
The Landscape of Markup Languages for Web
Service Composition

Monika Solanki1, Charlie Abela2

1 Software Technology Research Laboratory,
De Montfort University,

The Gateway, Leicester LE1 9BH, UK
E-mail:monika@dmu.ac.uk

2 CSAI Dept,
University of Malta,

MSD06. Malta
E-mail:cabe002@um.edu.mt

Abstract. Two of the most hyped technologies of recent times, are
”Web Services” and ”Semantic Web”. This is evident in the fact that
the Web service technology stack is overloaded with acronyms of these
developments. Markup languages for specifications of Web services are
set to play an important role, especially, in enabling dynamic service
discovery and composition by human users and software agents. There
is a plethora of languages, proposed by academic and industrial research
groups, for Service description, discovery, composition, execution and in-
terpretation with XML as their backbone. Some of these languages have
well defined underlying semantics, others are based on workflow pat-
terns, while a few have emerged as combinations of other independent
languages. With so many languages and each one of them proposed to be
a standard, it becomes imperative to critically analysis the merits and
demerits of these languages. In this paper we present a case study, to em-
phasis the salient features of some of these languages and compare them
with respect to attributes like expressiveness, support for the semantics,
supporting tools available, the core composition mechanism, support for
fault tolerance and exception handling. Our choice was motivated by the
industrial support behind them and/or sound academic research.

keywords: Web Services, composition, Semantic Web

1 Introduction and Motivation

The emphasis in Application Development today has shifted from tightly cou-
pled, monolithic, proprietary software to loosely coupled, dynamically bound
service based systems, comprising of distributed components provided by more
than one vendor. The current Web service model [13] enables service discovery
dynamically, using markup languages for describing service properties. However
it does not account, for automatic integration of one service with another. Ex-
tensive work has been done in the area of service discovery and matchmaking.



However, the dynamics of service composition still remains one of the most chal-
lenging aspects for researchers in academia and industry. In the present scenario,
configurations for Web services revolve around three main XML based technolo-
gies namely, Universal Description Discovery and Integration (UDDI)[15], Web
Services Description Language (WSDL)[11] and Simple Object Access Protocol
(SOAP)[8]. Several ongoing Industrial initiatives in the development of service
markup languages such as BPEL4WS [1], XLANG [12], WSFL[4], WSCI [7]
and have exploited these technologies. These have resulted in solution provid-
ing frameworks, which are targeted towards proprietary application development
environments. The languages may be syntactically sound, however they lack se-
mantics and expressiveness. Nonetheless, automated service recognition, mech-
anized service composition and service negotiation are still amiss from them.
Service Composition also remains one of the important goals of the Semantic
Web. Academic research has lead to development of Ontology Markup Lan-
guages such as DAML+OIL [2] and OWL [9]. A Web service ontology DAML-S
[14], defined through DAML+OIL, provides an ontology for service providers to
markup their services for intelligent agents to dynamically discover and compose.
However lack of adequate tool support restricts the practical adaptation of these
languages. Further, assuming that a majority of these languages do get stan-
dardized eventually, we are looking at a Web, where independent services would
be marked up with different languages. One of the problems we forsee here is
interoperability between the software agents trying to compose such disparately
marked up services. We would then need ontologies to establish mappings be-
tween the different languages. Such a scenario would also require compromise
with performances issues in terms of delay. Therefore, It is imperative that a
standard language for service composition be used. Recent efforts towards some
kind of standardization of these technologies has resulted in the creation of the
Web Services Choreography Working Group (WSC-WG). Figure 1 depicts a lay-
ered view of the currently available technologies for Web services.

In this paper,we aim to review the characteristics of some of the well established
markup languages for service composition (also referred to as ”Web service exe-
cution language” or ”Web service Orchestration language”) and compare them
with respect to those attributes. Our motives behind such a comparison is not to
show how certain features in a language, can be achieved through some means
in the others. We believe that a comparative analysis would bring forth the
strengths and weakness of each language and contribute towards the standard-
ization process. The structure of the paper is as follows. Section 2 presents re-
quirements that are needed to be satisfied by any service composition language.
This is followed by a brief summary of various well known service markup tech-
nologies in section 3. Section 4 presents a tabular comparison. of various key
attributes for these languages, namely,

– Expressivity of the language.
– Supporting tools available.
– Level of abstractness.

2



Fig. 1. Overview of present Web Services Technologies

– Core composition mechanism: the core technique used for service composi-
tion.

– Support for fault tolerance and exception handling.
– Support for the semantic layer of the Web.

An analysis of the comparison is presented in section 5 and we finally conclude
with some views on directions of future work in this area.

2 Requirements of a Web Service Composition language

– A composition language should be self sufficient to expose details of a service
like its profile, process model and binding mechanism.

– A composition language should be able to specify component interfaces in
an implementation independent manner.

– A composition language should support the development of reusable com-
ponent frameworks using basic programming control constructs.

– A composition language should provide support for state based process mod-
elling control constructs. The model should be able to handle sequential com-
position, concurrent constructs like split, fork, spilt+join, looping constructs
like iterate, repeat and while and nondeterministic constructs like choice and
switch. This also implies providing support for modelling subprocesses.

– A composition language should be able to specify process descriptions in
an abstract manner without binding to actual execution details to enable

3



reusable descriptions and also be able to model executable processes that
encapsulate the internal behaviour of a service.

– A composition language should expose modelling constructs that specify well
defined responsibilities for the players involved in the composition process
i.e. requestor agents, provider agents and the matchmaker.

– A composition language should be able to cater for fault tolerance,deadlock,
livelock and Exception handling mechanism.

– A composition language should be able to model component specifications
as abstractions of component behaviour.

– A composition language should expose models and protocols for binding of
the actual service.

– The composition language should be adequately expressive, have well defined
semantics and a robust underlying formal model, to facilitate automated
composition of services through software agents.

– A composition language should be able to explicitly model the order of mes-
sage passing between the requestor and provider and their implications on
the subsequent operations.

– A Composition language should be able to model constraints in the form
of rules to inhibit undesirable interactions between the services. This also
includes support for a transaction model and quality of service.

– Security and Privacy should form an integral part of any service composi-
tion language. The language must be able to model security as a functional
requirement of the composed system.

– A composition language should include support for ”pay-as-you-go-computing”
in the form of well defined constructs for the pricing models.

3 Markup Languages :A brief Summary

In the section, we present an overview of the languages currently proposed for
markup.1

1 The descriptions are only an overview and not meant to be complete in any respect.
Pls refer individual specifications for complete details.

4



3.1 Web Service Description Language (WSDL)

WSDL is an XML format for descriptions of abstract Web service functionality
and a framework for describing concrete Web service bindings. A WSDL de-
scription describes the abstract Web service interface through which a service
consumer communicates with a service provider, as well as the specific details
of how a given Web service has implemented that interface. Version 1.2 of the
WSDL specifications, describe it as a Component Model consisting of WSDL
components like messages (typed data elements) and operations (a set of input
and output messages), port types (a set of operations), bindings and services,
and type system components. Port types are reusable and can be bound to mul-
tiple ports. A binding component describes a concrete binding of a port type
component and associated operations to a particular concrete message format
and transmission protocol. The 1.2 specifications describe bindings for WSDL
with SOAP, HTTP and MIME. At a concrete level, a service component is a
collection of ports (network endpoints) with each port mapped to a port type.
The Types component is an abstract container for datatype schemas included or
imported in the service description. WSDL supports any schema provided the
semantics for it have been defined. By default W3C XML Schema support is
expected to be provided by all tools/editors/parsers for WSDL..

3.2 DAML+OIL and OWL

Ontologies are set to play a key role in the ”Semantic Web” extending syntactic
interoperability to semantic interoperability by providing a source of shared and
precisely defined terms. DAML+OIL is one of the first languages designed for
expressing ontologies by the Darpa Agent Markup Language committee. A more
recent development is the Ontology Web Language (OWL) by the W3C (World
Wide Web Consortium) Web Ontology Working Group (WebOnt). OWL has
been inspired heavily by DAML+OIL and builds up on top of it. The DAML
service coalition of the DAML (Darpa Agent markup language) program is devel-
oping a DAML based Web Service Ontology: DAML-S. DAML-S supplies Web
Service providers with a core set of markup language constructs for describing
the properties and capabilities of their Web Service in an unambiguous com-
puter interpretable form. DAML-S intends to facilitate the automation of Web
Service tasks including automated Web service, discovery, execution, interoper-
ation, composition and execution monitoring. Following the layered approach to
markup language development, the current version of DAML-S builds on top of
DAML+OIL. As and when OWL stabilises, future versions of DAML-S will be
definitely built on top of OWL. We present a brief discussion on DAML+OIL
and OWL in this section. DAML+OIL is an Ontology language specifically de-
signed for use on the Web. It exploits existing Web standards (XML, RDF and
RDF-S) and extends these languages with richer modelling primitives, adding
the familiar ontological primitives of object oriented and frame based systems,
and the formal rigor of Description logic. DAML+OIL is designed to describe
the structure of a domain. DAML+OIL takes an object-oriented approach with

5



the structure of the domain being described in terms of classes and properties.
An Ontology consists of a set of axioms that assert e.g. subsumption/equivalence
relationships between classes and properties. DAML+OIL is written in RDF. A
DAML+OIL knowledge base is a collection of RDF triples, i.e., DAML+OIL
markup is a specific kind of RDF markup. RDF, in turn, is written in XML,
using XML Namespaces and URIs Formally DAML+OIL can be seen as a DL
with DAML+OIL Ontology corresponding to the Description Logic terminology.
DAML+OIL classes can be names or expressions and a variety of constructors
are provided for building class expressions. The expressive power of the language
is determined by the class and property constructors supported and by the kinds
of axioms supported.. A DAML+OIL is made up of several components some of
which are optional and some of which may be repeated. A DAML+OIL ontol-
ogy consists of zero or more headers, followed by zero or more class elements,
property elements and instances. Ontology Web language facilitates greater ma-
chine readability of Web content than that supported by XML, RDF, and RDF
Schema. OWL is a neat revision of DAML+OIL. The OWL language provides
three increasingly expressive sublanguages: OWL Lite, OWL DL (description
logic), and OWL Full. OWL Full can be viewed as an extension of RDF, while
OWL Lite and OWL DL can be viewed as extensions of a restricted view of RDF.
Language constructs for OWL Lite include RDFSchema features, property char-
acteristics and property type restrictions, restricted cardinality, header infor-
mation, datatypes, (In)equality constructs, and class intersection construct. In
addition to the constructs from OWL Lite, OWL DL and Full include constructs
like Class Axioms, Boolean combination of class expressions, arbitrary cardinal-
ity and Filter information construct. OWL makes use of the RDF datatyping
scheme, which provides a mechanism for referring to XML Schema datatypes.
OWL supports standard notions of ontology referencing, inclusion, and meta-
information.

3.3 XLANG

XLANG is Microsoft’s idea for the choreography of Web Services. It is a lan-
guage that makes it possible to formally specify business processes as stateful
long-running interactions. The interactions between services occur through mes-
sage exchanges expressed as WSDL operations. An XLANG service description is
defined as a WSDL service description with an extension element that describes
the behaviour of the service as part of a business process. XLANG focuses on
the publicly visible behaviour in the form of messages exchanged. An interaction
in XLANG is an instantiation of a service. Since the exchanged messages not
only need to be delivered to the correct destination port, but also to the correct
instance of the service that defines the port, each message contains a ’correla-
tion token’. A set of such correlation tokens (a ’correlation set’) is defined as a
set of properties shared by all messages in the correlation group. XLANG as-
sumes that port types, used in the definition of XLANG service descriptions,
are constrained to contain only incoming, or only outgoing operations. WSDL
port types however do not have this polarity. This is an issue that should be

6



addressed to achieve the goals of XLANG. The behaviour of an XLANG ser-
vice is composed of actions. These actions can be WSDL operations, delays (e.g.
the thread of behaviour has to pause for some other process to execute), and
’raise actions’ (i.e. the notification of exceptional conditions). In an XLANG ser-
vice, the actions are combined using basic control processes; as there are ’while’,
’sequence’, ’empty’, ’switch’, ’all’, ’pick’, and the advanced forms ’context’ and
’compensate’. The ’context’ process provides a framework for local declarations,
exception handling and transactional behaviour. Contexts may be used to de-
lineate the scope of a part of the behaviour that has transaction-like properties.
Within XLANG this primarily means that an implicit or explicit compensa-
tion process is associated with the context, and this can be invoked using the
’compensate’ process. XLANG not merely talks about compensating actions but
about compensating processes.

3.4 Web Service Flow Language

The Web Services Flow Language (WSFL) is a suggested standard of IBM.
It is a very complete and neutral language and is integrated with UDDI and
WSDL for dynamic selection of Web Services. WSFL enables developers to cre-
ate, execute, and combine Web Services into complex processes and workflows.
WSFL itself does not deal with the modeling of the business process; rather it
is a specification for how to implement a business process model using the Web
Services architecture. WSFL can be used to create an XML representation of
the business model, and then feed that XML-representation into a middleware
application designed to invoke and manage the process. A WSFL document
uses ’serviceProviderType’ elements to identify the roles of the implementers of
specific activities within the context of a given business process model. The ser-
viceProviderType is defined by a Web service Interface document using WSDL.
Service providers must properly implement the appropriate Web service Inter-
face in order to be classified as the appropriate type of service provider to handle
a particular activity in the business process. Each process is represented in an
XML ’flowmodel’. This flowmodel is an abstract definition of the workflow pro-
cess. The flowmodel contains ’Activity’ elements, which define activities that are
implemented in the form of a Web service defined by WSDL. ’ControlLinks’ and
’dataLinks’ are also part of the flowmodel. The former describe the sequence of
activities, whereas the latter define the flow of data from one activity to another.
Next to the flow model there is a ’globalModel’ that details how a given process
is implemented. As such, the globalModel defines the identity, the location and
the implementation of the service provider that implements a specific role. Once
the global and the flow model for a given business process are defined, the whole
business process can be defined as a single Web service, that may be used by
other business processes.

7



3.5 Business Process Execution Language for Web Services

BPEL4WS is a combined effort from IBM’s and Microsoft. Infact it builds on
top of WSFL and XLANG by combining accordingly the features of a block
structured language inherited from XLANG with those for directed graphs orig-
inating from WSFL. The language is intended to support the modelling of both
executable and abstract processes. An abstract process is a business protocol
that specifies the message exchange behaviour between different parties without
revealing their internal behaviour. An executable process specifies the execution
order between a number of activities that constitute the process, the partners
involved in the process, the messages exchanged between these partners, and
the fault and exception handling that specify the behaviour to adopt in cases of
errors and exceptions. The BPEL4WS process is a kind of flow-chart, where each
element in the process is called an activity. An activity can be either primitive
or structured. The set of primitive activities contains: invoke, which is used to
invoke an operation on some Web service; receive, that is used to wait for a mes-
sage from an external source; reply, which is used when replying to an external
source; wait, when it is necessary to wait for some time; assign, for copying data
from one place to another; throw, to indicate errors in the execution; terminate,
when terminating the entire service instance; and empty, when the process is do-
ing nothing. Several structured activities are defined to enable the presentation
of complex structures. These are: sequence, which is used to define an execution
order; switch, used for conditional routing; while, used for looping; pick, for race
conditions based on timing or external triggers; flow, which is used for parallel
routing; scope, for grouping activities to be treated by the same fault-handler;
and compensate, which is used to undo the effects of already completed activi-
ties. Structured activities can be nested and combined in arbitrary ways. Within
activities that are executed in parallel the use of links can further control the
execution order. These are sometimes also called control links and allow the def-
inition of directed graphs. The graphs can be nested but must be acyclic.

BPEL make also use of two significant and complementary specifications, which
are the WS-Coordination and WS-Transaction and are also developed jointly by
IBM and Microsoft. They deal with how one coordinates the dependable out-
come of both short- and long-running- business activities. The WS-Transaction
specifies a framework that allows a composed Web Service to monitor the suc-
cess or failure of each individual, coordinated activity. It provides the means
for the service to monitor the process and reliably cancel the process in case
something goes wrong along the way. The WS-Coordination specification on the
other hand, defines a framework through which the composed services can work
from a shared ”coordination context”. This context contains the information
necessary to link the various activities together.

3.6 Web Service Choreography Interface

WSCI is a combined effort by BEA Systems, Intalio, SAP AG, and Sun Mi-
crosystems towards describing an interface definition language for choreograph-

8



ing the flow of messages between Web services. The language takes WSDL as the
starting point. WSCI is a construct based language and deals with the external
observables rather than the internal definition of service behaviour. The concepts
underlying the model are the interface definition, choreography of activities, defi-
nition of processes and their properties, message correlation, exception handling,
transaction and compensation description and dynamic participation. The de-
tails of the behaviour of the Web Service are described in the processes that
are contained in the interface. A Web Service may expose multiple interfaces for
supporting multiple scenarios. Activities can be atomic activities representing
the basic unit of behaviour of a Web service, as well Complex activities which
are recursively composed of atomic services. WSCI supports sequential, parallel,
looping and conditional execution. WSCI allows the definition of two types of
processes, namely, Top level and nested processes which can be referenced using
Call or a Spawn statement. Properties are introduced in WSCI as a modeling
artifact used to reference a ”value” within the interface definition. They are
the equivalent of variables in other languages. Context is a WSCI concept that
describes the environment in which a set of activities is executed. A context defi-
nition may contain two different kinds of declarations: local properties, and local
process definitions. The concept of correlation describes how conversations are
structured and which properties must be exchanged to retain the semantic con-
sistency of the conversation. A correlation is not limited to a single conversation
between two participants; it can span multiple conversations between different
participants. WSCI allows declaring exceptional behaviour that is exhibited by
a Web Service at a given point in a choreography. The declaration of exceptional
behaviour is part of the context definition. The transaction describes, from an
interface perspective, the transactional properties of the activities that are ex-
ecuted in this context. A transaction is either atomic or open-nested. WSCI
allows also describing a multi-participant view of the overall message exchange
by means of the WSCI Global Model. WSCI also supports extensibility of the
language constructs.

9



4 A Tabular Comparison of Language Attributes

We present below a comparison of certain key attributes for various languages2.
Since WSDL is the underlying infrastructure for all these languages and also a
standard, we do not compare attributes with direct dependency on WSDL.

Parameters WSCI BPEL4WS XLANG WSFL DAML-S

Support for Automated Composition - - - - +
Dependency on other languages (WSDL) + + + + +
Expressiveness + + - - +
Formal Semantics - * * - +
Process modelling constructs supported + + + + +
Defined Level of Abstraction low low low low high
Transaction management + + - - -
Exception Handling mechanism + + - - -
Tool support available low low low low low
Worflow modelling support + + + + +
Semantic Constraints - - - - +
Security and Privacy issues - - - - -
QoS Requirements - - - + +

Table 1. Comparison of Service Composition languages

Parameters WSCI BPEL4WS XLANG WSFL DAML-S

Sequence + + + + +
Parallel (Split & Split+Join) + + + + +
If-then-else + + + + +
Looping + + - + +
Choice + + +/- + +
Termination + + - + -
Cancellation + + + + -

Table 2. Process Modelling Constructs Supported

2 Symbols used in the table:
: ambiguous, +: direct support for the construct available
-: no direct support for the construct available +/-: limited support for the construct
available

10



4.1 Analysis of the comparison

We analyse the results from the comparison above, taking into account the at-
tributes of three core languages namely, DAML-S, BPEL4WS and WSCI, since
BPEL4WS has emerged from a coalition of WSFL and XLANG. This analysis
also puts into perspective some of the requirements stated in section 2

To realise the automation of service composition on the Web, a language needs
to have well defined semantics along with syntactical constructs. Semantics help
in defining reasoners for machine interpretation of service description. DAML-S
with its base firmly rooted in Description Logics has well established formal se-
mantics. The process and profile model have been structured to enable intelligent
agents to interpret the markup and reason about the composition. BPEL4WS
and WSCI do not expose any form of semantics and therefore do not facilitate
the process of automated composition.

Expressiveness of a language is a collection of features that makes it easy to
use, self documenting and elegant DAML-S, BPEL4WS and WSCI are quite
expressive with respect to process modelling constructs. DAML-S however offers
an advantage over the two in its capability of expressing the pre-conditions and
effects of service execution. Since DAML-S is an ontology, apart from XML data
types, it also exposes a well-defined type system that enables reasoning about re-
lationships between DAML-S classes. WSDL is restricted in its expressiveness of
service behaviour to input/output as XML types. BPEL4WS and WSCI which
derive WSDL port information for service description therefore have limited ex-
pressivity in terms of typing mechanism.

Error handling and transaction management in case of service failure has to be
an integral part of any composition model. Exception handling and Transac-
tion constructs are present in both WSCI and BPEL4WS but not in DAML-S.
Fault and compensation handlers in BPEL4WS seems to be more clearly defined
then in WSCI. Both WSCI and BPEL4WS allow roles to be defined. However
no such construct is yet available.in DAML-S. This is an important issue since
roles help identify the responsibilities of partners in the composition. Correlation
mechanism supported by WSCI and BPEL4WS, is important to synchronize the
messages which are received by a service from different entities. This feature is
currently not supported by DAML-S.

The process of marking up services using any of these languages is a cumbersome
one if carried out manually. Editors and Engines are needed for creating, pars-
ing and executing processes written in these languages. The support for tools
is very limited as language development is ongoing. An engine for BPEL4WS
is available at [6]. A number of efforts are in place for development of tools for
DAML-S. A semi-automated service composer has been developed at University
of Maryland. The SunONE WSCI Generator supports WSCI, however it does
not provide means for testing the generated markup.

Extensibility of language constructs is necessary for enhancing the interface def-
initions. BPEL and WSCI allow for this with additional constructs from other

11



XML namespaces. DAML-S allows this extensibility through the import con-
struct and also through inheritance. Addition of rules is an important factor
to allow for the different types of reasoning domains that are required by Web
services. DAML-S is more at an advantage as regards the ease of incorporating
rule definitions then the other languages since they are not based on a formal
semantics. Security and Privacy issues have not be exclusively handled in any of
these languages. They have been mentioned as future work, however currently
the specifications of any of these languages do not provide mechanism to enforce
security and privacy within the composition. Quality of Service requirements are
handled to some extent in DAML-S through its profile model, however there are
no explicit QoS monitoring mechanisms available for BPEL4WS and WSCI.

5 Conclusions

A number of initiatives have already been taken towards a comparative study of
the markup languages. The differences between DAML-S and BPEL4WS have
been highlighted in [3]. An extensive pattern based comparison of various service
composition languages has been done in [10, 17, 16]. These however offer only a
comparative study without stating the requirements that need to be fulfilled by
any markup language designed for service composition. [3] offers a comparison
only between DAML-S and BPEL4WS.without considering WSCI, which we be-
lieve is an important work in this area.

At present there are a number of initiatives that are focused on the composition
aspect of Web services. Their promise is to provide a composition language that
can be considered as a standard and which is able to support the important
components that we have highlighted in this paper. The DAML-S group has a
number of pending issues in the pipeline. On the forefront is the advent of OWL,
which will bring about a new version of DAML-S, this time based on OWL and
with the synonymous name of OWL-S. Some other features that were planned
regard some extensions to the WSDL grounding and also a recommended way
of specifying conditions. IBM and Microsoft have great plans for BPEL, the first
one being the submission of the language to the OASIS standards body. They
are promising several improvements to the language, such as those regarding
scope and fault handling with some important emphasis on the issue of security.
These improvements to the languages will undoubtly bring about more research
in the areas of Web Services and composition. We should expect a number of
initiatives that will give rise to the creation of a number of semantically en-
abled technologies related to these areas, from ontology builders and verifiers,
to service composition frameworks for dynamic aggregation of Web services and
also to Web service registries that are capable of handling the different types of
service technologies. Such language improvements will also increase the research
in areas such as those involving formal semantics definitions, description logics
and rule based semantic Web services. Another ongoing initiative is the Euro-
pean effort WSMF (Web Services Modeling Framework) [5]that will definitely
have an important role in this area as the project is targeting the creation of a

12



framework for Web services that is based on the principal of maximal decoupling
and scalable mediation of services. It will build over a number of already defined
technologies such as UDDI and WSDL but will also consider semantically en-
abled technologies such as DAML-S or OWL-S.

In this paper we highlighted the various research efforts that are targeting Web
service composition languages. We described them by showing the capabilities
of each one and compared them on the bases of a number of important fea-
tures such as expressivity, support for semantics, tool support, core composition
mechanism and fault tolerance and exception handing. We then continued by
comparing their support for process modelling since this is considered an impor-
tant issue for composition.

In the absence of a declared standard language, we believe that a possible solu-
tion should run parallel to the research being carried on in the Semantic Web
and have foundations built over DAML-S. Nonetheless, it is imperative that such
a language adapts the concepts of transactions, fault and compensation handling
found in other languages such as BPEL4WS and WSCI to provide a complete
solution for the automatic composition of Web services.

References

1. Francisco Curbera, Yaron Goland, Johannes Klein, Frank Leymann, Dieter Roller,
Satish Thatte,Sanjiva Weerawarana. Business Process Execution Language for Web
Services, Version 1.0, 2002. http://www-106.ibm.com/developerworks/library/ws-
bpel/.

2. Joint US/EU ad-hoc Agent Markup Language Committee. Reference de-
scription of the daml+oil (march 2001) ontology markup language. 2001.
http://www.daml.org/2001/03/reference.

3. DAML-S and Related Technologies. http://www.daml.org/services/daml-
s/0.7/survey.pdf.

4. Dr. Frank Leymann, IBM Software Group. Web Services Flow Language (WSFL)
Version 1.0, 2001.

5. D. Fensel and C. Bussler. The web service modeling framework wsmf. NSF-
OntoWeb Invitational Workshop on DB-IS Research for Semantic Web and Enter-
prises, 2002.

6. IBM. http://www.alphaworks.ibm.com/tech/bpws4j.
7. Intalio, Sun Microsystems, BEA Systems, SAP. Web Service Choreography Inter-

face (WSCI) 1.0 Specification, 2002.
8. James Snell, Doug Tidwell and Pavel Kulchenko. Programming Web Services with

SOAP. O’Reilly, 2002.
9. M. Dean, D. Connolly, F. van Harmelen, J. Hendler, I. Horrocks, D. Guinness,

P.F. Patel-Schneider, L. A. Stein. Web Ontology Language(OWL) W3C Reference
version 1.0, November 2002. http://www.w3.org/TR/2002/WD-owl-ref-20021112.

10. P. Wohed, W.M.P. van der Aalst, M. Dumas, and A.H.M. Pattern-based analysis of
bpel4ws. Technical Report FIT-TR-2002-04, Queensland University of Technology,
Brisbane, 2002.

11. Roberto Chinnic, Martin Gudgin,Jean-Jacques Moreau, Sanjiva Weer-
awarana. Web Services Description Language (WSDL) Version 1.2, 2003.
http://www.w3.org/TR/2003/WD-wsdl12-20030124/#intro.

13



12. Satish Thatte. XLANG: Web Services for Business Process Design, 2002.
13. Web Service Architecture Team. Web services architecture overview. http://www-

106.ibm.com/developerworks/library/w-ovr/ .
14. The DAML Service Coalition. DAML-S Semantic Markup for Web Services. In-

ternational Semantic Web Conference (ISWC), 2002.
15. The UDDI Technical White Paper. http://uddi.org/pubs/Iru UDDI Technical White Paper.pdf.
16. W.M.P. van der Aalst. Dont go with the flow: Web services composition standards

exposed. web services - been there done that? IEEE-Trends & Controversies, 2002.
17. W.M.P. van der Aalst, M. Dumas, A.H.M. ter Hofstede, and P. Wohed. Pattern-

based analysis of bpml (and wsci). Technical Report FIT-TR-2002-05, Queensland
University of Technology, Brisbane, 2002.

14


