

European Research Studies Journal

Volume XXVII, Special Issue 3, 2024

 pp. 426-438

Optimizing Customer Support Using Text2SQL to Query

Natural Language Databases
 Submitted 13/09/24, 1st revision 22/09/24, 2nd revision 07/10/24, accepted 30/10/24

 Michał Maj1, Damian Pliszczuk2, Patryk Marek3, Weronika Wilczewska4,

Bartosz Przysucha5, Tomasz Rymarczyk6

Abstract:

Purpose: This paper explores the challenges and potential solutions associated with

integrating Text2SQL technology into customer support operations. By leveraging large

language models (LLMs) and tools like Vanna.AI, the study aims to enhance the efficiency

and accuracy of handling customer queries without requiring specialized SQL knowledge.

Design/Methodology/Approach: A comprehensive analysis was conducted comparing the

effectiveness of three large language models—Llama3:70b-instruct, Gemma2:27b, and

Codegemma—in generating correct SQL queries from natural language questions. The

models were trained with identical datasets and evaluated using six benchmark questions

over two iterations, with and without detailed database schema information. Performance

metrics included correctness of the generated queries and response times.

Findings: The results indicated that while Llama3 and Gemma2 initially demonstrated

higher accuracy, the addition of detailed database schema information did not improve

model performance. Instead, it led to decreased accuracy and increased response times,

particularly for Llama3. Codegemma showed shorter response times but slightly lower

accuracy. The study highlights that excessive contextual information can overwhelm LLMs,

suggesting the need for optimized context provision.

Practical Implications: The findings suggest that simplifying database schema information

and focusing on essential contextual data can enhance the performance of LLMs in

generating SQL queries. Implementing tools like Vanna.AI, which utilize Retrieval

Augmented Generation (RAG), can improve customer support processes by enabling quick

and accurate data access without specialized SQL expertise.

Originality/Value: This paper provides valuable insights into the practical challenges of

implementing Text2SQL technology in customer support. It offers recommendations for

balancing context provision and model capabilities, contributing to the optimization of LLM

performance in real-world applications.

Keywords: Text2SQL; Customer Support; Large Language Models; Vanna.AI; Retrieval

Augmented Generation; SQL Query Generation.

1WSEI University in Lublin, Poland, michal.maj@wsei.pl;
2Netrix S.A., Poland, WSEI University in Lublin, Poland, damian.pliszczuk@netrix.com.pl;
3Netrix S.A., Poland, patryk.marek@netrix.com.pl;
4Lublin University of Technology, Lublin, Poland, w.wilczewska@pollub.pl;
5Lublin University of Technology, Lublin, Poland, b.przysucha@pollub.pl;
6Netrix S.A., Poland, WSEI University in Lublin, Poland, tomasz.rymarczyk@netrix.com.pl;

mailto:michal.maj@wsei.pl
mailto:damian.pliszczuk@netrix.com.pl
mailto:patryk.marek@netrix.com.pl
mailto:w.wilczewska@pollub.pl
mailto:b.przysucha@pollub.pl
mailto:tomasz.rymarczyk@netrix.com.pl

 Michał Maj, Damian Pliszczuk, Patryk Marek, Weronika Wilczewska,

Bartosz Przysucha, Tomasz Rymarczyk

427

JEL Codes: C45, C61, M31, L8, D83.

Paper Type: Research article.

1. Introduction

In today's dynamic business environment, effective customer service is crucial to

maintaining customer satisfaction and loyalty. Companies are striving to streamline

their support processes, looking for innovative technologies that can bring human

interactions closer to complex data systems. One groundbreaking approach in this

regard is the integration of Text2SQL technology into customer service operations.

Text2SQL technology represents a significant advance in database querying,

enabling support personnel without SQL expertise to access critical information by

asking questions in natural language. This has the potential to revolutionize the way

customer service teams interact with vast repositories of data, which can lead to

faster response times, more accurate information retrieval and, ultimately, an

improved customer experience (Praveen et al., 2024; Zhang et al., 2024).

However, the introduction of Text2SQL in a customer service context presents a

number of research challenges. First, natural language understanding (NLU) presents

significant difficulties. Interpreting the nuances and context of customer queries is a

complex task that requires advanced NLU capabilities. Studies by Praveen et al.

(2024) and Zhang et al. (2024) highlight the difficulty in accurately capturing the

subtle meanings and intentions behind a variety of customer queries, especially

when they involve colloquial language or implicit context.

In addition, dealing with domain-specific terminology and jargon presents another

challenge. Dima et al. (2021) point out that customer service systems must be able to

recognize and correctly interpret industry-specific terms, acronyms and technical

language that may not be part of the general vocabulary.

This is particularly important in specialized fields such as healthcare, finance or

technology, where misinterpretation can lead to incorrect query results and

potentially mislead customers. Another challenge is the complexity of queries.

Translating complex, multi-part queries into accurate SQL queries is a difficult task,

requiring advanced natural language processing and query generation techniques.

Beurer-Kellner et al. (2023) show that customer queries often involve many related

aspects that must be correctly analyzed and transformed into a coherent SQL

structure. Dealing with nested queries and complex data join operations adds another

level of complexity. Systems must be able to construct complex SQL statements that

 Optimizing Customer Support Using Text2SQL to Query Natural Language Databases

428

accurately reflect the relationships between data from different tables.

Understanding the database schema presents an additional difficulty. Mapping

natural language elements to the appropriate tables and columns is a crucial and

complex task, requiring advanced algorithms and machine learning techniques. Fu et

al. (2023) emphasize that this process involves accurately interpreting the semantic

meaning of customer queries and correlating them with the appropriate database

structures.

Dealing with differences in database designs across organizations further

complicates the process. Biswal et al. (no date) point to the need for flexible and

robust algorithms that can quickly learn and adapt to new database structures

without compromising on accuracy or performance.

Resolving ambiguity is another important aspect. Clarifying vague or imprecise

customer queries requires sophisticated natural language processing and contextual

understanding. Mahmood et al. (2024) show that queries often contain ambiguous

language, incomplete information or multiple possible interpretations. The challenge

is to develop systems that can identify these ambiguities and implement effective

disambiguation techniques, such as generating follow-up questions or using context

from previous interactions.

A significant challenge in developing Text2SQL systems is multilingual support.

Developing systems that support queries in multiple languages is a complex task.

Liu et al. (no date) and Yang et al. (2024) emphasize that it requires not only

translating queries, but also understanding the linguistic nuances and structural

differences between languages. Ensuring consistent performance across languages

requires advanced NLP models capable of adapting to unique grammatical and

cultural structures.

Privacy and security are key in the implementation of Text2SQL systems. Ensuring

the protection of sensitive data while providing useful answers is a challenge that

requires a balance between information accessibility and data confidentiality. Yan et

al. (2024) emphasize the need for robust security mechanisms such as data masking,

encryption and advanced access control algorithms. Scalability, too, is a critical

aspect of deploying Text2SQL systems in high-traffic environments.

Zulfikar et al. (2024) show that handling large volumes of simultaneous queries in

real time requires advanced query processing techniques, load balancing and the use

of distributed computing resources. Optimizing performance for large and complex

databases also requires advanced indexing and caching strategies.

Error handling and feedback are crucial for efficient and user-friendly systems.

Providing meaningful error messages and suggestions helps maintain user

confidence and facilitates troubleshooting. Lin (2023) emphasizes that systems

 Michał Maj, Damian Pliszczuk, Patryk Marek, Weronika Wilczewska,

Bartosz Przysucha, Tomasz Rymarczyk

429

should offer intelligent error handling mechanisms that communicate problems in a

clear and understandable way while suggesting possible solutions. Integration with

existing systems is critical to implementation success.

Tomova et al. (2024) point out that Text2SQL systems must be compatible with a

variety of customer support platforms, CRM and database management systems.

This requires a flexible architecture and APIs that allow seamless integration

without disrupting current processes. Dealing with temporal and contextual queries

presents unique challenges.

Li et al. (2024) emphasize that systems must accurately interpret and execute queries

related to temporal data, taking into account different temporal expressions and

temporal logic. Maintaining context between related queries is crucial to the

consistency of customer interactions.

Adapting to changing data structures is essential to the long-term effectiveness of

Text2SQL systems. Biswal et al. (no date) emphasize that systems must be able to

adapt to changes in the database schema without extensive re-training, which

requires advanced machine learning techniques.

Finally, transparency and understandability of system operation are key to building

trust and effective use of technology. Song et al. (2024) emphasize that providing

clear explanations of query interpretation and execution allows support staff to

understand and verify system operations, which is essential for maintaining data

integrity and operational efficiency.

2. Use of large Language Models

Vanna.AI is a set of tools for generating SQL queries using large language models

(LLMs). Unlike the classic approach, where models are already learned and generate

queries based on that, the essence of working with Vanna.AI is the process of

learning the model so that it returns queries that best match the specifics of the data

contained in the database to which it is connected. The tool uses the Retrieval

Augmented Generation (RAG) technique to improve the quality of SQL queries

generated by language models connected to any database.

Vanna.AI is characterized by several key features. First of all, it is open-source,

which means it is available to a wide range of users and can be freely modified. It

uses the RAG technique to select the most relevant data as the context for the model,

which significantly increases the accuracy of the generated queries.

The tool allows connection to any database system and the use of a vector database

to store training data, with a choice of different solutions, including open-source

ones such as ChromaDB. In addition, Vanna.AI allows connection to any language

models, including Ollama, a local, free and open-source tool with a wide selection of

 Optimizing Customer Support Using Text2SQL to Query Natural Language Databases

430

available models, such as Llama 3 or Gemma 2. The tool also offers the possibility

to continuously train the RAG layer by saving correctly generated queries as training

data, and allows you to build your own user interface or use one of three prepared

solutions: Slack, Flask or Streamlit.

Figure 1. Functional diagram of the Vanna.AI packageanna.AI

Source: Own study.

Adding RAG functionality to the flow to provide context is key to achieving high

accuracy in the queries generated by language models. Context refers to the

information we provide to the model as an aid to understanding the data we are

working on.

We can distinguish between three types of contextual data: the schema itself (adding

only the schema DDL, i.e. CREATE TABLE statements), static examples (adding

sample SQL queries from our database to the schema), and contextually relevant

examples (adding only the most relevant information, such as SQL queries, DDL

statements, or any database-related documents extracted using embedding-based

vector search).

Enterprise data warehouses often contain hundreds or even thousands of tables and

orders of magnitude more queries covering all the use cases in their organizations.

Given the limited size of language model context windows, we are unable to use all

previous queries and schema definitions in the system prompt.

In the approach used by Vanna.AI, only relevant data (SQL queries, tables,

documents) are selected based on the user's query, which allows for efficient context

management and increases the precision of answers.

 Michał Maj, Damian Pliszczuk, Patryk Marek, Weronika Wilczewska,

Bartosz Przysucha, Tomasz Rymarczyk

431

We can write three types of metadata to the vector database for training the RAG

layer and providing better context in the prompt: DDL queries, SQL queries and

documentation. We can enter all this data into the model before the application is

initialized, or using a built-in tool already in the application.

The most basic option is to provide the database schema in the form of DDL, which

will be used to prepare the structure of the database, and through it the model can get

acquainted with the fields and field types of each table. A special case of DDL

queries are documents generated from the database schema (e.g., the result of a

SELECT * FROM INFORMATION_SCHEMA.COLUMNS query), which can be

used as a training plan for the model.

The second option is to give the model SQL queries relating to the data we have.

When you enter an SQL query, it is added together with a question generated by the

model based on it. If the query generated in this way is indeed correct, it can be used

as training data in conjunction with the query given earlier. In addition, while

working with the chat, if the user thinks that the assistant-generated answer with

SQL is correct, it is possible to enter the query-SQL pair as training data for further

refinement.

The last type of training data is the so-called documentation. These are all kinds of

descriptions that can provide useful context for our data, such as general information

about what data is in our database, characteristics of individual tables and fields, or

explanations of specific industry terms. With the context provided, the model will be

able to return more precise answers to the user, better interpreting the questions

asked.

The implementation of Vanna.AI is very simple thanks to the functions and classes

prepared in it. Launching a fully operational tool requires only a few steps. First, we

define an object of the class, in which we specify the model and vector base used,

and initialize it with the appropriate parameters, such as the address where Ollama is

exposed (if it is not running on the local machine), the name of the model and

possibly its additional parameters, such as temperature.

class MyVanna(ChromaDB_VectorStore, Ollama):

 def __init__(self, config_ollama=None, config = None):

 ChromaDB_VectorStore.__init__(self, config=config)

 Ollama.__init__(self, config=config_ollama)

vn = MyVanna(config_ollama={'ollama_host':"http://10.10.10.52:11434",

 'model': 'gemma2:27b',

 'ollama_options': {"temperature":0}})

Then we connect to the target database using the appropriate connection string.

 Optimizing Customer Support Using Text2SQL to Query Natural Language Databases

432

conn_str = f'DRIVER={{ODBC Driver 17 for SQL

Server}};SERVER={database["server"]};DATABASE={database["database"]};UI

D={database["user"]};PWD={database["password"]}'

vn.connect_to_mssql(odbc_conn_str=conn_str)

After following these steps, we already have the object connected to all the key

elements: the language model, the vector database and the database to which we will

ask questions.

At this stage, we can proceed to train the RAG layer. First, we download the

database schema and create a training plan based on it, which we then use for

training.

df_information_schema = vn.run_sql("SELECT * FROM

INFORMATION_SCHEMA.COLUMNS")

plan = vn.get_training_plan_generic(df_information_schema)

vn.train(plan=plan)

 Now we can run an application (e.g. using Flask) with the text2sql functional

assistant. If we do not want to use the default applications prepared by the Vanna.AI

team, we can use the functionality to generate responses or code directly by calling

the appropriate methods.

from vanna.flask import VannaFlaskApp

app = VannaFlaskApp(vn, allow_llm_to_see_data=True)

app.run()

or

vn.ask(question="What are sales in june 2018?")

vn.generate_sql(question="What are sales in june 2018?")

The described solution uses the following technologies: a Gemma 2 language model

exposed on Ollama, a ChromaDB vector database with default embedding and a

Microsoft SQL Server database. This combination makes it possible to efficiently

generate SQL queries based on natural language queries tailored to the specifics of

the database being used.

Vanna.AI provides a powerful tool for developers and data analysts, enabling fast

and accurate generation of SQL queries using modern language models. With the

ability to customize the context and continuously refine the model, the tool can

significantly improve the work with databases, especially in environments with a

complex structure and a large number of tables.

 Michał Maj, Damian Pliszczuk, Patryk Marek, Weronika Wilczewska,

Bartosz Przysucha, Tomasz Rymarczyk

433

3. Methodology

The purpose of this study was to compare the effectiveness of three selected large

language models (LLMs): Llama3:70b-instruct, Gemma2:27b and Codegemma, in

generating correct SQL queries based on questions formulated in natural language.

The analysis aimed to identify the optimal solution for further collaboration with

Vanna.AI, focusing on the models' ability to interpret and translate user queries into

precise SQL commands.

All models received identical training data to ensure a fair and consistent

comparison. The data consisted of five question-SQL pairs that included a variety of

query types, such as aggregate functions, subqueries and filter conditions. This was

to evaluate the models' ability to handle different query structures and complexities.

In addition, the models were provided with training information to help them

generate SQL queries correctly. This information included details on date format,

where it was determined that dates are stored in “YYYY-MM-DD” format, and the

models were instructed not to convert dates from “varchar” to “date” type. In

addition, models were instructed to use the condition “WHERE Knt_KodP LIKE

‘[0-9][0-9]-[0-9][0-9][0-9]’” when querying Polish customers.

A detailed database structure was also provided, which included two tables:

“ERP_Claims_Orders,” storing information about claims to orders, and

‘Orders1_new_columns,’ containing information about orders. DDL commands for

these tables were also included to provide a complete structural context for the

database.

The training data prepared in this way was intended to provide a solid basis for

evaluating the models' ability to generate correct and effective SQL queries based on

natural language queries, taking into account the specific requirements and database

structures used in practice.

Six benchmark questions were used to evaluate the models:

1. On which day in October 2018 were the most complaints filed? (A question

similar to one from the training data).

2. Give all the details of these complaints that are related to orders processed in

the city of Lublin.

3. What percentage of total revenue were orders placed by Polish customers?

4. What percentage of the total revenue were orders placed by customers outside

Poland?

5. For which contractors the total value of orders in 2019 was greater than or

equal to 100 thousand?

6. What total revenue was generated by orders placed in the last quarter of 2020?

 Optimizing Customer Support Using Text2SQL to Query Natural Language Databases

434

The study was conducted in two iterations to assess the impact of additional

database schema information on the performance of the models.

Iteration One (Figure 2):

- Training: The models were trained using the initial training data and additional

information provided in the instructions.

- Testing: Models were given benchmark questions to generate appropriate SQL

queries.

- Evaluation: The correctness of the generated SQL queries was evaluated against

the expected results.

- Time Measurement: For each question, the model's response generation time

was measured by taking two measurements.

Iteration Two:

- Enhanced Training Data: The training data was enhanced with a database

schema generated using the get_training_plan_generic() function, using the result of

the SELECT * FROM INFORMATION_SCHEMA.COLUMNS query.

- Testing and Evaluation: The same benchmark questions were used again, and

the models' responses were evaluated in the same way as in the first iteration.

- Time Measurement: Again, the time for models to generate responses was

measured.

Evaluation Metrics:

- Correctness: Evaluation of the correctness of the generated SQL queries in the

context of the questions asked.

- Response Time: Measurement of the time it takes for models to generate

responses, expressed in seconds.

4. Research Results and Discussion

The results of the first iteration showed that the Llama3 and Gemma2 models

correctly answered 5 out of 6 questions, while Codegemma correctly answered 4 out

of 6 questions. All models encountered the same problem: they were unable to

correctly answer question number 5 about contractors with a total order value in

2019 greater than or equal to 100 thousand zlotys. As for the time to generate

answers, the models showed mixed results.

For the first question, Llama3 took 10.8 and 5.6 seconds respectively in two

measurements, Gemma2 took 10.7 and 2.6 seconds, and Codegemma took 5.1 and

1.4 seconds. For the second question, Llama3 consumed 9.4 and 4.4 seconds,

Gemma2 9.2 and 2.3 seconds, and Codegemma 2.1 and 1.4 seconds. Similar

differences were observed for the following questions, where response generation

times ranged from a few to several seconds, with Codegemma typically showing the

shortest response times.

 Michał Maj, Damian Pliszczuk, Patryk Marek, Weronika Wilczewska,

Bartosz Przysucha, Tomasz Rymarczyk

435

Response generation times for the two measurements per question (in seconds) are

shown in Table 1.

Table 1. Response generation times per question for two measurements
Question No. Llama3 Gemma2 Codegemma

1 10,8 / 5,6 10,7 / 2,6 5,1 / 1,4

2 9,4 / 4,4 9,2 / 2,3 2,1 / 1,4

3 12,6 / 12,4 6,5 / 6,4 2,9 / 2,8

4 13,4 / 13,2 6,2 / 6,1 3,0 / 2,9

5 11,4 / 8,4 4,8 / 4,9 2,1 / 1,7

6 6,9 / 6,7 2,4 / 2,4 1,3 / 1,4

Source: Own study.

The results of the second iteration showed that the Llama3 model correctly answered

only one of the six questions, the same one it had difficulty with in the previous

iteration. The Gemma2 model answered two of the six questions correctly.

Codegemma also answered only one of the six questions correctly. An analysis of

the answer generation times in this iteration is as follows:

For question one, the Llama3 model took 28.3 and 13.3 seconds in two

measurements, Gemma2 took 74.7 and 2.1 seconds, respectively, and Codegemma

took 4.7 and 1.5 seconds. For question two, Llama3 consumed 21.7 and 13.3

seconds, Gemma2 3.5 and 2.4 seconds, and Codegemma 3.9 and 1.0 seconds. For

the third question, the times were: Llama3 16.1 and 12.7 seconds, Gemma2 3.2 and

2.4 seconds, and Codegemma 2.1 and 2.5 seconds.

Continuing, for the fourth question, Llama3 took 16.1 and 16.0 seconds, Gemma2

4.6 and 3.5 seconds, and Codegemma 2.6 and 2.2 seconds. For the fifth question, the

times were: Llama3 11.9 and 9.1 seconds, Gemma2 3.7 and 2.6 seconds, and

Codegemma 1.9 and 1.5 seconds. Finally, for the sixth question, Llama3 used 11.6

and 28.2 seconds, Gemma2 used 3.3 and 2.5 seconds, and Codegemma used 1.5 and

1.2 seconds.

These results indicate that adding a detailed database schema in the second iteration

did not improve the performance of the models, but rather the opposite – Table 2.

The models may have been overwhelmed by excess information, which negatively

affected their ability to generate correct answers and their response times.

Table 2. Response generation times per question for two measurements – second

generation
Question No. Llama3 Gemma2 Codegemma

1 28,3 / 13,3 74,7 / 2,1 4,7 / 1,5

2 21,7 / 13,3 3,5 / 2,4 3,9 / 1,0

3 16,1 / 12,7 3,2 / 2,4 2,1 / 2,5

4 16,1 / 16,0 4,6 / 3,5 2,6 / 2,2

 Optimizing Customer Support Using Text2SQL to Query Natural Language Databases

436

5 11,9 / 9,1 3,7 / 2,6 1,9 / 1,5

6 11,6 / 28,2 3,3 / 2,5 1,5 / 1,2

Source: Own study.

Overall observations from the survey indicate that adding detailed information about

the database schema did not provide the expected benefits. Models had difficulty

understanding equivalent terms such as “contractor” and “customer,” suggesting the

need for better training in interpreting domain terminology. In addition, an increase

in response generation time was observed, particularly for the Llama3 model,

suggesting that models need to be optimized for performance.

The study found that providing LLM models with overly detailed database schema

information does not necessarily translate into better performance in generating valid

SQL queries. In some cases, this can lead to overloading of the models and

deterioration of the quality of the generated answers. As a result, models may require

further tuning and better training in interpreting database schema information.

Recommendations for the future include considering providing simplified database

schema information, which can make it easier for models to efficiently process key

data without overloading. It is also important to include explicit mappings of

synonymous terms to training data so that models can better understand the specific

terminology used in the domain. Continued work on tuning models to task

specificity is key to improving their performance and accuracy.

In summary, choosing the optimal LLM model for generating SQL queries requires

finding a balance between accuracy, response time and the model's ability to process

additional information. This study underscores the complexity of this task and the

need for careful selection of training data and an in-depth understanding of the

models' capabilities to achieve optimal results.

5. Conclusions

This paper focuses on comparing three LLM models in the context of query

processing based on an example involving customer service employees. The main

purpose of the paper was to investigate how different models handle accessing key

data by asking natural language questions without the need for SQL knowledge.

The study evaluated three different LLM models - Llama3:70b-instruct,

Gemma2:27b and Codegemma, as well as the Vanna.AI tool of the open sorce

solution in which LLM models can be implemented. The purpose of the study was

primarily to identify the benefits and limitations of their advanced natural language

processing capabilities for generating SQL queries. Particular attention was paid to

the impact of providing detailed information about the database schema on the

accuracy of generated queries and the response time of the models.

 Michał Maj, Damian Pliszczuk, Patryk Marek, Weronika Wilczewska,

Bartosz Przysucha, Tomasz Rymarczyk

437

The research methodology was based on a comprehensive analysis in which models

were tested on six benchmark questions. The tests were conducted in two iterations

to observe the effect of additional schema data on query generation. All models were

trained on identical datasets to generate valid SQL queries reflecting different levels

of complexity, from basic queries to nested structures and aggregate functions.

Performance was measured using two key metrics: the correctness of the generated

SQL and the response generation time.

The results showed that while Llama3 and Gemma2 initially achieved high

accuracy, adding detailed information about the database schema did not improve

their performance, and in fact contributed to increased response times and decreased

accuracy for certain types of queries. It has been observed that excessive context can

overload models rather than provide useful improvements.

The Codegemma model, while having slightly lower accuracy than the other models,

maintained shorter response times in both iterations. The results suggest that

Codegemma may be a practical solution where speed over accuracy is a priority.

Overall, the study indicates that it is crucial to provide LLM models with the optimal

amount of context to maximize their performance.

In terms of practical implications, the article suggests that customer support should

consider providing simplified database schema information to prevent overloading

of models while enabling accurate SQL query generation. Implementing tools such

as Vanna.AI, using Retrieval Augmented Generation (RAG), can play a key role in

optimizing model performance by selectively providing relevant contextual data to

avoid information overload problems.

Future research should focus on tuning models for complex query types and

developing robust training processes that enable LLM models to adapt to specific

industry terminologies. Further work may also explore approaches that improve

models' understanding of database schemas without overloading them.

Based on the results presented here, future research could incorporate additional

LLM models and RAG techniques to broaden the scope of model performance

evaluation, especially across domains and database structures. As Text2SQL

technology evolves, targeted optimizations and iterative learning will be key to fully

realize the potential of LLM for dynamic customer service needs, enabling faster and

more accurate access to data across a wide range of applications.

References:

Beurer-Kellner, L., Fischer, M., Vechev, M. 2023. Prompting Is Programming: A Query

Language for Large Language Models. Proceedings of the ACM on Programming

Languages, 7(PLDI), 1946-1969. https://doi.org/10.1145/3591300.

 Optimizing Customer Support Using Text2SQL to Query Natural Language Databases

438

Biswal, A., Patel, L., Jha, S., Kamsetty, A., Liu, S., Gonzalez, J. E., Guestrin, C., Zaharia, M.

(n.d.). Text2SQL is Not Enough: Unifying AI and Databases with TAG. In:

Proceedings of ACM Conference (Conference’17) (Vol. 1).

https://github.com/TAG-Research/TAG-Bench.

Davis, F., Easton, H. 2015. Financial Crisis and Banking Performance. The International

Journal of Finance, 12(2), 34-48.

Dima, A., Lukens, S., Hodkiewicz, M., Sexton, T., Brundage, M.P. 2021. Adapting natural

language processing for technical text. Applied AI Letters, 2(3).

https://doi.org/10.1002/ail2.33.

Fu, H., Liu, C., Wu, B., Li, F., Tan, J., Sun, J. 2023. CatSQL:Towards Real World Natural

Language to SQL Applications. Proceedings of the VLDB Endowment, 16(6), 1534-

1547. https://doi.org/10.14778/3583140.3583165.

Li, C., Wang, Y., Wu, Z., Yu, Z., Zhao, F., Huang, S., Dai, X. 2024. MultiSQL: A Schema-

Integrated Context-Dependent Text2SQL Dataset with Diverse SQL Operations.

Findings of the Association for Computational Linguistics ACL 2024, 13857-13867.

https://doi.org/10.18653/v1/2024.findings-acl.823.

Lin, W.Y. 2023. Prototyping a Chatbot for Site Managers Using Building Information

Modeling (BIM) and Natural Language Understanding (NLU) Techniques. Sensors,

23(6), 2942. https://doi.org/10.3390/s23062942.

Liu, C., Zhang, W., Zhao, Y., Luu, A.T., Bing, L. (n.d.). Is Translation All You Need? A

Study on Solving Multilingual Tasks with Large Language Models.

https://platform.openai.com/docs/models/.

Mahmood, A., Yao, B., Huang, C.M. 2024. LLM-Powered Conversational Voice Assistants:

Interaction Patterns, Opportunities, Challenges, and Design Guidelines.

Praveen, S.V., Gajjar, P., Ray, R.K., Dutt, A. 2024. Crafting clarity: Leveraging large

language models to decode consumer reviews. Journal of Retailing and Consumer

Services, 81, 103975. https://doi.org/10.1016/j.jretconser.2024.103975.

Song, Y., Ezzini, S., Tang, X., Lothritz, C., Klein, J., Bissyande, T., Boytsov, A., Ble, U.,

Goujon, A. 2024. Enhancing Text-to-SQL Translation for Financial System Design.

Proceedings of the 46th International Conference on Software Engineering: Software

Engineering in Practice, 252-262. https://doi.org/10.1145/3639477.3639732.

Tomova, M., Hofmann, M., Hütterer, C., Mäder, P. 2024. Assessing the utility of text-to-

SQL approaches for satisfying software developer information needs. Empirical

Software Engineering, 29(1). https://doi.org/10.1007/s10664-023-10374-z.

Yan, B., Li, K., Xu, M., Dong, Y., Zhang, Y., Ren, Z., Cheng, X. 2024. On Protecting the

Data Privacy of Large Language Models (LLMs): A Survey.

http://arxiv.org/abs/2403.05156.

Yang, E., Nair, S., Lawrie, D., Mayfield, J., Oard, D.W., Duh, K. 2024. Efficiency-

Effectiveness Tradeoff of Probabilistic Structured Queries for Cross-Language

Information Retrieval. http://arxiv.org/abs/2404.18797.

Zhang, L., Jijo, K., Setty, S., Chung, E., Javid, F., Vidra, N., Clifford, T. 2024. Enhancing

Large Language Model Performance To Answer Questions and Extract Information

More Accurately.

Zulfikar, W., Chan, S., Maes, P. 2024. Memoro: Using Large Language Models to Realize a

Concise Interface for Real-Time Memory Augmentation. Conference on Human

Factors in Computing Systems - Proceedings.

https://doi.org/10.1145/3613904.3642450.

https://doi.org/10.1016/j.jretconser.2024.103975

