresponds to. To per-
form an ablation, we first established an approximate correspondence between ot and
vf, using ot as a reference to assign an object label to the visual features.

We computed the IoU12 between vf and ot and empirically assigned a label to a vi-
sual feature if IoU(v f , ot) >= 0.6. This threshold was determined as a trade-off between
correct matches and noise, by manually testing on a sample of data. Moreover, if vf is
contained by or overlaps with ot by at least 80% of its area, we assigned to vf the label
of ot. With this heuristic, we covered 74% of the visual features of every image of our
sample.

12Note that in this section we refer to the Intersection Over Union to compute the overlap between
two bounding boxes, not the metric used to compute the overlap between two sets of items as done in
Section 4.4.3.
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# Ablation Train-Val Test
no ablation 13498 1499

1 4269 469
2 2565 274
3 1554 170

Table 4.10: Sample size of the Train-Val and Test split after ablation of the top 1,2 and
3 most informative objects in the most frequent scenes. The top row corresponds to the
original dataset split sizes.

Computing object diagnosticity We used the scene labels extracted from captions in
Section 4.4.3, and computed the PMI between scene types and object labels, similarly to
what performed in Section 4.3 and Chapter 3. Examples of the most informative objects
for some scenes are shown in Table 4.9.

Ablation The ablation of an object was performed by removing its corresponding label
from the list of object tags, which was replaced by a [PAD] token. All the visual features
assigned to that object were removed by setting to 0 all their vector representations,
similarly to (Frank et al., 2021b). We compared captions generated by both the pre-
trained and fine-tuned model with and without ablation of the top 1, 2, and 3 most
informative objects for a given scene in the test-set. As a result, an image was included
in the ablation study if (i) it belonged to the set of most frequent scenes; and (ii) it
contained the objects we wanted to ablate. This means that the higher the number of
objects ablated, the smaller the sample of images matching these constraints. As shown
in Table 4.10, the number of images matching this constraint is reduced up to 170 when
3 objects are ablated.

Results We expected to observe some differences in the generations when ablation is
applied, especially in the pre-trained model, as the ablation removes information that
is explicitly verbalised in object-centric captions. In order to have a measure of the
change we directly compared the captions generated by the pre-trained and the fine-
tuned model, counting a change when the strings are different. For the pre-trained
model, object-centric captions change 41% of the time after ablation, compared to 13%
of the time for the scene-level captions by the fine-tuned model.

A manual inspection of a sample of items suggested that the changes in the captions
involve minimal semantic shifts, often due to minor function word changes or a more
generic term being generated for the noun denoting the scene type. Some examples are
shown in Figure 4.11.
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the picture is shot in a ski resort → the picture is taken in a snowfield
(jacket, tree, footwear)
the picture is shot in a baseball field → the picture is taken in a ground
(sports uniform, man, boy)
in a kitchen → in the kitchen (kitchen appliance, countertop, cabinetry)

Figure 4.11: Changes to scene-level captions generated by the fine-tuned model after
ablation of three diagnostic objects. Ablated objects are shown in parentheses.
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Figure 4.12: Confidence scores of the unchanged caption after ablation. On the left, the
model generating scene-level descriptions (fine-tuned); on the right, the model generat-
ing objective descriptions (pre-trained).

In summary, the model is resilient to ablation in the visual modality, suggesting
that its representations are robust for both types of generation tasks, but more so for
scene-level captioning. This confirms the hypothesis based on findings of the attention
analysis reported in Section 4.4.3, namely that when generating scene descriptions the
model relies on a greater number of objects with lower individual diagnosticity for the
scene type. This results in a higher resilience to object ablation in the visual modality.

We study the robustness of representations in more detail using probes, in Sec-
tion 4.4.5.
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Figure 4.13: Confidence shift of the unchanged captions when ablating the top 1, 2,
and 3 most informative objects from the scene. A negative shift means that the caption
was generated with higher confidence after ablation. On the left, the model generating
scene-descriptions (fine-tuned); on the right, the model generating object-centric de-
scriptions (pre-trained).

Confidence scores We analysed the confidence score produced at generation time by
the model for those captions which do not change after ablation, as this is an indicator
of the extent to which the object ablation affected the generative process, even though it
resulted in the same output sequence.

As shown in Figure 4.12, after ablation pre-trained VinVL generates object-centric
descriptions with higher confidence than fine-tuned VinVL does with scene-level de-
scriptions. However, the variance in the confidence score after ablation was lower for
the fine-tuned model generating scene-level captions (Figure 4.13), suggesting greater
robustness to ablation during scene-level caption generation.

Bias check From the HL Dataset analysis in Section 3.4 we are aware that scene-types
are not equally distributed in the HL-scenes data. As observed in Section 4.4.3, the sen-
sibility to the ablation of diagnostic objects depends also on the scene-type represented
in the image, thus we deem important to validate our results also on the train-val split
rather than only on the test split, in order to avoid any potential distributional bias.

Therefore, we repeated the ablation experiment on both the test and the train-val
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Figure 4.14: Kernel density estimate of the confidence scores distributions of unchanged
captions after ablation for the test (blue) and train-val (orange) split.

split. The results obtained on the latter mirror those reported so far on the test-split
only. In Figure 4.14 we show the comparison of the distributions of the unchanged
confidence scores after ablation for the test and train-val split. There is no statistically
significant difference between the distributions of confidence score shifts of the test set
(shown in Figure 4.13) and the train-val set (z = 0.13 with p = 0.89 and α = 0.05).
This suggests that there are no significant distributional biases between train-val and
test split such that could affect results in the scope of our analysis.

4.4.5 | Can we disentangle the role of attention and model repre-
sentation?

The results so far suggest that there are significant changes in the model’s self-attention
when fine-tuning the model to scene-caption generation, though it keeps relying on di-
agnostic objects to generate scene-level captions. It is also somewhat more robust to
object ablation, especially in the fine-tuned case. At this point, we probed the model’s
representations to address to what extent the knowledge required for scene-level cap-
tion generation was already present after pre-training. This would imply that the pri-
mary change to the model after fine-tuning is in the self-attention mechanism.

Method Given a pair (V, L) consisting of visual features V and object labels L, we
trained a probe to classify scene type based on VinVL encodings, before and after fine-
tuning. We also repeated the procedure on inputs ablated as described in Section 4.4.4.
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Figure 4.15: Scene distribution in the probing dataset

For this experiment, we identified 1426 images from HL-scenes, representing 8 types
of scenes, down-sampling the most frequent classes, in order to have a ration between
the least and most frequent class no less then 10%. The class distribution is shown in
Figure 4.15. For every image in the probing dataset, we extracted the model’s feature
representations from the last layer and we averaged across the inputs, obtaining a single
vector.

Model selection We tested two probing models: a multi-layer perceptron and a ran-
dom forest. We performed hyperparameter tuning of the neural probe by carrying out a
random search followed by a probabilistic search. The tuned neural probe was a three-
layer feed-forward network with hidden size 16, optimized using Limited-memory
Broyden–Fletcher–Goldfarb–Shanno algorithm (LBFGS) with adaptive learning rate and
α = 1. Note that no parameter tuning was required for the random forest. As reported
in Table 4.11, the random forest performs better or on par with the neural probe. There-
fore we reported the performance of the random forest in the main results.

Challenging the probe The probing model performed at ceiling with the more typical
90/10 split, especially when trained on the fine-tuned features (see Table 4.12). There-
fore, we performed multiple experiments for different train/test splits namely, 90/10,
70/30, and 50/50. The 50/50 was the most challenging for the probe and it allows us
to highlight the performance gap across different settings. Results from all the splits are
shown in Table 4.12.
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Probe Model micro-F1 macro-F1 weighted-F1
Random Baseline 0.16 0.12 0.16

Random Forest

PRE 0.94 0.67 0.92
FT 0.99 0.96 0.99
PRE (A) 0.92 0.66 0.90
FT (A) 0.98 0.88 0.97

Multilayer perception

PRE 0.94 0.67 0.91
FT 0.98 0.91 0.98
PRE (A) 0.92 0.66 0.90
FT (A) 0.98 0.85 0.97

Table 4.11: F1-scores of scene classification task in the 50/50 split. Models are trained
on encodings extracted from the pre-trained (PRE) and fine-tuned (FT) model without
and with ablation (A). In bold the best result for each setting.

Split Model micro-F1 macro-F1 weighted-F1

90/10

Pre-trained 0.96 0.71 0.94
Fine-tuned 1.0 1.0 1.0
Pre-trained (A) 0.95 0.69 0.94
Fine-tuned (A) 0.99 0.99 0.99

70/30

Pre-trained 0.94 0.67 0.92
Fine-tuned 0.99 0.97 0.99
Pre-trained (A) 0.93 0.66 0.91
Fine-tuned (A) 0.98 0.94 0.98

50/50

Random 0.16 0.12 0.16
Pre-trained 0.94 0.67 0.92
Fine-tuned 0.99 0.96 0.99
Pre-trained (A) 0.92 0.66 0.90
Fine-tuned (A) 0.98 0.88 0.97

Table 4.12: F1-scores for scene classification task the random forest in different train/tes
splits. The random forest is trained on encodings extracted from the Pre-trained (Pre-
trained) and fine-tuned (Fine-tuned) model without and with ablation (A).

Results We focus on the probe results for the 50/50 train/test split (see Figure 4.16),
which is also the most challenging. The random baseline randomly assigns a label to
the input features. For both pre-trained and fine-tuned models, probes perform at ceil-
ing for scenes with a high support (cf. Figure 4.15). For scene types with a very low
frequency, like restaurant and room, the probe trained on features from the pre-trained
model fails. In contrast, probing features from the fine-tuned model still perform at ceil-
ing. These results suggest that the information to detect the scene type is already present
to some extent in the pre-trained model. Nevertheless, fine-tuning proves effective in
closing the gap for low-support scenes.

When trained on features extracted from ablated inputs in Table 4.11, the probe is
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Figure 4.16: F1-scores of the scene classification task for the pre-trained in (blue) and the
fine-tuned model (orange).

not particularly affected by the ablation, confirming the robustness of the model’s rep-
resentations as observed in the ablation study (Section 4.4.4).

4.4.6 | Conclusions

In this study, we focused on scene-level caption generation. Taking a cue from prior
work on scene semantics and syntax, our goal was to assess VL models’ ability to rea-
son about the link between scenes and their components and exploit this to generate
informative captions with less redundancy.

Our analysis showed that the fine-tuning results in a more even distribution of at-
tention mass over the image, suggesting a more “holistic” view of the scene which nev-
ertheless makes use of diagnostic object information. Using a combination of ablation
and probing methods, we also show that much of the relevant information for scene-
level captioning is present after pre-training. Hence, the model’s ability to generate
scene-level captions is primarily acquired through a change in its self-attention.
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4.5 | Summary
Motivated by research in cognitive science and human perception in scene understand-
ing, in this Chapter we presented two studies focusing on analysing the capabilities of
VL models in grounding scene-level descriptions.

In Section 4.3, we ran a first study where we tested these capabilities in VL encoders
in zero-shot conditions. We found that these capabilities are not naturally learned by all
the models. In fact, models seemed to be more sensitive to the style of the captions than
to the actual content. However, a large-scale pre-training dataset and a constrastive
learning objective seemed to play a role in the effective grounding of scenes. When
scene-grounding is successful, the models exploit object-level visual clues to match the
scene descriptions. This is performed by exploiting the visual information of diagnostic
objects present in the scene. This finding is consistent with what has been observed
in the human perception of scenes (e.g. Võ and Wolfe, 2013; Võ, 2021) and shows that
stochastic models’ optimization leads to object-level expectations in a visual scene that
are similar to the humans ones.

After establishing that scene grounding capabilities are not naturally present in pre-
trained VL models, we continue our investigation by studying the effect of the exposure
of VL models to scene-level descriptions, in the generative setting. In the follow-up
study presented in Section 4.4 we perform an in-depth analysis of the effect of stan-
dard fine-tuning of pre-trained VL captioning models, on scene caption generation. We
found that fine-tuning on scene descriptions results primarily in a different allocation
of attentional resources on the image, which consists in a more evenly distributed at-
tention over the visual inputs. In other words, the model acquires a ’holistic’ view of
the scene without losing the capability to identify the single objects. In fact, the model
keeps allocating more attention to the diagnostic objects relevant for the scene. This re-
sult is consistent with the findings reported in Section 4.3 were we link this aspect to the
human perception of the scenes. Moreover, we do not observe any substantial change in
the model’s representations. In fact, the pre-trained representations show to be robust
enough to support the majority of scene-types, albeit the successive fine-tuning helps
strengthening the model’s representations for weakly supported scene-types.

In this Chapter, we presented two studies focused on the exploration of the capa-
bilities of VL models grounding scene descriptions. We exploit the alignment of object-
level and scene-level captions, provided by the HL dataset (introduced in Chapter 3) to
analyse scene grounding capabilities of VL models in terms of objects and their visual
layout in the scene. Our method relies on well-known explainability techniques such
as attention analysis, probing tasks and ablation studies. These methods allow a fine-
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grained evaluation of specific aspects of the models however, they are model-specific,
and require a specialized design and setup which are hardly scalable and generalizable
to other scenarios. Model-agnostic XAI methods such as SHAP (Lundberg and Lee,
2017) are common in other ML domains, but difficult to apply to VL models, especially
in generative settings, due to their high compute cost. Moreover, they are not designed
to provide semantically informed explanation, exploiting abstract linguistic concepts,
e.g. high-level captions. In Chapter 5 we will tackle these issues, proposing an explain-
ability framework adaptable to these scenarios and general enough to be applied to any
VL generative model, hoping to inspire future developments in this direction.
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5

How to explain High-level
descriptions in VL generative models

The material in this Chapter is based on: Michele Cafagna, Lina M. Rojas-Barahona,
Kees van Deemter, Albert Gatt. Interpreting Vision and Language Generative Models with
Semantic Visual Priors, 2023. Frontiers in Artificial Intelligence Journal;

Contributions: Michele Cafagna: implementing and running the experiments, con-
ducting the evaluation; writing and revising the paper. Albert Gatt and Lina M. Rojas-
Barahona: supervising the research, writing, and revising the paper. Kees van Deemter:
providing feedback with a particular focus on evaluation and revising the paper.
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5.1 | Introduction
Multimodal learning research has witnessed a surge of effort leading to substantial im-
provements, in algorithms involving the integration of VL, for tasks such as image cap-
tioning (Hossain et al., 2019; Lin et al., 2014c; Sharma et al., 2020) and visual question
answering (Antol et al., 2015; Srivastava et al., 2021; Zhu et al., 2016). The need has
arisen to create more challenging tasks and benchmarks requiring higher fine-grained
linguistic capabilities (Li et al., 2023a; Parcalabescu et al., 2022b; Thrush et al., 2022) and
semantic and temporal understanding (Kesen et al., 2023; Park et al., 2020; Yu et al.,
2016).

In this context, the role of interpretability methods has become central to assessing
the models’ grounding capabilities. In Chapter 4 we used several of these techniques,
such as attention analysis, input ablation and probing tasks, to study and get some in-
sight on the inner working of VL models when trained to generate scene descriptions,
a kind of high-level captions introduced in the HL dataset (Cafagna et al., 2023b) de-
scribed in Chapter 3.

However, such methods often need to be adapted for specific classes of tasks or mod-
els, lacking flexibility and generalization over new setups. To overcome this limitation,
model-agnostic interpretability methods, such as SHAP-based methods (Lundberg and
Lee, 2017), are often preferred, as they rely on a solid theory and benefit from desirable
properties not available in other methods.

Figure 5.1: Example of token-by-token visual explanations using SHAP and superpixels
features. A single visual explanation (heatmap) is generated for each generated token.

When such methods are applied to VL generative tasks, like image-captioning, the
goal is to explain the textual output with reference to the visual input. However, the text
generation process happens token-by-token, and as a result, most of the interpretability
methods applied in this context tend to produce local token-specific explanations. More-
over, for most applications, current methods build the explanation on top of arbitrary
regions of the visual input, usually considering superpixels (regions of adjacent pixels
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of a fixed size) as the features against which to interpret the outputs (e.g. Parcalabescu
and Frank, 2023).

Token-by-token explanations are hard to interpret as they are token-specific, and
they are costly to compute since the number of model evaluations grows exponentially
with the number of features used in each explanation. To mitigate these issues, ap-
proximation techniques, like sampling and input feature reduction, are usually applied.
However, this produces inaccurate explanations which lack detail and are hard to inter-
pret. An example is shown in Figure 5.11, with a visual explanation, namely a heatmap,
highlighting the portion of the image affecting the token prediction computed to explain
each single generated token using SHAP (Lundberg and Lee, 2017). While this kind of
explanation is useful to explain single tokens referring to objects and entities in the im-
age such as ”bird“ and ”tree“, it is unclear how to interpret explanations for tokens like
”on“ or ”a“ for which there is no direct connection with the image.

Furthermore, the reliance on superpixels as input features makes interpretation harder,
since superpixels do not necessarily correspond to semantically meaningful regions of
an image. In this Chapter, we address these issues by proposing:

1. A modular framework to create a new family of tools to generate explanations in
VL generative settings;

2. A method to generate sentence-based explanations for vision-to-text generative
tasks, as opposed to token-by-token explanations, showing that such explanations
can efficiently be generated with SHAP by exploiting semantic knowledge from
the two modalities;

3. A method to reduce the number of visual input features by exploiting the seman-
tics embedded in the models’ visual backbone. We extend this method to a num-
ber of different architectures. We further propose an alternative approach to ex-
tract semantically meaningful features from images in case a model architecture
does not support our specific method;

4. A human evaluation designed to assess key user-centric properties of our expla-
nations.

1Image from shap.readthedocs.io

103

https://shap.readthedocs.io/en/latest/_images/example_notebooks_image_examples_image_captioning_Image_Captioning_using_Azure_Cognitive_Services_15_3.svg


Chapter 5. How to explain High-level descriptions in VL generative models 5.2. Related Work

5.2 | Related Work
In this section, we discuss related work on interpretable machine learning and XAI in
Vision and Language models. We also detail some of the essential properties of the XAI
framework (SHAP) which our work is based on.

5.2.1 | Interpretable Machine Learning
Interpretable machine learning is a multidisciplinary field encompassing efforts from
computer science, human-computer interaction, and social science, aiming to design
user-oriented and human-friendly explanations for machine learning models. It plays
an important role in the field for a series of reasons: it increases trust, confidence, and
acceptance of machine learning models by users, and enables verification, validation,
and debugging of machine learning models. As discussed in Section 2.3.4 explainability
techniques for DNN can be grouped into two main categories: white-box methods which
exploit the knowledge of the internal structure of the model to generate the explanation
and black-box methods, also called model-agnostic, which operate only on the inputs
and the outputs (Loyola-Gonzalez, 2019).

White-box methods There exist two types of white-box methods: attention-based and
gradient-based methods.

Attention-based methods (e.g Ahmed et al., 2021; Zheng et al., 2022) exploit the model’s
attention activations to identify the part of the input attended by the model during the
prediction. As shown, in Section 4.4.3, they can be used to explain predictions in the im-
age captioning as well as other tasks like image recognition (Li et al., 2021c), authorship
verification (Boenninghoff et al., 2019) gender bias identification (Boenninghoff et al.,
2019) etc.

On the other hand, Gradient-based methods (e.g. Selvaraju et al., 2017; Springenberg
et al., 2014) compute feature attributions by manipulating the gradients computed in
the backward step with respect to the original inputs (Shrikumar et al., 2016), or with
respect to a specific baseline (Simonyan et al., 2013; Sundararajan et al., 2017).

Black-box methods do not make any assumptions regarding the underlying model.
For example, Permutation Feature Importance (Breiman, 2001), initially designed for
random forests and later extended into a model-agnostic version by Fisher et al. (2019),
consists in randomly shuffling the input features and evaluating the model’s output
variations. Ribeiro et al. (2016a) proposed LIME (Local Interpretable Model-Agnostic
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Explanation), which uses a surrogate linear model to approximate the black-box model
locally, that is, in the neighborhood of any prediction. LOCO (Lei et al., 2018) is another
popular technique for generating local explanations. It can provide insight into the im-
portance of individual variables in explaining a specific prediction. SHAP (Lundberg
and Lee, 2017) is a framework considered by many to be the gold standard for local
explanations, thanks to its solid theoretical foundation. SHAP leverages the concept of
Shapley values, first introduced by (Shapley et al., 1953), used to measure the contribu-
tion of players in a cooperative game. This was later extended by (Lundberg and Lee,
2017) for the purpose of explaining a machine learning model.

In this Chapter, we propose a flexible hybrid framework based on SHAP, which ben-
efits from properties typical of black-box methods, since it can be applied in a completely
model-agnostic way. At the same time, our method shares some properties with white-
box approaches since, when possible, it takes advantage of certain internal components
of the model. In particular, the framework we propose for VL generative models can
be leveraged to exploit architectural features of a model’s visual backbone to generate
more semantically meaningful explanations.

5.2.2 | Background on SHAP
In the context of machine learning, the cooperative framework introduced by Shapley
et al. (1953) can be framed as a game where each input feature is a player and the out-
come is determined by the model’s prediction. Shapley values measure the contribution
of each player to the final outcome, or in other words, the input features’ importance.
Shapley redistributed the total outcome value among all the features, based on their
marginal contribution across the possible coalitions of players, i.e. combinations of
input features. The outcome of the game, namely the prediction of the model, is re-
distributed across the features, in the form of contributions that have three desirable
properties:

■ Efficiency: all the Shapley values add up to the final outcome of the game;

■ Symmetry: all the features generating the same outcome in the game have the same
Shapley value, thus the same contribution;

■ Dummy: if adding a feature to a coalition (i.e. set of features) does not change the
outcome of the game, its Shapley value is zero.

The Shapely values compute cost grows exponentially with the number of players,
i.e input features, used in the game, as it requires the model’s evaluation of all the possi-
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ble combinations of features. To tackle this issue, Lundberg and Lee (2017) contribute by
formulating a variety of methods to efficiently approximate Shapley values in different
conditions:

1. KernelSHAP: derived from LIME and totally model agnostic, hence the slowest
within the framework;

2. LinearSHAP: designed specifically for Linear models;

3. DeepSHAP: adapted from DeepLift (Shrikumar et al., 2017) for neural networks,
which is faster than KernelSHAP, but makes assumptions about the model’s com-
positional nature.

Later on, the framework was extended with other methods with variations for specific
settings; Mosca et al. (2022b) propose a thorough description of the SHAP family of
methods.

It is important to note that all these methods work under the so-called feature inde-
pendence assumption, which is fundamental for the theoretical resolution of the problem.
The feature independence assumption says that the features in the SHAP game do not
correlate or overlap with each other. Since Shapley (and SHAP) attributions are com-
puted by marginalising features, if a feature is strongly correlated to or overlaps with
another one, such marginalisation yields unrealistic results (Molnar, 2020). However, in
order to deal with real-life scenarios, this constraint can be relaxed to some extent. For
instance, in NLP tasks each token of a textual sequence is considered an independent
feature (Kokalj et al., 2021) whereas, in Computer Vision, the image is usually split into
squared patches or superpixels, which are also considered independent of each other
(Jeyakumar et al., 2020). In both of these cases, the independence assumption is a sim-
plification. For example, language tokens are often mutually dependent in context (and
this is indeed the property leveraged by self-attention in Transformer language mod-
els). Similarly, pixels in neighboring patches in an image may well belong to the same
semantically relevant region (and this is indeed the property exploited by neural ar-
chitectures suited for computer vision tasks, such as convolutional networks or vision
transformers). Properties of tokens in context and those of pixels in image regions have
been taken into account in some adaptations of SHAP which consider the hierarchical
structure of the feature space, such as HEDGE for text (Chen et al., 2020a) and h-SHAP
for images (Teneggi et al., 2022).

Along the same line, in our work, we relax the independence assumption providing
in Section 5.4.4.2 a detailed analysis and discussion of this issue.
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5.2.3 | Kernel Shap
The core method of our framework is Kernel Shap. We base our approach on the for-
mulation by Lundberg and Lee (2017), which provides an accurate regression-based,
model-agnostic estimation of Shapley values. The computation is performed by esti-
mating the parameters of an explanation model g(x′) which matches the original model
f (x), namely:

f (x) = g(x′) = ϕ0 +
M

∑
i=1

ϕix′i (5.1)

where M is the number of input features (or players) and x′i is a player of the game.
g(x′) is approximated by performing a weighted linear regression using the Shapley
kernel:

πx′(z′) =
M − 1

(M choose |z′|)|z′|(M − |z′|) (5.2)

where z′ is the subset of non-zero entries, namely a binary representation of the coalition
of players. The Shapley kernel, in other words, is a function assigning a weight to
each coalition. The number of coalitions needed to approximate the Shapley values
corresponds to all the possible combinations of players, i.e. 2M coalitions. This makes
Kernel SHAP extremely expensive to compute (and slow in practice) when M is large.

Our framework relies on KernelSHAP as is it totally model-agnostic. We address
both the efficiency issue and the strict independence assumption of the method by gen-
erating semantic input features (more details in Section 5.3.2.2) and optimizing the ap-
proximation through sampling (full details in Section 5.3.1).

5.2.4 | Explainability for Vision and Language
One way to characterize the scope of VL models is with respect to the types of tasks they
are designed to address. On the one hand, tasks like image captioning (Anderson et al.,
2018; Fisch et al., 2020b; Li et al., 2022c; Mokady et al., 2021; Zhang et al., 2021), image-
text retrieval (Cao et al., 2022; Radford et al., 2021b), and visual question answering
(Antol et al., 2015) require a strong focus on the recognition of objects in images. More
recently, research has begun to explore the capabilities of models in tasks that require
some further reasoning or inference over the image contexts, such as understanding
analogies (Zhang et al., 2019a), describing actions and rationales (Cafagna et al., 2023b)
and inferring temporal relations (Park et al., 2020).

The need to understand how VL models ground their predictions has become essen-
tial, leading to the emergence of Explainable Artificial Intelligence (XAI) for multimodal
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settings (Zellers et al., 2019). Visual explanations can help humans to know what trig-
gered the system’s output and how the system attended to the image. To this purpose,
feature attribution methods are often preferred as they can provide a visual explana-
tion of the prediction. Most of the XAI methods introduced for unimodal tasks can be
adapted to VL tasks.

Some popular white-box methods use gradients to generate saliency maps to high-
light the pixels corresponding to highly contributing regions. These methods include
Grad-CAM (Selvaraju et al., 2017; Shrikumar et al., 2016) or Layer-wise Relevance Prop-
agation (LRP) (Binder et al., 2016) where the contribution is computed with respect to an
intermediate layer instead of the input layer. These methods can produce fine-grained
pixel-level explanations. However, their outcomes can be noisy and require many eval-
uations to converge to a stable explanation.

Black-box approaches are mostly perturbation-based, that is, they compute attribu-
tions based on the difference observed in the model’s prediction by altering the input.
Such methods include occlusion sensitivity (Uchiyama et al., 2023), RISE (Petsiuk et al.,
2018), and LIME (Ribeiro et al., 2016a). Other approaches are task-agnostic, like MM-
SHAP (Parcalabescu and Frank, 2022), where a SHAP-based method is used to measure
the contribution of the two modalities in VL models independently of the task perfor-
mance. Although these methods make few assumptions about the underlying model,
their explanations are computationally expensive, as the number of model evaluations
required grows exponentially with the number of features. To overcome this limitation,
the number of features is usually reduced by partitioning the image into patches called
superpixels, which discretize the input into a smaller number of features. However, this
approach can lead to coarser and not very informative explanations.

Explanations for VL generative tasks, like image captioning, incur even more com-
plexity, as the prediction of the model is now a textual sequence. As noted in Sec-
tion 5.2.2, SHAP estimates feature contributions based on the amount of variation ob-
served in the model output, with or without the feature. This requires a numerical out-
put value (which of course, linguistic sequences are not). A popular solution, which is
in keeping with the autoregressive nature of neural language decoders, is to break down
the caption generation process into a series of steps where each token is explained sep-
arately with respect to the image and the previously generated sequence. This requires
generating a single visual explanation for each generation step. However, the meaning
of the sentence is not only determined by the meaning of the single words it is composed
of but also by the way these words are combined and arranged together. Therefore, a
global meaningful explanation must take into account the whole textual sequence and
not just part of it, as only in this way can the explanation take into account the whole
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textual context.
A popular solution is to generate the token-level explanations using Integrated Gra-

dients (Sundararajan et al., 2017), providing region-level visualizations or using the at-
tention activation scores to visualize the model’s attended regions (Cornia et al., 2022;
Zhang et al., 2019b). However, these methods are white-box approaches as they make
assumptions about the inner workings of the model; thus they need to be specifically
re-adapted to new systems. Furthermore, they focus on token-level explanations but do
not allow a comprehensive global explanation of the textual output.

To the best of our knowledge, our work is the first attempt to bring together a model-
agnostic framework like SHAP, in the image-to-text task, with the aim of providing a
comprehensive explanation of the generated textual output as a whole, rather than on a
token-by-token level.

We further propose a method to provide explanations based on features that are
semantically meaningful, rather than on patches or superpixels.

5.3 | Method
In this section, we first address the matter of efficiency which, as noted above, is a press-
ing problem for methods based on Kernel SHAP. We then turn to the core proposals in
our method, adapting it to generative models to achieve explanations for whole se-
quences rather than tokens (Section 5.3.2.1) and using semantically meaningful visual
regions as features (Section 5.3.2.2).

5.3.1 | Deterministic Kernel SHAP sampling
Kernel SHAP is model-agnostic, meaning that it cannot make any assumption on the
model to explain. For this reason, it is also among the slowest in the SHAP family of
XAI methods (Mosca et al., 2022a). This issue is addressed by performing Monte Carlo
sampling over the pool of coalitions, allowing under certain conditions to compute a
reasonably accurate approximation of Shapley values, even in the case of large-sized
models or low-resource hardware.

Taking inspiration from Molnar (2020), we implemented a deterministic sampling
strategy. Given a specific sampling budget k, we prioritized coalitions which have a
high weight, where weight is computed by Eq. 5.2. This was achieved by generating the
coalitions in decreasing weight order and selecting the first k coalitions. In Figure 5.2,
we compare the weights of coalitions computed using the standard Kernel SHAP (on
the left) and using the method which prioritises high-weight coalitions (on the right).
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Figure 5.2: Standard Kernel SHAP (left) and modified Kernel SHAP with priority for
high-weight coalitions (right). The y-axis corresponds to weight whereas the x-axis is
the iteration in which a particular coalition is generated.

As can be observed, our sampling strategy with priority (on the right) ensures that we
select the high-weight coalitions first, providing an optimal ordering among samples.

Our experiments show that sampling with priority offers two main advantages:

1. higher accuracy of the Shapley values estimate;

2. a deterministic sampling strategy.

In Figure 5.3 we report the approximation error of the Shapley values when applying
Kernel SHAP, using Monte Carlo (orange) and the deterministic high-weight priority
(blue) as sampling strategies, for different sample sizes. The error is computed over 10
runs, using the Mean Squared Error (MSE) with respect to the Shapley values computed
with Kernel SHAP using all the 2M coalitions. Our deterministic sampling approximates
Shapley values with errors that are orders of magnitude smaller than Monte Carlo sam-
pling. We observe this consistently for different sampling sizes.

With a more efficient and deterministic sampling strategy, we now turn to the core
of our method.

5.3.2 | Adapting Kernel SHAP to vision and language generative
tasks

In the image captioning scenario, we can set up a cooperative game, where we want to
compute the contributions of the players, i.e. the pixels of the image, with respect to the
outcome, i.e. the caption. In Section 5.2, we identified two shortcomings of the standard
way in which this is performed. Here, we discuss our contributions to overcome these
shortcomings.

The first problem is related to the comprehensiveness of explanations. In order to
measure the variations of the outcome of the function needed to run Kernel SHAP, the
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Figure 5.3: Mean Squared Error (MSE) of the Shapley values estimated using Monte
Carlo sampling (orange) and deterministically sampling coalitions with high prior-
ity (blue), for various sampling sizes. All the values on the x-axis are exponentials
(2M−1, 2M−2, 2M−3) where M corresponds to the number of features. The MSE is com-
puted with respect to the Shapley values computed using all the 2M coalitions available
in the sampling space.
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Figure 5.4: Overview of the explainability framework. The new components proposed
in this work are shown with a dark border. Our method leverages KernelSHAP as the
core explainability method. We introduce semantic features extracted using DFF from
the captioner’s visual backbone and generate sentence-based visual explanations based
on the estimated Shapley values.
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caption generation process is usually broken down into token generation steps. Each
step produces logits that can be used to compute a numerical outcome. However, this
forces us to consider each generation step as a separate cooperative game, meaning that
we need to run a separate instance of Kernel SHAP for each generated token, further
scaling the time and compute cost needed to explain an image-caption pair, linearly
in the length of the generated sequence. Moreover, such explanations refer to single
tokens and do not provide an explanation for the whole output of the model, namely
the caption.

The second problem is related to the definition of coalitions in the visual input. The
number of coalitions to be computed grows exponentially with the number of players.
This makes the computation of the Shapley values intractable for images, as their basic
features are pixels. Therefore, the huge number of coalitions makes any sampling strat-
egy inaccurate when considered reasonable sampling budgets. In order to overcome
this limitation, the image is typically partitioned into a grid composed of superpixels,
namely groups of pixels, each of which represents a single player. This reduces the total
number of players in the game, making computation of the Shapley values more feasi-
ble, but at the same time, it reduces the degree of the detail of the explanation. Moreover,
we argue that dividing the image into a grid of square superpixels breaks the semantics
underlying the image, resulting in potentially under-informative explanations. In par-
ticular, there is no guarantee that the pixels grouped together in this manner correspond
to semantically meaningful image regions.

In the following sections, we address these issues, proposing alternative solutions.
Specifically, we address the first shortcoming in Section 5.3.2.1, before turning to a pro-
posal for semantically meaningful and sparse features in Section 5.3.2.2. Our solution
can be integrated with existing methods, to compose a modular explainability frame-
work for generative VL models. An overview of this framework is shown in Figure 5.4.

5.3.2.1 | Towards sentence-based explanations

In order to adapt Kernel SHAP to generate global explanations for the caption, we mea-
sured variations of the caption’s meaning representation when perturbations are ap-
plied to the input image. This allowed us to numerically quantify the meaning varia-
tion of the whole caption which is due to the marginal contributions of different input
features (image regions or pixels).

Formally, given an image-captioning model f and an image x we generated a caption
c = f (x) and we computed:

ere f = E(c) (5.3)
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Figure 5.5: Example of the sentence-based explanation. 1) We compute the reference
embedding (red) from the caption generated by the model when the input has no per-
turbation. For each perturbation applied, we compute the embedding (orange, blue) of
the resulting caption and use the cosine distance between the reference and the current
embedding, to measure the semantic variation of the caption.

where ere f is the embedding representation of c that we considered the reference embed-
ding of the caption, and E() is a function used to extract such a representation.

For each perturbed image x′ and its corresponding caption we extracted, analo-
gously, an embedding e′. Then we computed:

s = cos(ere f , e′) (5.4)

where s is the variation in the embedding representation computed as the cosine dis-
tance cos(·), between the reference embedding ere f and the embedding of the caption of
the perturbed image e′.

In other words, we used the cosine distance between the semantic representation of
the reference caption and the caption generated upon input perturbation, to measure
the model’s output variations. A schematic representation of the method is shown in
Figure 5.5.

Re-framing the problem as described, allowed us to apply Kernel SHAP to compute
feature attributions taking into account the semantic variation, i.e. the cosine similarity
between the original and the perturbed caption, of the whole caption in a single coop-
erative game instance.
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5.3.2.2 | Exploiting semantic visual priors

Partitioning the image into a grid of superpixels is a straightforward way to reduce the
number of input features in the image. As argued above, although convenient, super-
pixels do not guarantee the preservation of semantic information depicting the visual
content, as they shatter the image into equally sized patches regardless of the content
represented. We addressed this issue by proposing a semantically guided approach,
that selects the input features according to semantics-preserving visual concepts arising
from the visual backbone of the VL model.

This not only allows for generating more meaningful explanations but explicitly fo-
cuses explanations of the model’s generative choices on the output of the model’s own
visual backbone.

We generated input features leveraging the Deep Feature Factorization (DFF) method
(Collins et al., 2018). DFF is an unsupervised method allowing concept discovery from
the feature space of CNN-based models. We refer to such concepts as ‘semantic priors’,
that is, the knowledge or assumptions learned by the visual backbone, in the context of
a given domain or task. We used them to craft input features that produce semantically
informed visual explanations.

Formally, following Collins et al. (2018)’s notation, given the activation tensor for an
image I: A ∈ Rh×w×c where h, w, c correspond respectively to the height and width, and
the number of channels of the visual backbone’s last activation layer, we performed a
Non-negative Matrix Factorization (NMF) of A:

NMF(A, k) = arg min
ÂI k

∥A − Âk∥2
F,

subject to ÂK = HW, ∀i, j : Hij, Wij ≥ 0,
(5.5)

where W ∈ Rn×k and H ∈ Rk×m enforce the dimensionality reduction to rank k.

Each column Hj was reshaped into k heatmaps of dimensions h × w, each of which
highlights a region which the factor Wj corresponds to. The heatmaps were then up-
sampled to match the original image size with bilinear interpolation and converted into
binary masks, each of which corresponding to an input feature. In this way we obtained
k input features, where k is the number of regions extracted. A schematic example of
input feature extraction performed by DFF is shown in Figure 5.6.

In our method, the regions identified via DFF are the features for which attribu-
tions are computed. The key intuition is that these features correspond to meaningful
sub-parts of the input image according to the VL model’s visual backbone. They do
not necessarily reflect humans’ visual expectations of the image (although we find that
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Figure 5.6: Schematic example of input features extraction using DFF. Through thresh-
olding, we convert the heatmaps into binary masks that we use to create semantically
meaningful features.

they often do); rather they represent the visual priors learned by the vision model after
training.

To create a coalition we summed up multiple masks, then applied them to the origi-
nal image, which later contained only pixels belonging to input features in the selected
coalition.

NMF can be seen as an unsupervised clustering algorithm, allowing control for the
number of clusters or concepts to find. k can be considered a hyperparameter of the
method, which we show can be kept small to achieve a good level of semantic detail
and low compute cost.

Non-partitioning features DFF generates semantic masks reflecting the activations of
the model’s visual backbone. The whole process is unsupervised and produces masks
that do not constitute partitions of the image, meaning that it is not guaranteed that the
sum of all the extracted masks will match the total size of the image.

In order to account for this issue, we created an additional leftover mask covering the
remaining area and we included it in the SHAP cooperative game. This allowed us to
consider the whole visual information represented by the image, in the game. As noted
in Section 5.2.2, the computation of Shapley values is based on a feature independence
assumption. Since our features may be non-partitioning, this constraint may not hold,
thus we relaxed this assumption in our approach. We explored the consequences of this
in more detail in Section 5.4.4.2.

Intensity-preserving explanations SHAP-based methods relying on superpixels as-
sume that each pixel in a patch contributes equally, thus all the pixels in a patch are
assigned the same Shapley value. However, in DFF, features in each binary mask cor-
respond to an equally sized heatmap. Therefore, we multiplied the Shapley value by
the heatmap corresponding to the binary mask. This allowed us to exploit the models’
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visual priors by scaling the contribution according to the intensity of the feature signal.
In other words, we used the intensity of the visual backbone’s activations to highlight
regions of the image within the input feature according to the Shapley value estimated
for that input feature. This resulted in a more fine-grained and visually detailed expla-
nation, without additional compute cost.

5.4 | Experiments
The methodology described in the previous section raises an important question which
we now address experimentally: What are the pros and cons of our method based on visual
semantic priors in comparison with standard feature selection methods used in VL, based on
superpixels?

In this section, we describe the data and task, as well as a SOTA vision-to-language
model, which we used to perform a human evaluation of our explainability framework.

5.4.1 | Data
We validated the method presented in the previous section with experiments using the
HL dataset (Cafagna et al., 2023b) introduced in Chapter 3.

The systematic alignment in the HL dataset of the object-centric and abstract cap-
tions along three axes, i.e. scene, action and rationale, provides us with a suitable test bed
to compare the efficacy of our method in delivering global explanations in both cap-
tioning and visual question-answering scenarios. As already discussed in Chapter 3,
differently from the object-centric ones, high-level captions do not explicitly mention
objects visually present in the scene. In fact, they use more abstract terminology, e.g.
They are having fun, which often requires the evaluation of the whole sentence to obtain
a meaningful explanation. An example pairing the three high-level captions and the

Image Axis Caption

scene at a sport field

action they are playing a sport

rationale they are having fun

object-centric (COCO) A woman has fallen on the ground in a field.

Table 5.1: Example of High-Level captions. It is shown one of the three captions avail-
able for the three axes collected: scene, action, rationale, aligned with the object-centric
captions from COCO.
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original COCO caption from the HL Dataset is shown in Table 5.1. For full details see
Section 3.4.

One of the distinguishing features of our method is the exploitation of the model’s
visual priors to generate visual explanation. Therefore, we are also interested in exper-
imenting on the capability of our method to provide visual explanations for different
kinds of description. This makes, the visual question answering task an interesting sce-
nario to test our method on, as it allows us to observe and compare visual explanations
computed on different kinds of description, using the very same model, namely without
optimizing a single model for each kind of description, as instead done in Section 3.5.
Moreover, this setup is perfectly suitable to the HL dataset, given that the high-level
captions have been collected using a question-answering setting.

5.4.2 | Model
For our experiments, we focused on one VL model, since our goal was to evaluate the
quality of explanations, not the model itself. Our choice was motivated by two con-
siderations: first, a model should ideally have good performance in zero-shot settings;
second, it should exhibit SOTA performance on generative tasks. OFA (Wang et al.,
2022b) is a large pre-trained multimodal model with a CNN-based visual backbone,
trained using a task-agnostic and modality-agnostic framework. OFA is able to perform
a diverse set of cross-modal and unimodal tasks, like image captioning, visual question
answering, image generation, image classification, etc. It is trained on a relatively small
amount of data (20M image-text pairs) with instruction-based learning and a simple
sequence-to-sequence architecture. Nevertheless, on downstream tasks, it outperforms
or is on par with larger models trained on a larger amount of data. OFA is effectively
able to transfer to unseen tasks and domains in zero-shot settings, proving to be well
grounded also in out-of-domain tasks.

This makes OFA an excellent candidate to test our explainability framework in a
real-world scenario, namely a large pre-trained generative model with state-of-the-art
performance on downstream tasks in zero-shot conditions. Thus, we used OFA to gen-
erate textual predictions in a VQA setting. We then used our framework, which com-
bines DFF features and sentence-based explanations, to generate visual explanations of
such predictions. In our evaluation, we compared these explanations to the more stan-
dard setup to vision-to-text models, that is the one based on superpixels as features.
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Figure 5.7: Global visual explanation for the question “What is the subject doing?”, and
corresponding model’s answer "drinking". Explanations are generated using Kernel
SHAP. The explanation using DFF input features (on the left) provides a detailed pos-
itive (blue) area. We use 11 DFF features and 12 superpixel features. The explanation
generated by superpixel input features (on the right) although covering a similar region,
i.e. the glass, does not provide the same level of detail.

5.4.3 | DFF vs Superpixel
In this Section, we focus on the comparison between the global visual explanations pro-
duced using superpixel or DFF input features. We focus on the capability of the two
methods to adapt to different semantic aspects of the explanation; in Section5.4.3.1 we
specifically address this discussion with a focus on the VQA task.

All the experiments were performed in zero-shot by using the OFA-large model in
its original implementation 2. In order to ensure a fair comparison, we extracted a sim-
ilar number of features for both methods, namely 12 for superpixel and 11 for DFF.
This number allowed us to execute the experiments in a reasonable amount of time. In
fact, we recall that the number of features has an exponential impact on the number of
model evaluations needed to generate the explanations. Reducing the number of fea-
tures mitigates the efficiency issue, but does not solve it. An in-depth discussion about
the efficiency issue is provided in Section 5.4.3.2.

As an initial comparison, Figure 5.7 shows a direct comparison between the two
kinds of input features for the caption "drinking", generated using sentence-based Ker-
nel SHAP. Both methods assign a positive contribution to the region corresponding to
the glass, with some important differences:

■ Detail: The DFF features succeed in capturing the key visual semantics of the
image, i.e. the glass, in a single input feature (with some noise), producing a more

2https://github.com/OFA-Sys/OFA
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Q: Where is the picture
taken?
A: in a living room
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Q: What is the subject do-
ing?
A: eating
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Q: Why is the subject doing
it?
A: The subject is going to eat
the pizza
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Figure 5.8: Examples of explanations for the VQA task from the HL Dataset for the scene
(far left), action (center) and rationale (far right) axes. The top row shows the questions
(Q) and the generated answers (A). The middle and the bottom row, show visual expla-
nation generated respectively with DFF and superpixel input features, with comparable
compute cost.

detailed explanation than superpixels, where the region corresponding to the glass
is shared across different patches (i.e. different features).

■ Intensity: DFF scales the contributions according to the magnitude of the feature
signal (as described in Section 5.3.2.2), providing a fine-grained visual indication
of the importance of specific sub-regions within the same input feature region.

5.4.3.1 | Semantic visual features improve the quality of the explanations

We compared DFF and superpixel explanations on the VQA task. We selected images
and questions for the three axes in the HL dataset, i.e. actions, scenes, and rationales,
and we generated visual explanations for the answers. This allows us to compare how
the two methods handle semantically different aspects highlighted in the visual content.

We expected to see that the positive contribution assignment (in blue) changes for
the same image for different captions, corresponding to different kinds of questions for
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Figure 5.9: Example of explanations generated with superpixels, with an increasing
number of features, namely 16, 64, 256 features (respectively 5.9a, 5.9b, 5.9c). These are
obtained with Kernel Shap sampling using a fixed sampling budget of 2048 samples.

which the model generates different answers. In response to different questions about
location, rationale, or action, the model’s output should depend on different regions of
the image. For instance, we expected to observe a wider positive area highlighted in the
picture for the where question and a more specific detailed area for the what question. As
shown in Figure 5.8, the DFF-based method (first row) succeeds in highlighting in sig-
nificant detail the semantic areas contributing to the output. On the other hand, super-
pixels (second row) provide coarser detail, as they are limited by the size of the patches.
This suggests that the DFF-generated explanations could lead to a visible advantage
in terms of comprehensiveness and completeness; we further test these hypotheses by
running a human evaluation, in Section 5.5.

5.4.3.2 | Semantics-guided explanations are efficient

In order for superpixel-based explanations to achieve a level of detail comparable to
DFF, we need to significantly increase the number of patches. However, this causes an
exponential surge in computing cost, which makes it unfeasible to run, especially if we
are testing large models. This issue can be mitigated by performing deterministic Kernel
SHAP sampling (as described in Section 5.3.1). Combining the exponential growth of
the sample space, and the limited sampling budget can easily lead to unreliable expla-
nations. An example is shown in Figure 5.9 where we perform Kernel SHAP sampling
using superpixel’s features at increasing number of patches (i.e. 16, 64, 256) in order to
increase the detail of the explanation (i.e. smaller patches). In order to make a fair cost
comparison we keep a fixed sampling budget of 2048 samples, which is the same budget
used to compute the DFF explanation in Figure 5.7.

Positively contributing regions, corresponding roughly to the glass in Figure 5.9a,
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Figure 5.10: Binary feature masks extracted using DFF with k = 10. The 11th feature is
the leftover mask. The original image is the same shown in Figure 5.7 and Figure 5.9.

change inconsistently for Figure 5.9b and 5.9c, due to the exponential growth of the
feature combination space, resulting in unreliable explanations.

On the other hand, DFF does not suffer from this issue. In fact, there is no clear
advantage in increasing the number of features, because the main semantic content is
usually embedded in a small number of features. In our experiments, we established
that a good number of features for DFF is between 8 and 12. This number of features
keeps the computational cost low, allowing us to compute full Kernel SHAP or Kernel
SHAP sampling with very high accuracy.

5.4.4 | Semantic features analysis
The semantic features extracted by DFF are drastically different from superpixel features
in many key aspects related to the visual content captured. Moreover, DFF is unsuper-
vised and dynamically exploits the visual backbone’s priors. In this Section, we focus
on analyzing the benefits and limitations characterizing the semantic features gener-
ated by DFF. We discuss in detail key aspects like the kind of semantic content captured
along with possible theoretical implications and how it can be generalized over different
visual backbones.

121



Chapter 5. How to explain High-level descriptions in VL generative models 5.4. Experiments

(a) Overlapping features

80

60

40

20

0

20

40

60

80

(b) Non-disjoint features

80

60

40

20

0

20

40

60

80

(c) Disjoint features

Figure 5.11: Example of overlap (highlighted in red) between two feature masks (Fig-
ure 5.11a) and comparison between visual explanations generated given the question
"What is the subject doing?" and the model’s answer "drinking". We compare regu-
lar DFF features (Figure 5.11b) and disjoint DFF features (Figure 5.11c). Although the
masks overlap only to a small extent, the explanation is visibly affected.

5.4.4.1 | What kind of semantics do DFF features capture?

DFF features capture semantic concepts learned by the model’s visual backbone. These
do not necessarily follow human visual expectations. In Figure 5.10 we show an exam-
ple: features 1, 2, and 8 can be associated with three main semantic objects and entities
of the image shown in Figure 5.7, namely face, glass and shirt. However, we observe in
the remaining features several geometrical patterns, that highlight the edges and the
corners of the pictures. This pattern is recurrent in the features extracted by DFF, in-
dependently of the visual content. We believe this is partially due to the capability of
CNNs to capture spatial configuration (Zeiler and Fergus, 2014) and the effectiveness of
DFF in factorizing together model activations with similar characteristics.

5.4.4.2 | Relaxing the feature independence assumption

As described in Section 5.2.2, SHAP in the cooperative game formulation assumes the
feature independence principle, namely that each feature is independent of all the others.
However, this assumption does not hold for image data since each pixel is inherently
dependent on the other pixels, especially those in its vicinity. Therefore, in order to
work with visual data, this constraint needs to be relaxed. This solution is typically
applied for computer vision tasks by graphical models like Conditional Random Fields
(CRF). CRFs relax the strong independence assumption on the observations (the pixels
of the image) by modeling the joint distribution of observations, usually intractable, as
a conditional distribution (Li et al., 2022d).

Along the same lines, superpixel features relax this constraint by partitioning the
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image into patches that are not independent, considering the underlying semantics de-
picted in the visual content.

This issue is mitigated by the DFF features, as they tend to cover semantically related
regions of the image, preserving the underlying visual semantics. On the other hand, as
pointed out in Section 5.3.2.2, DFF features are not disjoint, meaning that to some extent,
the contribution of overlapping regions is subject to contamination from other regions.
In this section, we analyse the consequences of this in more detail. Our analysis follows
two steps:

1. We measured the DFF feature overlap over a sample of 1000 images; finding that
the amount of overlap among the feature masks corresponds to 0.77% of the pixels
in the image with a standard deviation of 0.63 and an average maximum peak of
2.04%. This suggests that this phenomenon is present to a limited extent, at least
for the model we are using.

2. We compared visual explanations generated by disjoint and non-disjoint features.
In order to generate disjoint features, we post-process the feature masks extracted,
by checking all possible pairs of feature masks and assigning the possible over-
lapping region to one of the two compared features. An example is shown in Fig-
ure 5.11a where the overlapping regions (highlighted in red) between two feature
masks are randomly assigned to one of the features (either blue or green).

Enforcing the features’ disjointness leads to similar results to their non-disjoint coun-
terpart. However, in some cases, the re-allocation of the overlapped region impacts the
Shapley value of the feature, causing unpredictable results. This suggests that manu-
ally changing the feature masks can disruptively affect the visual semantics captured
by the feature, leading to misleading visual explanations. A cherry-picked example is
shown in Figure 5.11, where using the disjoint features (Figure 5.11c) causes a substan-
tive change in the visual explanation.

In conclusion, we observe that the phenomenon of non-disjoint features is present
to a limited extent and overall it does not invalidate the visual explanations, as it can
be considered a relaxation of the feature independence assumption. Moreover, as em-
pirically observed, relaxing this assumption is unlikely to invalidate the method, as the
explanation is consistent with the ones generated by superpixel features. On the other
hand, we observe that forcing the feature masks’ disjointness harms their capability
to preserve the visual semantics, leading to misleading visual explanations.
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Figure 5.12: RBO scores computed between normalized and unnormalized Shapley val-
ues, for positive (blue), negative (orange), and all (green) features.

5.4.4.3 | Does feature size matter?

Different from superpixel patches, DFF semantic features can have different sizes, de-
pending on the semantic role of the highlighted region. We ask to what extent the size
of a visual feature could affect the final contribution in the SHAP cooperative game. In
order to test for that, we normalized the Shapley value obtained according to the size of
the feature mask and we compared normalised values with the unnormalized ones. To
normalize a Shapley value we computed:

ri =
∑|Mi |

j=0 mj

|Mi|

âi =
ai

ri

(5.6)

where mj is a non-zero element of the binary mask, |Mi| is the total number of entries in
mask i and ri indicates the proportion of the image covered by the mask. ri is then used
to discount the magnitude of the Shapley value ai obtaining the normalized value âi.

In the normalization process, the feature contribution’s magnitude is obviously re-
scaled. However, we are interested in measuring to what extent the normalization has
affected the features’ importance in relative terms. Therefore, we used the RBO (Webber
et al., 2010), a similarity metric for ranked lists, to measure the difference in the feature
attribution ranking after normalization for a sample of 100 DFF-based explanations. A
significant change in feature ranking would entail a positive correlation between size
and feature importance.

In Figure 5.12 we show the results of this experiment: the RBO is overall at ceiling,
with a minimum value, including outliers, greater than 0.9 (in a range where 1 is iden-
tical ranking and 0 is totally different). The positive contributions, which are the most
informative to understand the explanations, are the most stable in terms of ranking.
This suggests that the size of the features extracted using DFF does not significantly
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ViT Features DFF
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Figure 5.13: Schematic example of how to generate semantic features with DFF from a
ViT visual backbone. The index of the highlighted band in the heatmap is used to select
the patches to create the feature.

affect the final contribution of the semantic features and does not harm the visual
explanations.

5.4.5 | Does DFF adapt to other visual backbones?
DFF is designed to perform concept discovery in CNN-based visual backbones. How-
ever, current pre-trained VL models’ vision encoders often rely on different architec-
tures, such as ViT (Dosovitskiy et al., 2020b), Faster Recurrent CNN (FRCNN) (Ren et al.,
2015b), or their variants. In this section, we show how DFF can be adapted to these ar-
chitectures. Moreover, we provide an alternative solution to perform model-agnostic
semantic feature extraction, which is applicable to any architecture.

Vision Transformers In order to apply DFF to ViT encodings, we need to take into
account two substantial differences with respect to CNNs: (1) firstly, ViT splits the image
into a grid of patches and generates an embedding vector for each patch. To obtain an
activation matrix, each embedding vector is stacked together and a special vector is
added in position 0 to indicate the beginning of the sequence. Differently from CNNs,
the spatial information related to a patch is lost in the encoding process and added later
on, by concatenating a positional embedding to the embedding vectors. (2) Secondly,
ViT activations contain both positive and negative values, differently from CNNs which
generate only positive activations.

As described in Section 5.3.2.2, DFF requires a non-negative activation matrix as it is
based on NMF, therefore in order to address (2) we normalize the ViT features to values
between 0 and 1.

As a consequence of (1) above, when we apply DFF to the normalized ViT activa-
tions, we obtain binary masks with vertical bands, where each band corresponds to a
patch in the image. We used the index of the highlighted vectors in the binary mask to
select the patches to be grouped together in the semantic features. In this way, we ob-
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Figure 5.14: Schematic example of how to generate semantic features with DFF from a
FRCNN visual backbone. The index of the highlighted band in the binary mask is used
to select the bounding boxes corresponding to objects that compose the input features.
However, the bounding boxes highly overlap with each other and cover the majority of
the pixels in the image.

tained feature masks by grouping together semantically related patches. A schematic
example is depicted in Figure 5.13.

FasterRCNNs are often used as feature extractors in VL models (Anderson et al., 2018;
Tan and Bansal, 2019; Zhang et al., 2021). They extract feature vectors representing
bounding boxes of salient objects identified in the image. Similarly to ViT, the FRCNN’s
activation matrix is a stack of feature vectors, therefore we can extract semantic features,
similarly to the method described in Section 5.4.5. However, FRCNNs tend to extract
highly overlapping bounding boxes, which results in massively redundant semantic
features. This prevents the features from effectively selecting specific semantic content,
as they often result in sharing most of the selected area. A schematic example is shown
in Figure 5.14, where although DFF manages to cluster semantically related boxes (like
collar, man, neck, sleeve), it ends up selecting a large portion of the image in a single input
feature.

An excessive amount of overlap among the features affects their capability to iden-
tify specific semantic concepts. Thus, we conclude that DFF can be adapted to FRCNN’s
features but does not produce the desired results of capturing enough fine-grained se-
mantic concepts to support informative explanations. In the following subsection, we
describe an alternative route towards obtaining semantically meaningful visual regions
that can act as features for explaining VL models, in cases where the visual backbone
does not permit an application of bottom-up, unsupervised methods such as DFF.

5.4.5.1 | Beyond DFF: a model-agnostic semantic feature extraction

As shown in the previous sections:
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(a) DFF (CNN) (b) DFF (ViT) (c) STEGO (d) Superpixel

Figure 5.15: Direct comparison of explanations generated for the caption "riding a dirt
bike" from different visual backbones and methods. The two leftmost explanations (Fig-
ures 5.15a and 5.15b) are generated from features extracted using DFF and activations
of different visual backbones, namely a CNN (Figure 5.15a) and ViT(Figure 5.15b). Fig-
ure 5.15c uses semantic masks extracted by a segmentation model (STEGO) and 5.15d
uses superpixel features. All the explanations have comparable compute costs, apart
from Figure 5.15c, where only 6 features are used.

■ the full potential of DFF is evident when applied to CNN-based models;

■ it can be adapted to extract features from ViT models, though these features are
less detailed due to the initial discretization of the image into patches operated by
the model;

■ it does not produce satisfactory results on FRCNN activations, because of the re-
dundancy of the bounding boxes extracted by the model.

In order to address limitations coming from the visual backbone’s architecture (e.g.
in the case of FRCNNs), we propose to use STEGO (Hamilton et al., 2022)3 a SOTA
segmentation model, to extract semantic feature masks. It is unsupervised, meaning
that it does not require ground truth labels. As a consequence, the number of features
extracted can not be controlled, though in our experiment we observe that it extracts a
small number of semantic masks (usually less than 10). This keeps the Shapley value
computation low but could limit the number of semantic concepts captured, differently
from DFF where the number of features is a controllable hyperparameter.

The biggest advantage of using an off-the-self segmentation model is that it supports
the generation of visual explanations, independently of the visual backbone’s architec-
ture. On the other hand, we have the downside of no longer relying on the priors of the
visual backbone embedded in the captioning model itself. In other words, by using a

3At the time of this work, STEGO was a SOTA model for semantic segmentation. However, the ap-
proach proposed here is agnostic as to the segmentation model used. For example, Segment Anything
(Kirillov et al., 2023), a more recent model proposed after the present experiments were completed could
yield better results.
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segmentation model we exploit external visual priors which are independent from the
VL model we want to explain.

In Figure 5.15 we directly compare the visual explanations generated by all methods,
DFF on CNN and ViT (Figures 5.15a and 5.15b), STEGO (Figure 5.15c), and superpixel
(Figure 5.15d). All the explanations were generated with similar compute costs, apart
from STEGO which uses a smaller amount of features (6). As expected, the explanations
generated with STEGO’s semantic features are more fine-grained than the others, as
the model is trained on the semantic segmentation task. However, they come from an
external model and do not necessarily reflect the visual priors of the VL model itself.
Nevertheless, this provides a flexible solution to adapt the explanation of VL models
with visual priors to any visual backbone. Furthermore, any segmentation model can
in principle be used.

5.4.6 | Discussion
We have now all the elements needed to answer the question posed at the beginning of
this Section, namely:What are the pros and cons of our method based on visual semantic priors
in comparison with standard feature selection methods used in VL, based on superpixels?.

Exploiting the model’s visual priors exposes several significant advantages with re-
spect to standard superpixel features. As shown in Section 5.4.3 input features based
on the model’s visual priors provide more semantically detailed explanations namely,
they succeed in emphasizing salient semantic relevant elements to a higher extent in
the image, providing also information regarding the intensity of the area of contribu-
tion. The semantic nature of the inputs produces more comprehensive explanations
(Section 5.4.3.1) than standard superpixel features at a lower compute cost, thus being
also more efficient (Section 5.4.3.2).

However, the introduction of semantic visual features introduces several potential
issues that we have thoroughly analysed in this section. From the theoretical point of
view, our method requires a relaxation of the feature independence assumption (Sec-
tion 5.4.4.2) which however, does not compromise the validity of the underlying core
method (i.e. KernelSHAP) as we empirically show that non-disjoint features do not
significantly affect the visual explanation. In fact, forcing the disjointness of semantic
features leads to misleading visual explanations. Similarly, different sizes in the input
feature dimension, do not significantly affect the final contribution, as we show (in Sec-
tion 5.4.4.3). Our method is flexible enough to be adapted to Vision Transformers other
than CNNs; however, it adapts with difficulty to FRCNNs (as discussed in Section 5.4.5).
To overcome this issue we propose using an off-the-self semantic segmentation model
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to extract semantic visual features. In light of our work, which finds its primary moti-
vation in exploiting the model’s internal semantic priors, we argue that this solution is
not optimal, as it relies on external semantic priors. However, it is a reasonable trade-off
that allows us to deal with architectures that do not accommodate DFF to extract such
priors.

5.5 | Human Evaluation
The experiments in the previous section made direct comparisons between our method
and superpixel-based explanations for VL generative models. In this section, we report
on an evaluation of human participants aiming to assess the benefits and potential limits
of our method for human users.

Evaluating XAI techniques is a notoriously challenging task (e.g. Adebayo et al.,
2022; Nauta et al., 2023). Here, we take inspiration from the work of Hoffman et al.
(2018) and compare the judgments of participants on three qualities, namely detail, sat-
isfaction and completeness of explanations generated using the two methods under con-
sideration.

5.5.1 | Participants
For the purposes of this study, it is important to source judgments from participants
who are knowledgeable about machine learning and explainable AI. Relying on crowd-
sourcing is a risky strategy, as there is no guarantee that participants will be in a position
to evaluate explanations rather than, say, the quality of model outputs. We therefore
recruited 14 researchers (9 male, 5 female; 9 aged 18− 30, 4 aged 31− 40, 1 aged 41− 50)
from our own network. All were researchers in AI-related fields and were familiar with
XAI methods. Two of these were senior researchers who obtained their PhD more than
5 years ago; all the others were doctoral students at the time the experiment was run.
Six participants were native speakers of English; the remainder are fluent or near-fluent
speakers.

5.5.2 | Design and materials
We randomly selected 40 images from the HL dataset, for which we generated the cor-
responding answers to questions. In order to create a more challenging scenario, we
framed it into a visual question-answering task, thus for each image, we selected one
of the available questions and generate the corresponding caption. Moreover, for each
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Figure 5.16: Distribution of the Likert scores obtained in the human evaluation for detail,
completeness and satisfaction for both DFF in (orange) and superpixel (in blue). The lower
the score the higher the rating.

image-caption pair, we generated visual explanations using both DFF and superpixel
features.

Each participant was shown the question, the generated answer, the original image,
and the visual explanation which can be either generated by DFF or by superpixel. In
order to counterbalance the experimental materials, we divided images randomly into
two groups, and further assigned participants randomly to two groups. We rotated
items through a 2 (participant group) × 2 (image group) Latin square, such that par-
ticipants in any experimental group evaluated all images, but each image was always
seen once and evaluated in only one condition (DFF or superpixel).4 The participants
were asked to judge explanations based on their agreement with each of the following
statements:

■ Detail: the areas highlighted in the explanation are detailed enough to understand
how the model generated the caption;

■ Completeness: the highlighted areas cover all the regions relevant to the caption;

■ Satisfaction: based on the areas highlighted in the explanation I feel that I under-
stand how the system explained makes its decisions.

Responses to each dimension were given on a Likert scale from 1 to 5, where 1 corre-
sponds to the total agreement and 5 to total disagreement. For the full evaluation form
see Appendix C.

4In the end, the experiment was completed by 8 participants in one group, and 6 in the other.
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5.5.3 | Results
As shown in Figure 5.16, DFF-based explanations (in orange) are considered on par
with superpixel-based explanations (in blue) in terms of completeness, but at the same
time, they are considered more detailed and more satisfactory for human judges. Thus,
the score distributions for detail and satisfaction are skewed towards lower scores (the
lower the score the higher the rating).

Although the superpixel and DFF methods differ in the judged level of detail of the
explanations, they yield attributions that are similarly located in the input image. This
is in part due to the fact that in both cases, we are using the same feature attribution
method, namely Kernel SHAP. However, in some cases, we observe a certain degree
of divergence in the visual explanation, meaning that the two methods assign opposite
attributions to similar regions. In Figure 5.17 we show an example where we generate
explanations for the question “Where is the picture taken?" and the generated caption
“on a dirty road".

The DFF-based explanation (on the right) broadly assigns a positive attribution to
the background of the picture, depicting the road, and negative attributions to the sub-
jects, namely the person and the animals. However, the superpixel-based explanation
(on the left) assigns attributions to patches that are, at least partially, in contrast with the
DFF-based explanation.

This is probably due to the particular configuration of features selected by both
methods, which in some instances might select insufficiently detailed regions, prevent-
ing the method from highlighting the semantically relevant areas of the image.

In order to quantify this phenomenon we manually inspected the 40 samples used in
the human evaluation. We found that around 10% of the explanations diverged to some
extent between the two feature selection methods. We analyzed separately this sub-
sample of divergent explanations. As reported in Table 5.2, the average scores given by
experimental participants for this subset are overall slightly worse (higher) than the full
results (see supplementary material for details).

Nevertheless, the trends observed in relation to Figure 5.16 for the three evaluation
criteria still hold. This suggests that this phenomenon does not significantly affect the
participants’ judgments, except for a slight drop in the perceived quality of the expla-
nations.

Impact of caption quality In qualitative feedback given by participants, some de-
clared that in some instances, their assessment was affected by the correctness of the
caption, which in some cases was considered wrong or partially inaccurate. We quan-
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Figure 5.17: Comparison of divergent explanations for the question: "Where is the pic-
ture taken?" and generated caption: "on a dirty road", obtained from superpixel features
(on the left) and DFF features (on the right).

Type Metric Mean Std Median

SP
completeness 2.48 1.38 2.0
detail 2.46 1.42 2.0
satisfaction 2.51 1.51 2.0

DFF
completeness 2.50 1.45 2.0
detail 2.18 1.41 2.0
satisfaction 2.32 1.48 2.0

Table 5.2: Results of the human evaluation, for superpixel-based (SP) and DFF-based
(DFF) visual explanation. We report the mean, the standard deviation (std), and the
median of the Likert scores. The lower the score the more positive the rating.

tified the inaccuracy of the caption by computing their lexical and semantic similarity
with respect to the reference captions, using respectively, BLEU (Papineni et al., 2002b)
and Sentence-Bert (Reimers and Gurevych, 2019). We computed the Pearson correlation
(Cohen et al., 2009) between the Likert scores and the lexical and semantic similarity pre-
viously computed. As expected, given that 1 is maximum agreement and 5 is minimum,
the Likert scores slightly but not significantly negatively correlate with both lexical and
semantic similarity (ρ = −0.023 for lexical similarity and ρ = −0.004 for semantic sim-
ilarity)5. This suggests that despite the fact that participants did note the quality of the
captions, this did not significantly affect their judgments of the explanations.

In conclusion, we find that assessing visual explanations is a hard task even for
specialists in the field. We observe a relatively low inter-annotator agreement for both
groups in the Likert judgments (Krippendorff’s α = 0.23 (Krippendorff, 2004)). How-

5Note that since in the Likert score, 1 is the maximum agreement and 5 the minimum, a positive corre-
lation corresponds to a negative ρ.
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ever, besides possible confounding factors, like inaccuracies of the captions and diver-
gent explanations, the DFF-based explanations are generally perceived as higher quality
explanations than superpixel-based ones.

5.6 | Summary
In this Chapter, we proposed an explainability framework to bridge the gap between
multimodality and explainability in image-to-text generative tasks exploiting textual
and visual semantics. Our method is developed around SHAP, as it provides a model-
agnostic solution with solid theory and desirable properties. We design our approach
to address certain crucial limitations of current approaches

First, SHAP-based methods are rarely employed to explain large models as they
are extremely expensive to compute. Our solution is efficient and allows an accurate
approximation of the Shapley values.

Second, we overcome the limitations of current token-by-token explanations by propos-
ing sentence-based explanations exploiting semantic textual variations which are also
more efficient to compute.

Finally, based on the rationale that a model’s generative outputs should be explained
with reference to the knowledge encoded by the visual backbone, we proposed an un-
supervised method based on DFF to extract semantically informative visual features.
Using these features rather than superpixels means that we obtain explanations that are
cheaper (insofar as more can be gleaned from fewer features) but also more intuitive,
especially when compared to superpixel-based approaches.

We took a self-critical stand on our approach by further studying potential limi-
tations araising from the modifications made to adapt Kernel SHAP to a multimodal
setting.

We observed that semantic features extracted with DFF may overlap with each other
and therefore may generate non-disjoint features. This directly affects the assumption
of feature independence, which is a theoretical requirement for SHAP. However, we
study (in Section 5.4.4.2) the extent to which this phenomenon is present and how it
affects the outcome of our method finding that it does not significantly affect our visual
explanations. Thus, our method features a relaxation of this assumption.

Furthermore, the semantic feature extraction, namely DFF, is designed to extract vi-
sual priors from CNN-based models. In Section 5.4.5.1, we showed that this method can
successfully adapt to Vision Transformers, but not to FasterRCNNs. To overcome this
limitation we proposed to use an off-the-shelf segmentation method to extract semantic
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features. This solution supports visual explanation, independently of the visual back-
bone’s architecture. However, in view of the motivation of our work, whose main goal
is to exploit the model’s visual priors to explain its own predictions, we argue that this
solution is not optimal, as it relies on external visual priors (i.e. a third-party semantic
segmentation model), though, on the other end offers great flexibility to our framework.

Through a human evaluation (Section 5.5), we showed that using semantic priors
improves the perceived quality of the explanation, resulting in more detailed and satis-
factory explanations than superpixels though matching the same level of completeness.

We leveraged experts in AI as annotators for our evaluations. However, we are
aware that evaluating visual explanations for humans can be a hard task. In particular,
the task of evaluating XAI is ambiguous, since evaluators are asked to judge the quality
of explanations, which is in principle distinct from the quality of model outputs (that
is, one can have a satisfactory explanation of an incorrect or infelicitous output). As the
qualitative feedback from our evaluation suggests, keeping output quality and expla-
nation quality separate is not always an easy task and this may influence the evaluation
outcomes.

Ultimately, our framework is totally modular and it can co-exist with a wide range
of possible configurations for all of its components. For example, it is possible to pro-
duce token-by-token explanations and still rely on DFF to extract visual features. The
core method, Kernel SHAP, can be replaced with another SHAP-based method, and the
visual features can be extracted with one of the proposed methods or with any other
method of choice.

In this Chapter, we presented an explainability framework for VL generative models
with the main goal to expand and popularize XAI methods for generative multimodal
setups. Our framework is model-agnostic and allows to compute efficiently sentence-
based visual explanations exploiting the visual priors learned by the model. We dis-
cussed benefits and potential limitations providing empirical evidences of the correct-
ness of our method, hoping to provide with a useful contribution for the community
and foster further research in this direction.
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6

Conclusions

6.1 | What have we learned?
We summarise what we have been able to learn from this thesis, focusing on the main
findings addressing our research questions.

To what extent do current VL generative models ground high-level information? To
address this question, as anticipated in Section1.3, we developed a dataset which per-
mits the evaluation of such models in a controlled set of conditions.

In Chapter 1, we argued that VL research has to date been predominantly interested
in grounding low-level information, namely objects and entities depicted in the visual
content (Hodosh et al., 2013b). Although this is an essential capability to achieve good
performance on downstream tasks, it does not tell us much about the capability of VL
models to handle high-level descriptions. Such descriptions express high-level informa-
tion that is often used in human communication (Schank and Abelson, 1975) and form a
large part of the language, which is grounded in the perceptual world (Bisk et al., 2020).

To fill this gap we collected a new dataset, the HL Dataset (Cafagna et al., 2023b),
aligning existing images and low-level captions with crowd-sourced high-level descrip-
tions. Our dataset leverages two levels of abstraction, namely low- and high-level. We
characterise as “low-level” those captions that capture all the information described at
the level of objects and entities visible in the image. As discussed in Section 1.2.2 and
more in detail in Section 2.3.2, low-level information is already present in the current
curated and web-crawled VL datasets. However, in the latter, objectivity is enforced
through automatic filtering pipelines which do not guarantee the absolute absence of
high-level information in the captions (Van Miltenburg, 2016). By “high-level informa-
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tion”, on the other hand, we intend all that knowledge not directly present in the visual
content, but inferable through interpretation based on common assumptions.

With this conceptual definition in mind, we extended an existing VL dataset, namely
COCO (Chen et al., 2015b) with high-level descriptions of scenes, actions and rationales,
by asking annotators to interpret the image based on their assumptions and knowl-
edge of the world. Given the intrinsic subjectivity of high-level captions, we took a
step further and collected confidence scores in order to measure the plausibility of these
captions with respect to the image. These elements altogether provided a unique com-
bination that can be used to analyze linguistic differences between high- and low-level
information as well as find multimodal connections between concepts related to them.
This is directly implemented in the analyses presented in Chapter 4, where we focused
on the scene axis, motivated by the particular interest shared by cognitive sciences and
multimodal AI research in studying scene perception in humans and how this could
help improving multimodal models.

Moreover, the confidence scores provide an additional dimension to reason upon in
terms of personal interpretation and general common sense. These aspects are analysed
in Section 3.4.

The HL dataset finds interesting application also in generative tasks. It can be used
to generate high-level captions, as shown in Section 3.5 as well as narrative-like cap-
tions. In Section 3.6 we presented a case study where we used a combination of high-
level captions to generate short “narrative”, which describes the scene, action and ratio-
nale in tandem. Finally, in Section 3.7 we discussed further potential uses not covered
in the scope of this thesis.

Our dataset provides a controlled environment where multiple levels of lingustic
abstraction are systematically aligned with images. This alignment enabled us to delve
deeper into our investigation, specifically addressing RQ1. Focusing on scene descrip-
tions in Chapter 4, we first analysed the capability of current VL models to handle scene
descriptions (Section 4.3) and then we studied the impact of the exposure VL models’
representations to scene descriptions in generative settings.

In our zero-shot analysis in Section 4.3, we observed that some, but not all, VL mod-
els can handle scene descriptions despite being trained on object-centric textual data.
However, this was observed under two conditions: large-scale data pre-training and (ii)
an image-sentence alignment modeled through a contrastive pre-training loss. More-
over, when scene-description grounding was successful, the model leveraged object-
level visual information, showing the ability to relate typical objects to the scene, simi-
larly to human scene understanding (Vo, 2021; Võ and Wolfe, 2013).

After establishing that the pre-trained VL model can to some extent ground high-
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level expression, we followed up our investigation by asking: (i) Can we adapt pre-trained
VL models to generate high-level expressions? and (ii) How does direct exposure to such data
impact the model?

To answer these questions, we focused on VL generative settings. We directly ad-
dressed (i) in Section 3.5, where we showed that VL generative models can easily be
adapted to generate high-level descriptions (i.e. scenes, action, and rationales) through
fine-tuning. In Section 4.4, we tackled (ii) by performing an in-depth analysis of the
impact of the fine-tuning. We found that the models’ representations are rich enough
to support scene descriptions; however, fine-tuning helps to bridge the gap with infre-
quent scene types which might have a less robust representation. The largest impact
was observed in the attention mechanism which features a different distribution of the
attentional resources. This was confirmed by both qualitative and quantitative experi-
ments. In other words, in order to handle scene descriptions, the model re-distributed
the attentional resource more evenly over the visual tokens, suggesting a more “holistic”
view of the scene, still retraining the capability to rely on diagnostic object information.
We concluded that the model’s ability to generate scene-level captions are primarily
acquired through a change in the self-attention.

How can XAI methods be extended to provide a reliable window on model perfor-
mance with linguistic expressions at different levels? In Chapter 5, we proposed an
explainability framework to bridge the gap between multimodality and explainability
in image-to-text generative tasks exploiting visual semantics. Our method is developed
around KernelSHAP (Lundberg and Lee, 2017), hence, it is model-agnostic and benefits
from all the properties defined in the SHAP framework as well as a solid mathemati-
cal definition. We exploited textual semantic representations to allow sentence-based
explanations, as opposed to standard token-based explanations. This solution is more
suitable for explaining high-level expressions whose meaning often relies on the whole
sentence rather than single words. Moreover, as an additional benefit, sentence-based
explanations are more efficient than token-based. The semantic representations of the
visual modality is central in our framework, as it is a key element to producing efficient
as well as meaningful explanations. By exploiting visual priors in the model’s visual
backbone we reduced the KernelSHAP overall compute cost if compared to traditional
superpixel-based explanations.

Efficiency is a critical element to be taken into account to make the SHAP methods
realistically applicable in deep learning settings such as VL. On this front, we developed
a deterministic approximation version of KernelSHAP which allows a higher degree of
efficiency. Our experiments showed that our method provides a good approximation of
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the Shapley value even with low-computing capability hardware.

Finally, we ran a human validation to assess the quality of our explanations in com-
parison with traditional methods. Results showed that exploiting the visual semantics
produced more detailed explanations as well as similar in terms of consistency and sat-
isfaction with superpixel-based ones.

6.2 | Future Work and Open Questions
Given the results summarised above, we identify some possible directions for future
work. Although we bound the notion of high-level descriptions to three aspect of the
image, namely scene, action and rationale, we are aware that an image could be appraised
on many high-level aspects such as the temporal (When was the picture taken? What
might happen next/before?) or the relevance (What strikes you as interesting in this picture?).
Our notion of ”high-level description“, could be expanded and refined to accommodate
more then two level of abstraction (high- and low-level) opening to further research in
this direction.

In Section 4.4 we observe that the capability to generalise to high-level scene de-
scriptions with an object-centric pre-training is linked to two main factors: large-scale
pretraining dataset and contrastive loss. Starting from these observations, it would be
interesting to investigate further this connection: (i) are these two factors equally impor-
tant?; (ii) could this be due to some leak of high-level information in large web-crawled datasets?
or (iii) does the large exposure to object-centric information trigger high-level information gen-
eralisation?. A positive answer to the latter question would be of significant interest, as
it would imply a scalable emerging capability to infer high-level information starting
from object-level information. Moreover, the analysis performed in Chapter 4 could be
expanded to actions and rationales.

As discussed in Section 3.7, the HL Dataset could enable potential tasks and use
cases that have not been explored in this thesis. One of the most interesting unexplored
features of this dataset is the confidence score. As already pointed out, an interesting
direction for future work is to use them as a training signal to generate captions with
different confidence levels.

In Chapter 5 we present a framework to generate sentence-based explanations for
VL generative models exploiting semantic priors. We identify some technical limitations
that are addressed empirically. On the evaluation front, the human evaluation could
be improved to accommodate a more fine-grained assessment of the explanations and
understand in which context these kinds of explanations benefit the user the most.
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6.3 | Final remarks
Starting from the simple idea that an image can be appraised by at least two levels of
abstraction, in this thesis, we argue that previous VL research has been focusing on
the linguistic grounding of only one of them, namely low-level. In Chapter 2 we em-
phasized the importance of high-level information in human communication and the
potential benefits from the understanding of how this information can be grounded in
VL models. Hence, to fill this gap, in Chapter 3 we introduced the HL dataset, a new
crowd-sourced dataset that aligns images with low- and high-level descriptions. This
data improves our understanding of the high- and low-level information interplay and
how we can combine them to enable new VL tasks and benchmarks. In Chapter 4, we
used part of this data to study how VL models handle high-level information and how
it impacts their inner workings. Leveraging high-level information poses new chal-
lenges to explainability techniques in VL research, where XAI is still lagging behind. In
Chapter 5 we introduced a new explainability framework suitable to explain VL mod-
els handling high-level as well as low-level information by exploiting visual semantics.
Our framework can be used in combination with previous techniques, and bring signif-
icant improvement in terms of efficiency, constituting a relevant advancement to XAI
applied to VL in generative settings.

Our findings reveal several mechanisms involved in this process and enable us to
draw parallels with human cognition. However, we do not claim that VL models are
models of the mind. Rather, we demonstrate that VL models establish multimodal con-
nections based on relatively simple mechanisms that rely mainly on correlations and
statistics learned from the data. This conclusion raises the question of whether we can
use these mechanisms to our advantage to develop more transparent and less data-
intensive VL models. In other words, do we really need so much data and so many
parameters to learn these multimodal connection? After all, we found that they rely
on a few simple mechanisms to model such connections, such as the attention and par-
ticular objective functions. The quality of the data seems to be the key to enable these
models the capability to ground more complex relationships.

We hope that our contributions will inspire further research on high-level grounding
in VL and foster a more general approach to multimodal grounding in the field.
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A.1 | Annotation Details
It is important to note that the instructions, shown in Figure A.1 were always visible to
the workers during the data collection.

A.2 | Annotation Costs
In this section, we report the costs related to the data collection.

High-level caption collection Overall, 1033 participants took part in the caption data
collection, they were paid $ 0.04 per item corresponding to the hourly minimum rate in
the United Kingdom. In total, the data collection cost $ 1938.

Confidence Scores collection The qualification task for confidence scores led to the
recruitment of 53 annotators. We found that this task was harder than the high-level
caption annotation in terms of complexity but not in terms of execution time which was
indeed shorter. Therefore, in order to encourage good quality annotations, we pay $
0.04 per item. Considering the time needed to perform the task, this corresponds to 4
times the hourly rate of the minimum wage in the United Kingdom. The qualification
task and the data collection cost respectively $ 93 and $ 1938.

A.3 | Item-based analysis
An item in the HL dataset is an image along with all the high-level captions of all the
axes. For instance, Figures A.2 and A.3 show the item-wise diversity score and purity score
distribution respectively, along with their average value across the whole dataset. An
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Instructions:
You are going to see some pictures. Each picture involves one or more people (’the subject’). You will
be asked some questions about the picture
Don’t think too much, feel free to give your personal interpretation using your knowledge or common
sense.
Try to answer using full English sentences. If you’re not sure what the answer could be, give your
best guess.
Avoid using expressions like "I think" or "I suppose"
or "Maybe.
Do not propose options or possibilities saying for instance: something "or" something else. Make
your best guess and state the one you choose.
Write a statement, don’t write a one-word answer, avoid acronyms or slangs and write a
full sentence.

1. Where is the picture taken: give your best guess about the type of place where the action is
happening (for example, "in a ski resort");

2. What is the subject doing: Try to describe what the people are doing as concisely as possible.
If there is more than one person, try to choose a description that captures what all of them are
doing (for example, "They are skiing")

3. Why is the subject doing it: here, write your best guess about why the person or persons are
doing the action (for example, "They are on a family holiday")

The What question and the Why question cannot have
the same answer.

The answers must be written correctly in English,
check the spell and most importantly don’t forget the
subject of the sentence in your answer (he, she, it,
they)

Figure A.1: Final version of the instructions presented to the workers during the collec-
tion of the high-level captions. These instructions are always visible to the annotators.

item on the right-hand side of the distribution is systematically more consistent across
its axes with respect to the measure considered (purity or diversity). This information
can be combined with confidence scores to perform a more fine-rained sample selection.
For example in zero-shot testing, we might want to use a hard sample to test our model
with, we can select items with similar lexicons, low-semantic purity, and low confidence
scores.

A.4 | Examples of narrative captions
In Figure A.4 we show examples of narrative caption generations from our fine-tuned
baselines.
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BLIP: they are playing football in a soccer field
and are spending time together
Gold (T5): They are playing in a stadium they
are in a game.

BLIP (FT): he skates in a snowy field and
wants to enjoy the ride.
Gold (T5): He is snowboarding in a ski resort
and he is on vacation.

ClipClap (FT): They are waiting for a bus to
take them to the bus station
Gold (T5): at the bus stops he needs to be
taken to his destination.

ClipClap (FT): He is skating on a skateboard
in a skate park.
Gold (T5): He is skateboarding at a skatepark
for fun.

GIT (FT): they are riding horses in the beach,
they want to go on vacation.
Gold (T5): They are riding in a beach, they are
in a trip..

GIT (FT): the cat is watching the dog in the
kitchen, it is watching television.
Gold (T5): Two cats are watching tv in a living
room and wait to be served food.

Figure A.4: Examples of captions generated by the fine-tuned (FT) models and corre-
sponding T5-generated (T5) data on the narrative caption generation task.
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B

B.1 | Image-sentence alignment details
Results for image-sentence alignment experiments are averages over three separate runs
for each model.

We leverage the transformers1 library implementation of LXMERT and standard
image-sentence alignment head and the original implementation of CLIP2.

CLIP and LXMERT are tested on the standard alignment task: given an image and
either the correct caption or a random caption, the model needs to determine whether
the caption correctly aligns with the image.

We use the publicly available implementation of VisualBERT.3 The image-sentence
alignment setting for this model is somewhat different since alignment is modeled as
an extension of the next-sentence prediction task in unimodal BERT. VisualBERT takes
an image and a correct caption, together with a second caption, which may be correct
or randomly selected. The task is to predict whether the second caption correctly aligns
with the image+caption pair.

For all experiments, we truncate textual captions to a maximum length of 50 tokens,
following standard practice for such models, including CLIP.

B.2 | Scene vs entities Examples

1github.com/huggingface/transformers
2https://github.com/openai/CLIP
3https://github.com/uclanlp/visualbert
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Appendix B. B.3. Self-attention Details

motorcycle: 1% desert: 99% motorcycle: 96% forest: 4%

couch: 99% home: 1% couch: 22% home: 78%

street: 88% bus: 12% street: 1% bus: 99%

Figure B.1: Examples of zero-shot scene vs entity one-to-one comparison performed
with CLIP.

B.3 | Self-attention Details
Attention beyond Layer 1 At higher layers the attention converges on the special to-
ken [SEP], used to separate the text + object tags from the visual input, as shown in Fig-
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(a) Layer 1 (b) Layer 6

(c) Layer 12

Figure B.2: Attention matrices for layers 1, 6, and 12. The attention weights progres-
sively gather on the [SEP] token.

ure 4.8. A similar behaviour has been observed analysing BERT’s attention Clark et al.
(2019b).

Figure B.2 shows how this pattern becomes more pronounced as we move further
across the layers, preventing from observing any kind of input interplay. Although the
text, object tags and visual sequences can be of different lengths, the [SEP] token sits
always in the same position among the inputs, as the padding is always applied to keep
the text + object tags sequence of the same length. We believe that this regularity is used
by the model as a sort of pivot among the inputs. This can cause a high accumulation of
attentional resources by the model.
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C

C.1 | Human Evaluation
The instructions given to participants are shown in Figure C.1. The participant is asked
to measure the agreement with three statements related to detail, completeness and sat-
isfaction. Figure C.2 is an example of the form used by participants to evaluate each
item.
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Figure C.1: Instruction presented to the participants of the human evaluation.
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Figure C.2: Example of an item presented to the participants of the human evaluation.
It shows the question, the generated caption, the original image, and the visual expla-
nation. In this Figure, we show the statement related to detail.
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