
Acta Informatica (2023) 60:385–451
https://doi.org/10.1007/s00236-023-00441-9

ORIG INAL ART ICLE

On first-order runtime enforcement of branching-time
properties

Luca Aceto1,2 · Ian Cassar1,3 · Adrian Francalanza3 · Anna Ingólfsdóttir1

Received: 2 July 2019 / Accepted: 1 June 2023 / Published online: 3 August 2023
© The Author(s), under exclusive licence to Springer-Verlag GmbH Germany, part of Springer Nature 2023

Abstract
Runtime enforcement is a dynamic analysis technique that uses monitors to enforce the
behaviour specified by some correctness property on an executing system. The enforceability
of a logic captures the extent to which the properties expressible via the logic can be enforced
at runtime for a specified operational model of enforcing monitors. We study the enforceabil-
ity of branching-time, first-order properties expressed in the Hennessy–Milner Logic with
Recursion (μHML) with respect to monitors that can enforce behaviour involving events that
carry data. To this end, we develop an operational framework for first-order enforcement via
suppressions, insertions and replacements. We then use this model to formalise the meaning
of enforcing a branching-time property. We also show that a safety syntactic fragment of the
logic is enforceable within this framework by providing an automated synthesis function that
generates correct suppression monitors from any formula taken from this logical fragment.

The research work disclosed in this publication is partially supported by the projects “Developing
Theoretical Foundations for Runtime Enforcement” (184776-051), “TheoFoMon: Theoretical Foundations
for Monitorability” (163406-051) and “Mode(l)s of Verification and Monitorability” (MoVeMent)
(217987-051) of the Icelandic Research Fund, by the BehAPI project funded by the EU H2020 RISE of the
Marie Skłodowska-Curie action (778233) and by the Endeavour Scholarship Scheme (Malta), part-financed
by the European Social Fund (ESF)—Operational Programme II—Cohesion Policy 2014–2020.

B Adrian Francalanza
adrian.francalanza@um.edu.mt

Luca Aceto
luca@ru.is; luca.aceto@gssi.it

Ian Cassar
ian.cassar.10@um.edu.mt; ianc17@ru.is

Anna Ingólfsdóttir
annai@ru.is

1 Reykjavik University, Reykjavik, Iceland

2 Gran Sasso Science Institute, L’Aquila, Italy

3 University of Malta, Msida, Malta

123

http://crossmark.crossref.org/dialog/?doi=10.1007/s00236-023-00441-9&domain=pdf
http://orcid.org/0000-0002-5845-3753
http://orcid.org/0000-0003-3829-7391

386 L. Aceto et al.

1 Introduction

Runtime monitoring [1–3] is a popular dynamic analysis technique. It uses code units called
monitors to either aggregate system information, compare system execution against cor-
rectness specifications, or steer the execution of the observed system. Runtime enforcement
(RE) [4–6] is a specialised monitoring technique, used to ensure that the behaviour of a
system-under-scrutiny (SuS) is always in agreement with some correctness specification.
It employs a specific kind of monitor (referred to as a transducer [7–9], shield [10] or an
edit-automaton [4, 5]) to anticipate incorrect behaviour and counter it. Such a monitor thus
acts as a proxy between the SuS and the surrounding environment interacting with it, encap-
sulating the system to form a composite (monitored) system. The behaviour of the composite
system may vary from that of the SuS depending on the actions executed by the SuS in con-
junction with a range of runtime transformations applied by the monitor, including action
suppressions, insertions and replacements.

We extend a recent line of research [3, 11–16] and study the potential of extending RE
approaches to first-order branching-time specifications. Understanding the effectiveness of
RE over branching-time specifications is important for modern verification setups where RE is
only one option from an arsenal of verification techniques that can be used, covering both pre-
and post-deployment phases of the software development lifecycle [17–22]. In such cases,
it is natural to consider correctness specifications describing the SuS computation graph,
typically formalised by a branching-time logic. Practical specifications often also need to
describe data relationships over the SuS event payloads, which is typically achieved using a
first-order constructs. Although these specifications are best verified using a static technique
like model checking, there are numerous situations where such a strategy is impractical
(e.g., when an exhaustive static verification is prohibitively expensive, or when a sufficiently
detailed SuS model cannot be obtained due to restrictive licensing agreements of third-party
software components). In such cases, verification engineers need to resort to other techniques
such RE.

The branching-time nature of the specifications considered departs substantially from that
of linear-time specifications [23] used by the state of the art on RE. Whereas linear-time
specifications describe properties of the current execution trace of the SuS, branching-time
specifications describe properties such as what can/cannot be done by the SuS after some/all
computations exhibiting a particular trace. As a result, the standard RE criteria of soundness
(i.e., when the enforced behaviour satisfies the property to be enforced) and transparency
(i.e., when the monitor should not intervene because the property is not violated), identified
by Ligatti et al. [4] for a linear-time setup, are not immediately applicable to branching-time
specifications.

The branching-time interpretation of a formula also affects the RE handling of certain
logical constructs. For instance, consider the disjunction formula ϕ1∨ϕ2. The linear-time
setting requires the current trace to either satisfy ϕ1 or ϕ2, and an RE setup can intervene to
enforce the property whenever the monitor observes enough of this trace to determine that
neither ϕ1 nor ϕ2 are satisfied. The situation is different for a branching-time interpretation
since the subformulas ϕ1 and ϕ2 can, in principle, describe computation from different parts of
the computation tree. In turn, although the current execution observed might provide enough
information to determine that either one of ϕ1 or ϕ2 is violated, there would never be an
execution that allows a (sound and transparent) monitor to determine when to intervene in
cases where both subformulas are violated.

123

On first-order runtime enforcement of branching-time properties 387

These are a few of the issues that are crucial for ensuring monitor correctness. Since any
analysis tool ought to form part of the trusted computing base, a monitor synthesised from
a specification for enforcement purposes should be, in and of itself, correct. However, it is
unclear what guarantees are to be expected from a monitor that enforces a branching-time
formula. Nor is it clear for which type of specifications this approach should be expected
to work effectively; it has been well established that a number of properties are not moni-
torable [11, 12, 23–27] and it is therefore reasonable to expect similar limits in the case of
enforceability [2, 28].

In order to conduct our investigation in a systematic manner, we insists on a separation of
concerns between the correctness specification, describing what properties the SuS should
satisfy, and the monitor, describing how to enforce these properties on the SuS. Our work
considers data-oriented properties expressed in terms of a first-order extension of the logic
μHML [29, 30] and explores what and how first-order branching-time properties can be
enforced. By way of example, we formally demonstrate how these properties can be oper-
ationally enforced by monitors that are instrumented to execute in tandem with the SuS in
order to suppress, insert and replace system events that carry a payload. A central element
for the realisation of such an approach is the synthesis function which automates the trans-
lation from the declarative μHML specifications to algorithmic descriptions formulated as
executable monitors.

This separation of concerns serves a number of purposes. First, the convenience of a
highly expressive logic such as μHML (a reformulation of the modal μ-calculus) allows us
to achieve a good degree of generality for our results; by employing this logic, our work also
applies to other widely used logics (such as LTL and CTL [31]) that are embedded within
μHML (see [23, 32] for examples of such embeddings). Second, since such a branching-
time logic is verification-technique agnostic (compared to logics such as LT L3 [33] tailored
for runtime verification), it fits better with the realities of present-day software verification
where, as stated earlier, a variety of techniques (e.g., model-checking and testing) straddling
both pre- and post-deployment phases are used. In such cases, knowing which properties can
be verified statically and which ones can be monitored and enforced at runtime is crucial for
devising effective multi-pronged verification strategies [34–44]. Equipped with such knowl-
edge, one could also employ standard techniques [45–47] to decompose a non-enforceable
property into a collection of smaller properties, a subset of which can then be enforced at
runtime. Within this setup, this paper makes the following contributions:

Modelling We develop a general framework for first-order enforcement instrumentation that
is parametrisable by any system whose behaviour can be expressed via labelled transitions.
The framework can handle enforcement of events carrying data via action suppression, inser-
tion and replacement (Fig. 2).

Correctness We provide two formal definitions for asserting when a monitor correctly
enforces a formula interpreted over labelled transition systems, namely enforcement, Def-
inition 4, and weak enforcement, Definition 7, and formally compare the two Theorem 2;
these definitions rely on novel interpretations for enforcement soundness, Definition 2, and
transparency, Definitions 3 and 6. We also define a parametric definition for logic enforce-
ability, Definition 8 (Enforceability), that manifests a black-box treatment of the SuS, and
can also be instantiated to different criteria for correct enforcement. To our knowledge, all
existing studies of RE target linear-time properties; we are also unaware of any study on the
enforceability of logics with data.

123

388 L. Aceto et al.

Expressiveness We identify a subset of μHML formulas that can be mapped to our monitors
enforcing data-dependent behaviour. In fact, we prove an even stronger result and show that
suppression monitors are sufficiently expressive to conduct such correct enforcement for
this logical subset. This result has benefits from a realisability standpoint, since suppression
monitors are easier to implement in general; data-dependent insertions/replacements need to
determine the payload carried by the inserted/replaced events, which is not always a function
of the data observed by monitoring up to that point, and may not necessarily be in line with
typical default values in the case of certain data domains (e.g., the value 0 is often chosen
as the default value for the natural numbers but there many be properties for which this is
inadequate). To assess the correctness of this mapping, we provide enforceability results,
namely Theorems 3 (Enforcement) and 5 (Normalisation Equivalence) (but also Theorem 4
(Weak Enforcement)).

As a by-product of this study, we also develop a provably correct synthesis function, Def-
inition 10, that can then be used for tool construction, along the lines of [48–53].

Structure of the paper: Sect. 2 revisits labelled transition systems and presents our touch-
stone logic, μHML, extended to a first-order setting. The operational model for data-oriented
enforcement monitors and instrumentation is given in Sect. 3. In Sect. 4 we formalise the
interdependent notions of correct enforcement and enforceability. These notions act as a
foundation for the development of a synthesis function in Sect. 5, which produces correct-
by-constructionmonitors from normalised safety formulas. In Sect. 6 we then show that when
restricted to safety properties, our notions of correct enforcement from Sect. 4 coincide. Sec-
tion 7 concludes and discusses related and future work. This article is an extended version
of [54]; it includes expanded explanations and examples, complete proofs and additional
results, including a comparison of our enforcement definitions, Theorem 2 in Sect. 4 and
Theorem 6 in Sect. 6, and a detailed explanation in Sect. 5.2 of a result showing that every
formula definable by a fragment of the safety subset of μHML can be normalised into an
equivalent formula that adheres to a stricter syntax, Theorem 5.

2 Preliminaries

The Model: We assume image-finite systems that are described as labelled transition systems
(LTSs), consisting of triples 〈Sys,Act∪{τ } ,→〉 defining a set of system states, s, r , q ∈ Sys,
a set of observable actions, α, β ∈Act, and a distinguished silent action τ /∈Act along
with a transition relation, −→ ⊆ (Sys × Act ∪ {τ } × Sys). We use the dedicated variable
μ∈Act∪ {τ } to range over both silent and observable actions. We write s

μ−→ r in lieu
of (s, μ, r) ∈→, and s

α	⇒ r to denote weak transitions representing s(
τ−→)∗· α−→ ·(τ−→)∗r

and refer to r as a α-derivative of s. The syntax of the regular fragment of CCS [55] is
occasionally used to concisely describe LTSs in our examples. We include its syntax and
LTS semantics for completeness. Apart from recursion, rec x .s, the two main constructs of
regular CCS are action prefixing, μ.s, and n-ary choice,

∑
i∈I si where |I | = n (for the binary

case when n = 2, we simply write s1 + s2). Their behaviour is fairly standard, as their

123

On first-order runtime enforcement of branching-time properties 389

Fig. 1 The syntax and semantics for μHML

respective transition rules show (e.g., μ.s transitions to state s by emitting the action μ).

s, r ∈ rCCS ::= nil | μ.s | ∑i∈I si | rec x .s | x

μ.s
μ−→ s

s j
μ−→ r j

∑
i∈I si

μ−→ r j
j∈I s{rec x .s/x} μ−→ r

rec x .s
μ−→ r

Traces t, u ∈ Act∗ range over (finite) sequences of observable actions, and we write

s
t	⇒ r to denote a sequence of weak transitions s

α1	⇒ · · · αn	⇒ r for t = α1, . . . , αn for some
n ≥ 0. When n = 0, t is the empty trace ε and s

ε	⇒ r means s
τ−→*r . We also assume the

classic notions of strong similarity, s �∼ r , and bisimilarity, s ∼ r , for our model [55, 56],
using them as our touchstone system preorder and equivalence relations, respectively.

Definition 1 (Strong similarity and bisimilarity) A relation R over a set of system states is
a strong simulation iff whenever (s, r) ∈ R for every action μ:

every s
μ−→ s′ implies there exists a transition r

μ−→ r ′ such that (s′, r ′) ∈ R
States s and r are similar, s �∼ r , iff they are related by a strong simulation.

A relation R over a set of system states is a strong bisimulation iff whenever (s, r) ∈ R
for every action μ, the following transfer properties are satisfied:

– every s
μ−→ s′ implies there exists a transition r

μ−→ r ′ s.t. (s′, r ′) ∈ R; and

– every r
μ−→ r ′ implies there exists a transition s

μ−→ s′ s.t. (s′, r ′) ∈ R.

Two system states s and r are bisimilar, s ∼ r , iff there exists a strong bisimulation that
relates them. ��

The Logic: We consider a slightly generalised version of μHML [30, 57] that uses symbolic
actions (SAs) of the form p, c, in contrast to the conventional concrete actions, α. Patterns, p,
abstract over actions using data variables d, e, f ∈ DVar. Variables in a pattern may either
occur free, d , or as binders, (d) where a closed pattern is one without any free variables. We
use function bv(p) to denote the set of binders in p, and fv(c) to represent the set of free
variables referenced in condition c.

We assume a (partial) matching function for closed patterns mtch(p, α) that (when
successful) returns a substitution σ mapping variables in p to the corresponding values

123

390 L. Aceto et al.

in α. For instance, if we match the pattern i?(d) with the (concrete) action i?5 using
mtch(i?(d), i?5) we obtain the data substitution {d �→ 5}. The filtering condition, c, con-
tains variables found in p and is evaluated with respect to the substitutions returned by
successful matches, written as cσ ⇓ b where b ∈ {true, false}. Put differently, a closed
SA, p, c, is one where p is closed and fv(c) ⊆ bv(p); it denotes the set of actions
�p, c�

def= { α ∃σ · mtch(p, α)=σ and cσ ⇓ true }. The use of symbolic actions allows
for more adequate reasoning about LTSs with infinite actions (e.g., actions carrying data
from infinite domains).

Example 1 Symbolic action (d)?(e), e=1 is valid since (fv(e=1) = {e}) ⊆ (bv((d)?(e)) =
{d, e}), but actions (d)?e, e = 1 and (d)?1, e = 1 are invalid since fv(e=1) � (bv((d)?e) =
{d}). ��
Two symbolic actions, p1, c1 and p2, c2, are said to be equivalent when �p1, c1� = �p2, c2�,
and pattern equivalent when �p1, true� = �p2, true�.

The syntax of the logic is given in Fig. 1 and assumes a countably infinite set of logical
variables X , Y ∈ LVar. It provides standard logical constructs such as truth, falsehood,
conjunctions and disjunctions:

∧
i∈I ϕi describes a compound conjunction, ϕ1∧ . . . ∧ϕn ,

where I = {1, .., n} is a finite set of indices, and similarly for disjunctions. It allows for
defining recursive properties using the greatest and least fixpoints, max X .ϕ and min X .ϕ,
both of which bind free occurrences of X in ϕ. The logic also uses universal and existential
modal operators defining symbolic actions, [p, c]ϕ and 〈p, c〉ϕ, where bv(p) bind free data
variables in c and ϕ. Formulas in μHML are interpreted over the system powerset domain
where S∈P(Sys). The semantic definition of Fig. 1, �ϕ, ρ�, is given for both open and closed
formulas. It employs a valuation from logical variables to sets of states, ρ ∈ (LVar →
P(Sys)), which permits an inductive definition on the structure of the formulas; ρ′ = ρ[X �→
S] denotes a valuation where ρ′(X) = S and ρ′(Y) = ρ(Y) for all other Y‰X . The semantic
definition of Fig. 1 uses also the substitution operation ϕσ substituting each free occurrence
of data variables in the formula ϕ by their corresponding values, according to the substitution
σ . The only non-standard cases are those for the modal formulas, due to the use of SAs.

Note, however, that we recover the standard logic for symbolic actions, p, c, when the data
variables in pattern p are all equated to a single value in condition c, e.g., a concrete action
α = i?v is equivalent to symbolic action (d)?(e), d = i ∧ e = v which can alternatively be
written as i?v, true in shorthand notation. We refer to these as singleton symbolic actions and
in such cases we simply write [α]ϕ and 〈α〉ϕ for short, thus eliding the condition “true”. We
assume closed formulas, i.e., without free logical and data variables, and write �ϕ� in lieu
of �ϕ, ρ� since the interpretation of a closed ϕ is independent of the valuation ρ. A system
s satisfies formula ϕ whenever s ∈ �ϕ�; a formula ϕ is satisfiable, whenever there exists a
system r such that r ∈ �ϕ�, i.e., �ϕ�‰∅.

In [58], Hennessy and Milner proved a powerful result linking the notion of strong bisimi-
larity to the logic used in this paper, by establishing that strong bisimilar image-finite systems
satisfy the same set of properties (restated as Theorem 1 below). A consequence of this the-
orem is that non-bisimilar systems can be distinguished by finding a property that is satisfied
by one but not the other. Although this result was originally given in relation to the Hennessy-
Milner logic (without recursion), it still applies to the full μHML [59, 60].

Theorem 1 (Hennessy–Milner Theorem [58]) Let s and r be two states of an image-finite
LTS such that when s ∼ r then both s and r satisfy exactly the same μHML formulas. ��
Example 2 Consider two systems (a good system, sg, and a bad one, sb) implementing a
server that interacts on port i , repeatedly accepting requests that are answered by outputting

123

On first-order runtime enforcement of branching-time properties 391

on the same port, and terminating the service once a close request is accepted (on the same
port). Whereas sg outputs a single answer (i!ans) for every request (i?req), sb occasionally
produces multiple answers for a given request (see the underlined branch in the description
of sb below). Both systems terminate with i?cls.

sg = rec x .
(
i?req.i!ans.x + i?cls.nil

)

sb = rec x .
(
i?req.(i!ans.x + i!ans.i!ans.x) + i?cls.nil

)

We can specify that a request followed by two consecutive answers on port i indicates invalid
behaviour via the μHML formula ϕ0.

ϕ0
def=[i?req]max X .[i!ans]([i!ans]ff∧[i?req]X)

It defines an invariant property (max X . (. . .)) requiring that whenever the system interacting
on port i outputs an answer following a request, it cannot output a subsequent answer, i.e.,
[i!ans]ff, unless it inputs a request beforehand, in which case the formula recurses, i.e.,
[i?req]X .

Using symbolic actions, we can generalise ϕ0 to a first-order setting by requiring the
property to hold for any interaction happening on any port number except j .

ϕ1
def= [(d)?req, d‰j]max X .[d!ans, true]([d!ans, true]ff∧[d?req, true]X)

In ϕ1, (d)?req binds the free occurrences of d found in d‰ j and in the continuation formula
max X .[d!ans, true]([d!ans, true]ff∧[d?req, true]X). Using the semantics in Fig. 1, one can

check that sg∈�ϕ1�, whereas sb /∈�ϕ1� since sb
i?req−−−→ · i!ans−−−→ · i!ans−−−→ . . . ��

3 An operational model for enforcement

Our operational mechanism for enforcing properties over systems uses the (symbolic)
transducers m, n ∈ Trn defined in Fig. 2. Transducers are a special kind of monitors that
define symbolic transformation triples, p, c, p′, consisting of the actionpattern and condition,
p and c resp., along with the transformation pattern p′. The action pattern and condition
determine whether or not the transformation should be applied to an action α, or if the
monitor should act independent of the system. The transformation pattern specifies the kind
of transformation that should be applied. Transformations therefore permit the transducer to
suppress, replace or insert actions.

The syntax of our transducers assumes a well-formedness constraint where for every
p, c, p′.m, bv(c)∪bv(p′) = ∅. The transition rules in Fig. 2 assume closed terms,
i.e., for every transformation-prefix transducer of the form p, c, p′.m, p is closed and(
fv(c)∪fv(p′)∪fv(m)

) ⊆ bv(p), and yield an LTS with labels of the form γ �γ ′, where
γ, γ ′ ∈ (Act∪ {•}) and • is a monitor action − the matching function is lifted to these
extended actions in the obvious way, where mtch(•, •)=∅.

Intuitively, a transitionm
α�γ−−→ n denotes the fact that the transducer in statem transforms

the visible action α (produced by the system) into action γ and transitions into state n. In
this sense, the transducer action α�β represents the replacing of α by β, and α�α denotes
the identity transformation. Cases α�• and •�α resp. encode the suppression and insertion
transformations of action α; in the former, • signifies the removal of action α from the

123

392 L. Aceto et al.

Fig. 2 A model for transducers (I is a finite index set and m �γ−→ means �γ ′, n · m γ �γ ′
−−−−→n)

execution of the monitored system, while in the latter it represents a monitor transition that
introduces an action α that was not induced by the system.

The key transition rule in Fig. 2 is eTrn. It states that the transformation-prefix transducer
p, c, p′.m can transform an extended action γ into a different action γ ′, as long as the action
matches with pattern p yielding substitution σ (‰ undef), mtch(p, γ)=σ , and the condition
is satisfied by σ , cσ ⇓ true. In such a case, the transformed action is γ ′=p′σ , i.e., the
action γ ′ resulting from the instantiation of the free data variables in pattern p′ with the
corresponding values mapped by σ , and the transducer state reached is mσ . The remaining
rules for recursion (eRec) and selection (eSel) are standard. We encode the identity monitor,
id, as a recursive monitor defining identity transformations that match every possible action.

Figure 2 also describes an instrumentation relation, which relates the behaviour of the SuS
s with the transformations of a transducer monitorm that agreeswith the (observable) actions
Act of s. The term m[s] thus denotes the resulting monitored system whose behaviour is
defined in terms of Act∪ {τ } from the system’s LTS. Concretely, rule iTrn states that when
a system s transitions with an observable action α to s′ and the transducer m can transform
this action into β and transition to n, the instrumented system m[s] transitions with action
β to n[s′]. However, when s transitions with a silent action, rule iAsy allows it to do so
independently of the transducer.

Rule iSup states that if the system performs an action α that the monitor can suppress
into •, the composite system transitions silently over τ . Dually, with rule iIns the composite
system transitions over an action α when the transducer is able to insert α independently
of the behaviour of s. Rule iDef is analogous to standard monitor instrumentation rules for
premature termination of the transducer [11, 13, 61, 62], and accounts for underspecification
of transformations. Thus, if a system s transitions with an observable action α to s′, and the
transducer m does not specify how to transform it (m �α−→), nor can it transition to a new
transducer state by inserting an action (< m � •−→>), the system is still allowed to transition

123

On first-order runtime enforcement of branching-time properties 393

while the transducer defaults to acting like the identity monitor, id, from that point onwards. It
is worth highlighting that the instrumentation is evidence based: the transitions of a monitored
system only rely on actual transitions of the SuS and are never based on other SuS aspects
such as the transitions it cannot do (as is the case for the monitor with premises < m �α−→>

and < m � •−→> in rule iDef). This manifests a black-box treatment of the SuS.

Example 3 Consider the insertion transducer mi and the replacement transducer mr below:

mi
def= (d)?req, true, d?req.•, true, i!ans.id

mr
def= rec x .

(
(d)?req, true, j?req.x + (d)!ans, true, j!ans.x

+ (d)?cls, true, j?cls.x

)
.

When instrumented with a system, mi inserts action i!ans, after the system inputs a request
i?req, before behaving as the identity transducer. Concretely, the system mi[sb], where sb is
from Example 2, can only start the computation as follows:

mi[sb] i?req−−−→ •, true, i!ans.id[s′
b] i!ans−−−→ id[s′

b] i!ans−−−→ . . .

(where s′
b = i!ans.sb + i!ans.i!ans.sb).

By contrast, mr transforms input actions with either payload req or cls and output actions
with payload ans on any port name, into the respective actions on port j . For instance, we
have that:

mr[sb] j?req−−−→ mr[s′
b] j !ans−−−→ mr[sb] j?cls−−−→ mr[nil].

Consider now the two suppression transducers ms and mt for actions on ports other than j :

ms
def= rec x .

(
d?req, true, d?req.x + (d)!ans, d ‰ j, •.x

)

mt
def= (d)?req, true, d?req.rec x .

(
d!ans, true, d!ans.

rec y.
(
d!ans, true, •.y + d?req, true, d?req.x

))
.

Monitor ms suppresses every answer on ports other than j , and continues to do so after
every request on such ports. When instrumented with sb from Example 2, we can observe
the following behaviour:

ms[sb] i?req−−−→ ms[s′
b] τ−→ ms[sb] i?req−−−→ ms[s′

b] τ−→ ms[sb] . . .
Note thatms does not specify a transformation behaviour for when the monitored system pro-
duces inputs with payload other than req. The instrumentation handles this underspecification

by defaulting to the identity transducer; in the case of sb we get ms[sb] i?cls−−→ id[nil].
Transducer mt performs slightly more elaborate transformations. For interactions on ports

other than j, it suppresses consecutive answers that are output by the system following any
serviced request (i.e., a req input on i followed by an ans output on i) sequence. For sb we
can observe the following:

mt[sb] i?req·i!ans						⇒ rec y.
(
i!ans, true, •.y + i?req, true, i?req.m′

t
)[i!ans.sb]

τ−→ rec y.
(
i!ans, true, •.y + i?req, true, i?req.m′

t
)[sb]

where

m′
t

def= rec x .
(
i!ans, true, i!ans.rec y.(i!ans, true, •.y + i?req, true, i?req.x

))

��

123

394 L. Aceto et al.

In the sequel, we find it convenient to refer to p as the transformation pattern p where all its
binding occurrences are converted to free occurrences, e.g., (d)!(e) denotes d!e. As shorthand
notation, we elide the second pattern p′ in a transducer p, c, p′.m whenever p′=p and simply
write p, c.m; note that if bv(p) = ∅, then p=p. Similarly, we elide c whenever c=true. This
allows us to express mt from Example 3 as (d)?req, d ‰ j.rec x .

(
d!ans.rec y.(d!ans, •.y +

d?req.x
))

.

4 Enforcement and enforceability

We investigate what it means for the monitors and instrumentation defined in Fig. 2 to enforce
a branching-time property. We follow the template of previous work such as Ligatti et al. [4]
and define enforcement in terms of two criteria:

(Enforcement) Soundness which requires that enforced behaviour should indeed satisfy the
property being enforced; and
(Enforcement) Transparencywhich regulates the extent of intervention of the enforcing moni-
tor whenever the system, or exhibited behaviour, already satisfies the property being enforced.

There are, however, important differences that are specific to our setting of Figs. 1 and 2 that
prevent us from directly using existing definitions for these two criteria. For one, branching-
time properties are defined over the computation graph of the SuS which might have several
executions apart from the one that is currently being observed; by contrast, linear-time prop-
erties in prior RE investigations describe how the current execution is expected to be. For
two, our monitor operational model is different from those assumed by other formal studies of
enforcement. Concretely, it can handle first-order events where the data can be learnt at run-
time whereas monitors used by other formal studies of enforcement cannot. In addition, we
purposefully use an operational model that can potentially express non-deterministic mon-
itor behaviour; As shown in prior work [25, 61–68], non-deterministic monitor behaviour
is prone to arise in contexts such as first-order properties and automated monitor synthesis.
Since we later consider automated monitor synthesis, we wanted to assume a framework
that incorporates such behaviour in order to force our enforcement definitions to take it into
consideration.

In the case of enforcement soundness, we should expect that whenever the monitor m
enforces the property ϕ, then for any system s, the resulting composite system obtained from
instrumenting m with it following the operational semantics of Fig. 2, m[s], should satisfy
the property of interest, ϕ. Note that a monitor m could, in principle, still satisfy soundness
for the property ϕ even if it behaves non-deterministically, as long as all the possible non-
deterministic enforcement operations employed all fall within the behaviour specified by ϕ.
There is, of course, a caveat: the property being enforced must be satisfiable, i.e., �ϕ� ‰ ∅,
for otherwise it would be impossible for the enforcing monitor to produce any satisfying
behaviour.

Definition 2 (Sound enforcement) Monitor m soundly enforces a formula ϕ, denoted as
senf(m, ϕ), iff for every LTS 〈Sys,Act∪{τ } ,→〉 and system states s ∈ Sys, �ϕ�‰∅ implies
m[s] ∈ �ϕ�. ��
Example 4 In general, showing that a monitor soundly enforces a formula requires showing
this for every possible system. However, in this example we give an intuition based on systems
sg and sb. So recall ϕ1, sg and sb from Example 2 where sg ∈ �ϕ1� (hence ϕ1 is satisfiable)
and sb /∈ �ϕ1�. For the monitors mi, mr, ms and mt presented in Example 3, we have that:

123

On first-order runtime enforcement of branching-time properties 395

– mi[sb]/∈�ϕ1�, since mi[sb] i?req−−−→ (•, i!ans.id)[s′
b] i!ans−−−→ id[s′

b] i!ans−−−→ id[sb]. This
counter-example implies that ¬senf(mi, ϕ1).

– mr[sg]∈�ϕ1� and mr[sb]∈�ϕ1�. Intuitively, this is because the ensuing instrumented sys-
tems only generate (replaced) actions that are not of concern to ϕ1. Since this behaviour
applies to any system mr is composed with, we can conclude that senf(mr, ϕ1).

– ms[sg]∈�ϕ1� and ms[sb]∈�ϕ1� because the resulting instrumented systems never produce
outputs with ans on a port number other than j . We can thus conclude that senf(ms, ϕ1).

– mt[sg]∈�ϕ1� and mt[sb]∈�ϕ1�. Since the resulting instrumentation suppresses consecu-
tive answers (if any) after any number of serviced requests on any port other than j , we
can conclude that senf(mt, ϕ1). ��

By itself, sound enforcement is a relatively weak requirement for adequate enforcement as
it does not regulate the extent of the induced enforcement. More concretely, consider the case
of monitor ms from Example 3. Although ms manages to suppress the violating executions of
system sb, thereby bringing it in line with property ϕ1, it needlessly modifies the behaviour
of sg (namely it prohibits it from producing any outputs with ans on port numbers different
from j), even though it satisfies ϕ1. Thus, in addition to sound enforcement it is customary
to also require a transparency condition for adequate enforcement. Since our properties of
interest (i.e., first-order branching-time properties) describe execution graphs, one possible
interpretation of such requirement dictates that, whenever a system s already satisfies the
property ϕ, the assigned monitor m should not alter the behaviour of s. Put differently,
the behaviour of the enforced system should be equivalent to that of the original system.
Again, there are various possible candidates for what constitutes to be an adequate notion of
behavioural equivalence, such as trace equivalence, mutual simulation, (strong) bisimulation
and weak bisimulation [56, 69]. We here opt for the strongest possible definition from those
mentioned, namely (strong) bisimulation (Definition 1), which also implies all of the other
equivalences mentioned here (i.e., if two systems are strongly bisimilar, they are also weakly
bisimilar, mutually similar and trace equivalent).

Definition 3 (Transparent enforcement) A monitor m is transparent when enforcing a for-
mula ϕ, denoted as tenf(m, ϕ), iff for all LTSs 〈Sys,Act ∪ {τ } ,→〉 and system states
s ∈ Sys, whenever s ∈ �ϕ� then m[s] ∼ s. ��
Example 5 We have already argued—via the counter-example sg—whyms does not transpar-
ently enforce ϕ1. We can also argue easily why ¬tenf(mr, ϕ1) also holds: the simple system
i?req.i!ans.nil trivially satisfies ϕ1 but, clearly, we have the inequality mr[i?req.i!ans.nil] �

i?req.i!ans.nil since mr[i?req.i!ans.nil] j?req−−−→ mr[nil] and i?req.i!ans.nil �j?req−−−→.
It turns out, however, that tenf(mt, ϕ1) holds. Although this property is not as easy to

show—due to the universal quantification over all systems—we can get a fairly good intuition
for why this is the case via the example sg, since this system satisfies ϕ1 and one can easily
establish that mt[sg] ∼ sg holds. ��

This brings us to our first formal definition of what “(monitor) m enforces (property) ϕ”
can be interpreted to mean in a branching-time setting.

Definition 4 (Enforcement) A monitorm enforces propertyϕ whenever it does so (i) soundly,
as specified in Definition 2, and (i i) transparently, as specified in Definition 3. ��

We note a few important aspects from Definition 4. First, the definition requires that,
for a specific property, a monitor enforces any system both soundly and transparently. Put

123

396 L. Aceto et al.

differently, we could have consolidated the respective universal quantifications in both Defini-
tions 2 and 3 into a single outer quantification without changing the semantics of Definition 4.
However, this format allows for better modularity since soundness and transparency can be
understood in isolation. Second, our choice of process equivalence in Definition 3 restricts
the non-deterministic behaviour of an enforced system since strong bisimulation is one of
the finest equivalences; coarser choices for process equivalence would allow more non-
deterministic behaviour on the part of the monitor. Third, the transparency requirement of
Definition 4, by way of Definition 3, only restricts monitors from modifying the behaviour
of satisfying systems, i.e., when s∈�ϕ�, but fails to specify any enforcement behaviour for
the cases when the SuS violates the property.

Example 6 Recall ϕ1 and sb from Example 2, and also mt from Example 4. Even though
sb /∈ �ϕ1�, not all of its exhibited behaviours constitute violating traces: for instance,

sb
i?req·i!ans·i?cls								⇒ nil is not a violating trace, meaning that a system that only executes

this trace satisfies ϕ1, e.g., i?req.i!ans.i?cls.nil ∈ �ϕ1�. Correspondingly, we also have

mt[sb] i?req·i!ans·i?cls								⇒ id[nil]. ��
We thus consider an alternative transparency requirement for a property ϕ that incorpo-

rates the expected enforcement behaviour for both satisfying and violating systems. More
concretely, transparency can be redefined by quantifying over the behaviours exhibited by
the system, i.e., their traces, rather than on the systems themselves. This trace-based version
of transparency—hereinafter referred to as trace transparency—resembles the classical defi-
nitions that are prevalent in the runtime enforcement literature [4, 28, 70]. Monitors adhering
to trace transparency must ensure that if a system trace is correct, regardless of whether
it originates from a valid or invalid system, the monitor should refrain from modifying it.
We define trace transparency, Definition 6, in terms of trace-systems, sys(t), as defined in
Definition 5.

Definition 5 (Trace system) A system sys(t) is a trace system for a trace t if it can only
execute t and all of its prefixes. Multiple trace systems for t are therefore bisimilar. ��
Definition 6 (Trace transparent enforcement) A monitor m adheres to trace transparency
when enforcing a formula ϕ, denoted as ttenf(m, ϕ) if for every trace t , when sys(t) ∈ �ϕ�

and m[sys(t)] t ′	⇒ m′[sys(t ′′)] then t = t ′t ′′. ��
Going back to Example 6, a trace-transparent monitor mtt ensures that although sb /∈ �ϕ1�,
its valid traces, such as i?req.i!ans.i?cls.ε, would not be modified at runtime, that is,
since sys(i?req.i!ans.i?cls.ε) ∈ �ϕ1�, every instrumented trace u where mtt[sys(i?req.i!ans.
i?cls.ε)] u	⇒, is a prefix of i?req.i!ans.i?cls.ε.

Proving that a monitor adheres to trace-transparency is, however, not an easy task as a
result of the universal quantification over all possible traces.

Example 7 Consider a monitor m1 = a, true.rec x .b, true, •.x and formula ϕ2 = 〈a〉[b]ff.
To prove that ttenf(m1, ϕ2) holds we must show that for every trace t , if sys(t)∈ �ϕ2� and

m1[sys(t)] t ′	⇒ m′
1[sys(t ′′)] then t = t ′t ′′. We thus inspect the following cases for t .

(a) t = ab.u (for some suffix u): This case holds vacuously since sys(ab.u) /∈ �ϕ2�.
(b) t ‰ ab.u: This case also holds since monitor m1 is unable to modify any trace that is not

prefixed by ab, which means that for all t ′ when m1[sys(t)] t ′	⇒ m′
1[sys(t ′′)] then t = t ′t ′′

as required.

123

On first-order runtime enforcement of branching-time properties 397

Hence, from (a) and (b) we can conclude that ttenf(m1, ϕ2) holds. ��
Although Definition 3 (Transparency) and Definition 6 provide two different ways of

defining transparency, our first main result shows that trace transparency is in fact a weaker
instance of Definition 3.

Theorem 2 (ttenf vs. tenf) For every monitor m and μHML formula ϕ,

(i) tenf(m, ϕ) implies pgttenf(m, ϕ); and that
(i i) ttenf(m, ϕ) does not imply tenf(m, ϕ). ��
Proof The proof for (i) follows immediately from Definitions 3 and 6 since trace systems
are a subset of the possible system states of LTSs.

To prove (i i), it suffices to find a single monitor and formula that adhere to Definition 6
but not to Definition 3. Recall the result proven in Example 7 which states that ttenf(m1, ϕ2).
Using this as a counter example entails showing that tenf(m1, ϕ2) is false. Hence, if we

consider system s1 = a.b.nil + a.c.nil, despite s1 ∈ �ϕ2�, we also know that s1
a−→ · b−→ nil

while m1[s1] �ab	⇒. This proves that tenf(m1, ϕ2) does not hold as required, and we are done.

With this result we can thus give a weaker definition for “m enforces ϕ” then the one
in Definition 4 by requiring sound enforcement, Definition 3, and trace transparency, Defi-
nition 6 (instead of the transparent enforcement of Definition 3). We formally detail this in
Definition 7. Theorem 2 also suggests an important observation, namely that the enforcement
of branching-time properties occasionally necessitates criteria that are more stringent than
those for enforcement in linear-time settings, such as those in [4, 28, 70].

Definition 7 (Weak enforcement) A monitor m enforces formula ϕ whenever it adheres to
(i) soundness, Definition 2, and (i i) trace transparency, Definition 6. ��

Enforceability: Definitions 4 and 7 establish a relationship between the semantic
behaviour specified by a behavioural correctness property on the one hand, and the abil-
ity of the operational mechanism (e.g., the transducers and instrumentation of Sect. 3) to
enforce the specified behaviour on the other. Said definitions can form the foundation for
establishing enforceability, a characteristic describing whether a correctness property can
be enforced. This characteristic can be extended to a logic (or a logical fragment) that is
providing a syntactic description of such properties. It could then be utilised by automation
tools as a filtering principle when attempting to synthesise monitors from these syntactic
descriptions of properties, as argued already in [32] for the case of runtime verification.

Definition 8 (Enforceability) A formula ϕ is enforceable iff there exists a transducer m such
that m enforces ϕ. A logic L is enforceable iff every formula ϕ ∈ L is enforceable. ��

We note a few aspects of Definition 8. First, a formula is enforceable only if (at least)
one monitor can be identified to carry out all the necessary enforcement irrespective of
which SuS it is composed with. Put differently, Definition 8 does not allow us to use prior
knowledge about SuS to select the most appropriate monitor to carry out the enforcement;
this exemplifies a black-box treatment of the SuS. Second, Definition 8 is parametric and
depends on what is considered to be an adequate definition for “m enforces ϕ”. Thus, both
Definitions 4 and 7 can be plugged into Definition 8 to yield different definitions for what it
means for a logic/property to be enforceable.

123

398 L. Aceto et al.

It is worth noting that the question of whether a logic is enforceable or not is challenging.
More concretely, for reasonably expressive logics (such as μHML), it is usually the case
that not every formula can be enforced, as the following example illustrates. This can be
problematic from the point of view of a tool construction that aims to automatically synthesise
monitors from specifications expressed as formulas of a logic of choice [32].

Example 8 Consider the μHML property ϕor (an instantiation of the formula discussed in
the introduction), with the two systems s4 and s2:

ϕor
def= [i!v]ff∨ [j!w]ff s2

def= i!v.nil s3
def= j!w.nil s4

def= s2 + s3

A system satisfies ϕor if either it cannot produce action i!v or it cannot produce action j!w.
Clearly, s4 violates this property as it can produce both. This system can only be enforced
by suppressing or replacing either one of the actions, because insertions would immediately
break transparency. Without loss of generality, assume that our monitors suppress actions (the
same applies for action replacement). The monitor m2

def= rec y.
(
i!v, •.y + j!w, •.y

)
would

be able to suppress the offending actions produced by s4, thus obtaining m2[s4] ∈ �ϕor�.
However, it also suppresses the sole actions i!v and j!w produced by s2 and s3 resp. even though
they both satisfy ϕor. This would, in turn, infringe the transparency criterion of Definition 3
since it needlessly suppresses the actions of s2 and s3, i.e., although s2, s3 ∈ �ϕor� we have
m2[s2] � s2 and similarly for s3. Note that a weaker version ofm2, such as rec y.i!v, •.y (resp.
rec y.j!w, •.y) still breaches transparency as it modifies s2 (resp. s3) unnecessarily. Similarly,
m2 also violates the weaker requirement of trace-transparency, Definition 6. Although every
trace executable by s2, s3 and s4, i.e., t ∈ {(i!v)ε, (j!w)ε}, is valid, sys(t) ∈ �ϕor�, we can

deduce that m2[sys(t)] � t−→. The intuitive reason for this is that a monitor cannot, in principle,
look into the computation graph of a system, but is limited to the current trace. ��

5 Synthesising suppressionmonitors

Despite their merits, Definitions 4, 7 and 8 are not easy to work with. The universal quantifi-
cations over all systems (in all LTSs) in Definitions 2 and 3, and over all traces in Definition 6,
make it hard to establish that a monitor correctly enforces a property. Moreover, according
to Definition 8, in order to determine whether a particular property is enforceable or not,
one would need to show the existence of a monitor that correctly enforces it; put differently,
showing that a property is not enforceable entails another universal quantification, this time
showing that no monitor can possibly enforce the property (recall that Example 8 has shown
that this is not necessarily the case). Lifting the question of enforceability to the level of a
(sub)logic entails a further universal quantification, this time on all the formulas of the logic.

We address these problems in two ways. First, we identify a non-trivial syntactic subset
of μHML that is guaranteed to be enforceable; in a multi-pronged approach to system ver-
ification, this result could act as a guide for whether the property should be considered at a
pre-deployment or post-deployment phase. Second, for every formula ϕ in this enforceable
subset, we provide an automated procedure to synthesise a monitor m from it that correctly
enforces ϕ when instrumented over arbitrary systems, according to Definition 4. This proce-
dure can then be used as a basis for constructing tools that automate property enforcement,
similar to what has been argued for the case runtime verification [32].

In the sequel, we sharpen our enforceability study to the use of suppression monitors, i.e.,
transducers that are only allowed to intervene by dropping system actions. Despite being more
constrained, suppression monitors side-step problems associated with what data to use in a

123

On first-order runtime enforcement of branching-time properties 399

Fig. 3 The syntax for the safety μHML fragment, sHML

payload-carrying action generated by the monitor, as in the case of insertion and replacement
monitors: the notion of a default value for certain data domains is not always immediate. This
makes suppression monitors substantially easier to implement in practice. In our case, the
resulting monitor model of Sect. 3 restricted to suppression yields one that is very similar to
the models proposed for runtime verification in [1, 11, 13, 62], which have been implemented
as part of the detectEr tool suite.1 and shown to induce feasible overheads [51, 71, 72]. By
extension, we conjecture that our suppression monitors also induce minimal overheads when
implemented in programming language environments similar to that targetted by detectEr.
This also means that the first-order logic we consider in this section can be enforced in a
feasible manner in practice.

Intuitively, a suppression monitor would suppress the necessary actions as soon as it
becomes apparent that a violation is about to be committed by the SuS. Such an intervention
intrinsically relies on the detection of a violation. To this effect, we use a prior result from
[11], which identified a maximally-expressive logical fragment of μHML that can be handled
by violation-detecting (recogniser) monitors. We therefore limit our enforceability study to
a variant of this maximal safety fragment, called sHML, since a transparent suppression
monitor cannot judiciously suppress actions without first detecting a (potential) violation.
In Fig. 3 we recall the syntax for sHML, which restricts the logic to truth and falsehood
(tt and ff), conjunctions (

∧
i∈I ϕ, for some finite, non-empty, index set I) and only allows

for recursion to be expressed through greatest fixpoints (max X .ϕ). The semantics for these
constructs follows from that of Fig. 1.

A standard way how to achieve our aims would be to (i) define a (total) synthesis function
� − � : sHML �→ Trn from sHML formulas to suppression monitors and (i i) then show that
for any ϕ ∈ sHML, the synthesised monitor � ϕ � enforces ϕ according to Definition 4 and
Definition 7. Moreover, we would also require the synthesis function to be compositional,
whereby the definition of the monitor for a composite formula is defined in terms of the
monitors obtained for the constituent subformulas. There are a number of reasons for this
requirement. For one, it would simplify our analysis of the produced monitors and allow us
to use standard inductive proof techniques to prove properties about the synthesis function,
such as the aforementioned criterion (i i). However, a naive approach to such a scheme is
bound to fail, as discussed in the next example.

Example 9 Consider an equivalent reformulation of ϕ1 from Example 2.

ϕ4
def= [(d)?req, d‰j]max X .

([d!ans, true][d!ans, true]ff∧
[d!ans, true][d?req, true]X

)

At an intuitive level, the monitor that one expects to obtain for subformula
ϕ′

2
def= [d!ans, true][d!ans, true]ff is d!ans.rec y.d!ans, •.y (i.e., a monitor that repeatedly

drops every output ans that follows a serviced request on the same port), whereas the monitor
obtained for the subformula ϕ′′

2
def= [d!ans, true][d?req, true]X is d!ans.d?req.x (assum-

ing some variable mapping from X to x). These monitors would then be combined in the
synthesis for [(d)?req, d‰j]max X .ϕ′

2∧ϕ′′
2 as

mb
def= (d)?req, d‰j.rec x .

(
rec y.d!ans.d!ans, •.y + d!ans.d?req.x

)
.

1 https://duncanatt.github.io/detecter/.

123

https://duncanatt.github.io/detecter/

400 L. Aceto et al.

One can easily see that mb does not soundly enforce ϕ4. For instance, for the violat-
ing system i?req.i!ans.i!ans.nil /∈ �ϕ4�(= �ϕ1�) we can observe the transition sequence

mb[i?req.i!ans.i!ans.nil] i?req·i!ans						⇒ (i?req, true.mb)[i!ans.nil]
i!ans−−−→ id[nil]. ��

Instead of complicating our synthesis function to cater for anomalies such as those pre-
sented in Example 9—also making it less compositional in the process—we opted for a two
stage synthesis procedure. First, we consider a normalised subset for sHML formulas, which
is amenable to a (straightforward) synthesis function definition that is compositional. This
also facilitates the proofs for the conditions required by Definition 4 for any synthesised mon-
itor. As a secondary result, we show that every sHML formula without data dependencies
across necessities is logically equivalent to some formula in this normalised form. We are
then able to show that our two-stage approach is expressive enough to show the enforceability
for this fragment of sHML.

5.1 The synthesis function

The following grammar combines necessity operators with conjunctions into one construct∧
i∈I [pi , ci]ϕi which is written as [p0, c0]ϕ0∧ . . . ∧[pn, cn]ϕn for I = {0, . . . , n

}
. We

simply write [p, c]ϕ when | I | = 1.

Definition 9 (sHML normal form) The set of normalised sHML formulas is defined as fol-
lows (where ϕi ∈ sHMLnf as well):

ϕ,ψ ∈ sHMLnf ::= tt | ff | ∧i∈I [pi , ci]ϕi | X | max X .ϕ .

In addition, normalised sHML formulas are required to satisfy the following conditions:

1. Every symbolic action in
∧

i∈I [pi , ci]ϕi , must satisfy |I | ≥ 1 and must be disjoint, i.e.,

#i∈I pi , ci which entails that for every i, j ∈ I , i ‰ j implies �pi , ci � ∩ �p j , c j � = ∅.
2. For every max X .ϕ we have X ∈ fv(ϕ).
3. Every logical variable is guarded by a modal necessity. ��

In a (closed) normalised sHML formula, the basic terms tt and ff can never appear
unguarded unless they are at the top level (e.g., we can never have ϕ∧ff or
max X0. . . .max Xn .ff). Similarly, fixpoint variables, X , must also be guarded by a modal
necessity (e.g., max X .([α]ff∧X) is invalid, unlike max X .([β]ff∧[α]X) in which X is
guarded by [α]). Moreover, in any conjunction of necessity subformulas,

∧
i∈I [pi , ci]ϕi ,

the necessity guards are disjoint and at most one necessity guard can be matched by any par-
ticular action. This substantially facilitates the compositional implementation of a monitor
enforcing the formula since the necessary enforcement required by a specific system execu-
tion can be determined by only considering one subformula in a conjunction of possibilities.

We proceed to define our synthesis function over normalised sHML formulas.

Definition 10 The synthesis function � − � : sHMLnf �→Trn is defined inductively as:

� X �
def= x � tt �

def= �ff �
def= id �max X .ϕ �

def= rec x .� ϕ �

�
∧

i ∈ I

[pi , ci]ϕi �
def= rec y.

∑

i∈I

{
pi , ci , •.y if ϕi=ff
pi , ci , pi .� ϕi � otherwise

��

123

On first-order runtime enforcement of branching-time properties 401

The synthesis function is compositional. It assumes a bijective mapping between for-
mula variables and monitor recursion variables and converts logical variables X accordingly,
whereas maximal fixpoints,max X .ϕ, are converted into the corresponding recursive monitor.
The synthesis also converts truth and falsehood formulas, tt and ff, into the identity monitor
id. Normalised conjunctions,

∧
i ∈ I [pi , ci]ϕi , are synthesised into a recursive summation

of monitors, i.e., rec y.
∑

i∈I mi , where y is fresh, and every branch mi can be either of the
following:

(i) when mi is derived from a branch of the form [pi , ci]ϕi where ϕi‰ff, the synthe-
sis produces a monitor with the identity transformation prefix, pi , ci , pi , followed
by the monitor synthesised from the continuation ϕi , i.e., [pi , ci]ϕi is synthesised as
pi , ci , pi .� ϕi �;

(i i) when mi is derived from a branch of the form [pi , ci]ff, the synthesis produces a sup-
pression transformation, pi , ci , •, that drops every action matching pi , ci , followed by
the recursive variable of the branch y, i.e., a branch of the form [pi , ci]ff is translated
into pi , ci , •.y.

Example 10 Recall formula ϕ1 from Example 2:

ϕ1
def= [(d)?req, d‰j]max X .[d!ans, true]([d!ans, true]ff∧[d?req, true]X).

Using the synthesis function defined in Definition 10, we generate monitor

� ϕ1 � = rec x ′.(d)?req, d ‰ j.rec x .rec z.
(
d!ans.rec y.d!ans, •.y + d?req.x

)

which can be optimised by removing redundant recursive constructs (e.g., rec z._), obtaining:
(d)?req, d ‰ j.rec x .

(
d!ans.rec y.d!ans, •.y + d?req.x

) = mt.

��
It is clear that the synthesis function of Definition 10 is total for sHMLnf formulas and

yields exclusively suppression monitors.

Lemma 1 For any ϕ ∈ sHMLnf, � ϕ � is defined and is a suppression monitor.

Proof By induction on the structure of ϕ.

We now present the second main set of results to the paper. Theorem 3 follows as a corollary
of Lemma 1 and a strengthening of the stated requirement that narrows down monitors to
suppression monitors, Proposition 1.

Theorem 3 (Enforcement) The (sub)logic sHMLnf is enforceable with respect to Defini-
tion 4.

Proposition 1 (Enforcement via suppression) The (sub)logic sHMLnf is enforceable with
respect to Definition 4 using only suppression monitors.

Proof By Definition 8, the result follows if we show that for all ϕ ∈ sHMLnf, � ϕ � enforces ϕ

in the sense of Definition 4. Hence, by Definition 4, this is a corollary of Definition 2 and 3
stated below.

Proposition 2 (Enforcement soundness) For every LTSs 〈Sys,Act ∪ {τ } ,→〉, system
s ∈Sys and ϕ ∈ sHMLnf then �ϕ�‰∅ implies � ϕ �[s] ∈ �ϕ�.

123

402 L. Aceto et al.

Fig. 4 A satisfaction relation for sHML formulas

Proposition 3 (Enforcement transparency) For every LTSs 〈Sys,Act ∪ {τ } ,→〉, system
s ∈Sys and ϕ ∈ sHMLnf then s ∈ �ϕ� implies � ϕ �[s] ∼ s.

As our first result, Theorem 2, states that trace transparency (Definition 6) is inherently a
weaker version of transparency (Definition 3), we can also prove that sHMLnf is enforceable
in the sense of Definition 7.

Theorem 4 (Weak enforcement) The (sub)logic sHMLnf is enforceable with respect to Def-
inition 7.

Proof By Definition 8, this follows by showing that for every sHMLnf formula ϕ,
� ϕ � enforces ϕ as defined by Definition 7. Hence, in the light of Theorem 2, this result
becomes a corollary of Theorem 3.

To facilitate the proofs for Propositions 2 and 3, we use the satisfaction semantics for
sHML from [73] which are defined in terms of the satisfaction relation, �. When restricted
to sHML, � is the largest relation R satisfying the implications defined in Fig. 4. As these
semantics are well known to agree with the sHML semantics of Fig. 1, we use s � ϕ in lieu
of s ∈ �ϕ�. These proofs may safely be skipped upon first reading.

Proof (Proof for Proposition 2) We prove a stronger result stating that for every system r
that can be simulated by � ϕ �[s], i.e., r �∼ � ϕ �[s], if �ϕ�‰∅ then r � ϕ. We prove this result
by showing that relation R def= { (r , ϕ) �ϕ�‰∅ and r �∼ � ϕ �[s] } is a satisfaction relation
(�) as defined by the rules in Fig. 4. We proceed by case analysis on the structure of ϕ.

Cases ϕ ∈ {X ,ff}. These cases do not apply as when ϕ∈{X ,ff} then �ϕ� = ∅.

Case ϕ = tt. This case holds trivially as for every process r �∼ � tt �[s] the pair (r , tt) is in R
since we know that �tt�‰∅.

Case ϕ = max X .ϕ and X∈fv(ϕ). Let’s assume that (r ,max X .ϕ) ∈ R and so we have that

�max X .ϕ�‰∅ (1)

r �∼ �max X .ϕ �[s]. (2)

To prove that R is a satisfaction relation we show that (r , ϕ{max X .ϕ/X}) ∈ R as well.
Hence, since � ϕ{max X .ϕ/X} � produces a monitor that is the unfolded equivalent of
�max X .ϕ � we can conclude that �max X .ϕ � ∼ � ϕ{max X .ϕ/X} � and so from (2) we
have that

r �∼ � ϕ{max X .ϕ/X} �[s]. (3)

123

On first-order runtime enforcement of branching-time properties 403

Finally, since from (1) and �max X .ϕ� = �ϕ{max X .ϕ/X}� we know that
�ϕ{max X .ϕ/X}�‰∅, by (3) and the definition of R we can conclude that

(r , ϕ{max X .ϕ/X}) ∈ R
as required.

Case ϕ = ∧
i∈I [pi , ci]ϕi and #h∈I ph, ch . Now, let’s start by assuming that

(r ,
∧

i∈I [pi , ci]ϕi) ∈ R and so we have that

�
∧

i∈I [pi , ci]ϕi �‰∅ (4)

r �∼ �
∧

i∈I [pi , ci]ϕi �[s]. (5)

By the definition of � − � we further know that

�
∧

i∈I [pi , ci]ϕi � = rec y.
(∑

i∈I

{
pi , ci , •.y if ϕi=ff
pi , ci .� ϕi � otherwise

)
= m

which can be further unfolded as

�
∧

i∈I [pi , ci]ϕi � =
(∑

i∈I

{
pi , ci , •.m if ϕi=ff
pi , ci .� ϕi � otherwise

)
. (6)

In order to prove that R is a satisfaction relation, for this case we must show that for every
j ∈ I , (r , [p j , c j]ϕ j)∈R as well. In order to show this, we inspect the different types of
branches that are definable in sHMLnf and hence we consider the following cases:

(i) A violating branch, [p j , c j]ff:

To prove that (r , [p j , c j]ff)∈R we must show that (a) �[p j , c j]ff�‰∅, (b)
r �∼ � [p j , c j]ff �[s], and (c) that for every action α, when p j , c j (α) = σ , then there

does not exist a system r ′ such that r
α	⇒ r ′. From (4) and the definition of �−�, we can

immediately infer that (a) holds, and so we have that

�[p j , c j]ff�‰∅. (7)

We now note that since from (6) we know that branch [p j , c j]ff is synthesised into a
suppression monitor p j , c j , •.m, we infer that this branch can only suppress actions
matching p j , c j , while monitor m = �

∧
i∈I [pi , ci]ϕi � can possibly suppress other

actions as well. Hence, the composite system m[s] (for any s) can at most perform the
same actions as � [p j , c j]ff �[s] and so from (5) we can deduce that (b) holds since

r �∼ �
∧

i∈I [pi , ci]ϕi �[s] �∼ � [p j , c j]ff �[s] (8)

as required. Finally, from (6) we know that monitorm was synthesised from a normalised
conjunction which is disjoint (#h∈I ph, ch) from which we conclude that whenever
the system performs action α such that p j , c j (α) = σ , only the suppression branch
p j , c j , •.m (which is a single branch of m in (6)) can be selected via rule eSel. Once
this branch is selected, the action is suppressed via rules eTrn and iSup which cause the
composite system m[s] to transition over a silent τ action to its recursive derivative m.
This means that m[s] � α	⇒ and so from (5) we can deduce that (c) also holds since

�r ′ · r α	⇒ r ′ (9)

which means that any modal necessity that precedes ff can never be satisfied by r as
required. This case thus holds by (7), (8) and (9).

123

404 L. Aceto et al.

(ii) A non-violating branch, [p j , c j]ϕ j (where ϕ j ‰ ff):

To prove that this branch is in R, (r , [p j , c j]ϕ j) ∈ R, we must show that (a)

�[p j , c j]ϕ j �‰∅, (b) r �∼ � [p j , c j]ϕ j �[s] and then that (c) for every action α and deriva-

tive r ′, when p j , c j (α) = σ and r
α	⇒ r ′ then (r ′, ϕ jσ) ∈ R. From (4) and by the

definition of �−� we can immediately determine that (a) holds, and so that

�[p j , c j]ϕ j �‰∅ (10)

and since � [p j , c j]ϕ j � = rec y.p j , c j .� ϕ �, from (6) we deduce that both monitors
m = �
∧

i∈I [pi , ci]ϕi � and � [p j , c j]ϕ j � refrain from modifying actions matching p j , c j
but m may suppress more actions. We can thus infer that for all s, m[s] �∼ � [p j , c j]ϕ j �[s]
and so from (5) we can deduce that (b) holds since

r �∼ m[s] �∼ � [p j , c j]ϕ j �[s] (11)

as required. We now prove that (c) holds by assuming that

p j , c j (α) = σ (12)

r
α	⇒ r ′ (13)

and so from (5) and (13) we can deduce that

m[s] α	⇒ q (where r ′ �∼ q). (14)

Hence, by the definition of
α	⇒ we know that the weak transition in (14) is composed

from zero or more τ -transitions followed by the α-transition, i.e., that

m[s] τ−→*q ′ α−→ q. (15)

By the rules in our model we know that the τ -reductions in (15) could have been the
result of either one of these instrumentation rules, namely iSup or iAsy. From (6) we,
however, know that whenever an action is suppressed (via iSup) the synthesised monitor
m always recurses back to its original form m and in this case only s changes its state
to some s′; the same effect occurs if rule iAsy is applied instead. Hence, we know that
q ′ = m[s′] (for some derivative s′ of s), and so from (15) we have that

m[s′] α−→ q. (16)

From (12) we also know that the reduction in (16) can only be the result of rule iTrn,
and so we can infer that s′ α−→ s′′ and that

q = m′[s′′] (17)

m
α�α−−−→ m′. (18)

Since we know that [p j , c j]ϕ j and ϕ j ‰ff, from (6) we know that m defines an identity
branch of the form p j , c j .� ϕ j � which is completely disjoint from the rest of the monitors.

This is true sincem is derived from a normalised conjunction in which #i∈I pi , ci . Hence,
from (6), (12) and (18) we can deduce that

m′ = � ϕ jσ �. (19)

123

On first-order runtime enforcement of branching-time properties 405

Since from (10) and by the definition of �−� we know that �ϕ jσ �‰∅ and from (14), (17)
and (19) we have that r ′ �∼ � ϕ jσ �[s′′], by the definition of R we have that (r ′, ϕ jσ) ∈ R.
From this we can conclude that (c) holds as well, which means that

∀α, r ′ · if p j , c j (α) = σ and r
α	⇒ r ′ then (r ′, ϕ jσ) ∈ R. (20)

This case is therefore done by (10), (11) and (20).

Proof for Proposition 3 To prove this proposition, we show that relation
R def= { (s, � ϕ �[s]) s � ϕ } is a strong bisimulation relation by showing that it satisfies
the following transfer properties for each (s, � ϕ �[s])∈R:

(a) if s
μ−→ s′ then � ϕ �[s] μ−→ S′ and (s′, S′) ∈ R

(b) if � ϕ �[s] μ−→ S′ then s
μ−→ s′ and (s′, S′) ∈ R.

We prove (a) and (b) separately by assuming that s � ϕ in both cases as defined by relation
R.

We also make reference to the τ -closure property of sHML, Proposition 4, proved in [73].

Proposition 4 if s
τ−→ s′ and s � ϕ then s′ � ϕ.

We now proceed to prove (a) by case analysis on ϕ.

Cases ϕ ∈ {ff, X
}
. Both cases do not apply since �s · s � ff and similarly since X is an open

formula and so �s · s � X .

Case ϕ = tt We now assume that s � tt and that

s
μ−→ s′ (21)

and since μ ∈ {τ, α}, we must consider both cases.

– μ = τ : Since μ = τ , we can apply rule iAsy on (21) and get that

� tt �[s] τ−→ � tt �[s′] (22)

as required. Also, since we know that every system state satisfies tt, we know that s′ � tt,
which by the definition of R we conclude that

(s′, � tt �[s′]) ∈ R (23)

as required, which means that this case is done by (22) and (23).
– μ = α: Since id encodes the ‘catch-all’ monitor,

rec y.(d)!(e), true, d!e.y + (d)?(e), true, d?e.y, we can deduce that id
α�α−−−→ id from

rules eRec and eTrn and then rule iTrn, which we can further refine as

� tt �[s] α−→ � tt �[s′] (24)

as required. Once again since s′ � tt, by the definition of R we have that

(s′, � tt �[s′]) ∈ R (25)

as required, and so this case is done by (24) and (25).

123

406 L. Aceto et al.

Case ϕ =∧i∈I [pi , ci]ϕi . Now assume that

s �
∧

i∈I [pi , ci]ϕi (26)

s
μ−→ s′ (27)

and so by the definition of � and (26) we have that for every index i ∈ I and action β ∈ Act,

s
β	⇒ s′ and pi , ci (β) = σ implies s �

∧
i∈I [pi , ci]ϕi . (28)

Since μ ∈ {τ, α}, we must consider both possibilities for (27).

– μ = τ : Since μ = τ , we can apply rule iAsy on (27) and obtain

�
∧

i∈I [pi , ci]ϕi �[s] τ−→ �
∧

i∈I [pi , ci]ϕi �[s′] (29)

as required. Since μ =τ , and since we know that sHML is τ -closed, from (26), (27) and
Proposition 4, we can deduce that s′ �

∧
i∈I [pi , ci]ϕi , so that by the definition of R we

conclude

(s′, �
∧

i∈I [pi , ci]ϕi �[s′]) ∈ R (30)

as required. This subcase is therefore done by (29) and (30).
– μ = α: Since μ = α, from (27) we know that

s
α−→ s′ (31)

and by the definition of � − � we can immediately deduce that

�
∧

i∈I [pi , ci]ϕi � = rec y.
(∑

i∈I

{
pi , ci , •.y if ϕi = ff
pi , ci .� ϕi � otherwise

)
. (32)

Since the branches in the conjunction are all disjoint, #i∈I pi , ci , we know that at most
one of the branches can match the same action α. Hence, we consider two cases, namely:

– No matching branches (i.e., ∀i ∈ I · pi , ci (α) = undef): Since none of the symbolic
transformations in (32) can match action α and since we do not synthesise insertion
monitors, we know that the monitor can only default to id (via rule iDef) and so from
(31) we have that

�
∧

i∈I [pi , ci]ϕi �[s] α−→ � tt �[s′] (sinceid = � tt �) (33)

as required. Also, since every system state satisfies tt, we know that s′ � tt, and so by
the definition of R we conclude that

(s′, � tt �[s′]) ∈ R (34)

as required. This case is therefore done by (33) and (34).
– One matching branch (i.e., ∃ j ∈ I · p j , c j (α)= σ):

From (32) we infer that the synthesised monitor can only suppress actions that are defined
by violating necessities. However, from (28) we also deduce that s is incapable of exe-
cuting such an action as otherwise would contradict assumption (26). Hence, since we
now assume that ∃ j ∈ I · p j , c j (α) = σ , from (32) we deduce that this action can only
be transformed by an identity transformation and so by rule eTrn we have that

p j , c j .� ϕ j �
α�α−−−→ � ϕ jσ �. (35)

123

On first-order runtime enforcement of branching-time properties 407

By applying rules eSel, eRec on (35) and by (31), (32) and iTrn we get that

�
∧

i∈I [pi , ci]ϕi �[s] α−→ � ϕ jσ �[s′] (36)

as required. By (28), (31) and since we assume that ∃ j ∈ I · p j , c j (α) = σ we have that
s′ � ϕ jσ , and so by the definition of R we conclude that

(s′, � ϕ jσ �[s′]) ∈ R (37)

as required. Hence, this subcase is done by (36) and (37).

Case ϕ = max X .ϕ and X ∈ fv(ϕ). Now, let’s assume that

s
μ−→ s′ (38)

and that s � max X .ϕ from which by the definition of � we have that

s � ϕ{max X .ϕ/X}. (39)

Since ϕ{max X .ϕ/X} ∈ sHMLnf, by the restrictions imposed by sHMLnf we know that: ϕ

cannot be X because (bound) logical variables are required to be guarded, and it also cannot
be tt or ff since X is required to be defined in ϕ, i.e., X ∈ fv(ϕ). Hence, we know that ϕ can
only have the following form, that is

ϕ = max Y0. . . .max Yn .
∧

i∈I
[pi , ci]ϕi (40)

and so by (39), (40) and the definition of � we have that

s � (
∧

i∈I [pi , ci]ϕi){··} where

{··} = {max X .ϕ/X, (max Y0. . . .max Yn .
∧

i∈I
[pi , ci]ϕi)/Y0, . . . , (max Yn .

∧

i∈I
[pi , ci]ϕi)/Yn}. (41)

Since we know (38) and (41), from this point onwards the proof proceeds as per the previous
case. We thus omit this part of the proof and immediately deduce that

∃m′ · � (
∧

i∈I [pi , ci]ϕi){··} �[s] μ−→ �m′ �[s′] (42)

(s′, �m′ �[s′]) ∈ R (43)

and so since � (
∧

i∈I [pi , ci]ϕi){··} � synthesises the unfolded equivalent as per
� ϕ{max X .ϕ/X} �, from (42) we can conclude that

∃m′ · � ϕ{max X .ϕ/X} �[s] μ−→ �m′ �[s′] (44)

as required, and so this case holds by (43) and (44).
These cases thus allow us to conclude that (a) holds. We now proceed to prove (b) using the
same case analysis approach.

Cases ϕ ∈ {ff, X
}
. Both cases do not apply since �s · s � ff and similarly since X is an

open-formula and �s · s � X .

Case ϕ = tt. Assume that s � tt and that

� tt �[s] μ−→ r ′. (45)

Since μ ∈ {τ, α}, we must consider each case.

123

408 L. Aceto et al.

– μ = τ : Since μ = τ , the transition in (45) can be performed either via iSup, or iAsy.
We must therefore consider these cases.

– iAsy: From rule iAsy and (45) we thus know that r ′ = � tt �[s′] and that s
τ−→ s′ as

required. Also, since every system state satisfies tt, we know that s′ � tt as well, and
so we are done since by the definition of R we know that (s′, � tt �[s′]) ∈ R.

– iSup: This case does not apply since from rule iSup and (45) we know that:

r ′ = m′[s′], s α−→ s′ and that � tt �
α�•−−−→ m′ which is a false assumption as � tt � = id.

– μ = α: Since μ = α, the transition in (45) can be performed either via iDef,
iIns or iTrn. We consider each case.

– iDef: This case does not apply since � tt � = id which cannot ever reach a state n

where n �α−→ and n � •−→.
– iIns: This case does not apply since from (45) and by the definition of � − � we know

that the synthesised monitor does not include action insertions.
– iTrn: By applying rule iTrn on (45) we know that r ′ =m′[s′] such that

s
β−→ s′ (46)

� tt �
α�β−−−→ m′. (47)

Since � tt � = id = rec y.(d)!(e), true, d!e.y + (d)?(e), true, d?e.y, by applying
rules eRec, eSel and eTrn to (47) we know that α = β, m′ = id = � tt �, meaning
that r ′ = � tt �[s′]. Hence, since every system state satisfies tt we know that s′ � tt,
so that by the definition of R we conclude that

(s′, � tt �[s′]) ∈ R. (48)

Hence, we are done by (46) and (48) since we know that α = β.

Case ϕ =∧i∈I [pi , ci]ϕi . We now assume that

s �
∧

i∈I [pi , ci]ϕi (49)

�
∧

i∈I [pi , ci]ϕi �[s] μ−→ r ′. (50)

From (49) and by the definition of �, we can deduce that

∀i ∈ I , β ∈ Act · s β	⇒ s′ and pi , ci (α) = σ implies s′ � ϕiσ (51)

and from (50) and by the definition of � − � we have that
(
rec y.

∑

i∈I

{
pi , ci , •.y if ϕi = ff
pi , ci .� ϕi � otherwise

)
[s′] μ−→ r ′. (52)

From (52) we know that the synthesised monitor can only suppress an action β when this
satisfies a violating necessity. However, we can also infer that s is incapable of performing
β as otherwise it would contradict with assumption (51) since s′ � ff does not hold. Hence,
we can safely conclude that the synthesised monitor in (52) does not suppress any actions of
s, and so we conclude that

∀α ∈ Act, s′ ∈ Sys · s α−→ s′ implies �
∧

i∈I [pi , ci]ϕi � �α�•−−−→ . (53)

Since μ ∈ {τ, α}, we must consider each case.

123

On first-order runtime enforcement of branching-time properties 409

– μ = τ : Since μ = τ , from (50) we know that

�
∧

i∈I [pi , ci]ϕi �[s] τ−→ r ′ (54)

The τ -transition in (54) can be the result of rules iAsy or iSup; we thus consider each
eventuality.

– iAsy: As we assume that the reduction in (54) is the result of rule iAsy, we know
that r ′ = �

∧
i∈I [pi , ci]ϕi �[s′] and that

s
τ−→ s′ (55)

as required. Also, since sHML is τ -closed, by (49), (55) and Proposition 4 we deduce
that s′ �

∧
i∈I [pi , ci]ϕi as well, so that by the definition of R we conclude that

(s′, �
∧

i∈I [pi , ci]ϕi �[s′]) ∈ R (56)

and so we are done by (55) and (56).
– iSup: As we now assume that the reduction in (54) results from iSup, we have that
r ′ = m′[s′] and that

s
α−→ s′ (57)

�
∧

i∈I [pi , ci]ϕi �
α�•−−−→ m′. (58)

This case does not apply since by (53) and (57) we can deduce that

�
∧

i∈I [pi , ci]ϕi � �α�•−−−→ which contradicts with (58).

– μ = α: When μ = α, the transition in (52) can be performed via rules iDef, iIns or
iTrn, we consider both possibilities.

– iDef: If (52) results from iDef, we have that

r ′ = � tt �[s′] (since � tt � = id) (59)

s
α−→ s′. (60)

Consequently, as every system state satisfies tt, we know that s′ � tt and so by the
definition of R we have that (s′, � tt �[s′]) ∈ R, so that from (59) we can conclude
that

(s′, r ′) ∈ R (61)

as required. Hence, this case is done by (60) and (61).
– iIns: This case does not apply since from (52) and by the definition of � − � we know

that the synthesised monitor does not include action insertions.
– iTrn: By assuming that (52) is obtained from rule iTrn, we know that

(

rec y.
∑

i∈I

{
pi , ci , •.y if ϕi = ff
pi , ci .� ϕi � otherwise

)
β�α−−−→ m′ (62)

s
β−→ s′ (63)

r ′ = m′[s′]. (64)

123

410 L. Aceto et al.

Since from (53) we know that the synthesised monitor in (62) does not suppress
any action performable by s, and since from the definition of � − � we know that the
synthesis cannot produce action replacing monitors, we can deduce that

α = β. (65)

With the knowledge of (65), from (63) we can thus deduce that

s
α−→ s′ (66)

as required. Knowing (65) we can also deduce that in (62) the monitor can only
transform action β via an identity transformation synthesised from one of the disjoint
conjunction branches, i.e., from a branch p j , c j .� ϕ j � for some j ∈ I . Hence, when
we apply rules eRec, eSel and eTrn on (62) we deduce that

∃ j ∈ I · p j , c j (α) = σ (67)

m′ = � ϕ jσ �. (68)

and so from (66), (67) and (51) we infer that s′ � ϕ jσ from which by the definition
of R we have that (s′, � ϕ jσ �[s′]) ∈ R, and so from (64) and (68) we can conclude
that

(s′, r ′) ∈ R (69)

as required, and so this case is done by (66) and (69).

Case ϕ = max X .ϕ and X ∈ fv(ϕ). Now, let’s assume that

�max X .ϕ �[s] μ−→ r ′ (70)

and that s � max X .ϕ from which by the definition of � we have that

s � ϕ{max X .ϕ/X}. (71)

Since ϕ{max X .ϕ/X} ∈ sHMLnf, by the restrictions imposed by sHMLnf we know that: ϕ

cannot be X because (bound) logical variables are required to be guarded, and it also cannot
be tt or ff since X is required to be defined in ϕ, i.e., X ∈ fv(ϕ). Hence, we know that ϕ can
only have the following form, that is

ϕ = max Y0. . . .max Yn .
∧

i∈I
[pi , ci]ϕi (72)

and so by (71), (72) and the definition of � we have that

s � (
∧

i∈I [pi , ci]ϕi){··} where

{··} = {max X .ϕ/X, (max Y0. . . .max Yn .
∧

i∈I
[pi , ci]ϕi)/Y0, . . . , (max Yn .

∧

i∈I
[pi , ci]ϕi)/Yn}. (73)

Since � (
∧

i∈I [pi , ci]ϕi){··} � synthesises the unfolded equivalent of �max X .ϕ �, from (70)
we know that

� (
∧

i∈I [pi , ci]ϕi){··} �[s] μ−→ r ′. (74)

Hence, since we know (73) and (74), from this point onwards the proof proceeds as per the
previous case. We thus omit showing the remainder of this proof.

123

On first-order runtime enforcement of branching-time properties 411

From the above cases, we can therefore conclude that (b) holds as well. ��
In light of Theorems 3 and 4, in order to show that sHML is an enforceable logic, we

only need to prove that for every ϕ ∈ sHML there exists a corresponding ψ ∈ sHMLnf
with the same semantic meaning, i.e., �ϕ� = �ψ�. In fact, we go a step further and provide
a constructive proof using a transformation 〈〈−〉〉 : sHML �→ sHMLnf that constructs a
semantically equivalent sHMLnf formula from an sHML one. As a result, from an arbitrary
sHML formula ϕ we can then automatically synthesise a correct monitor using � 〈〈ϕ〉〉 �, which
is useful for tool construction.

5.2 The normalisation algorithm

Our transformation relies on a number of steps, during which we assume sHML formulas
that only use symbolic actions with normalised patterns p, i.e., patterns that do not use any
data or free data variables (but they may use bound data variables) and necessity binding
does not extend to other necessities, i.e., whenever ϕ = [p, c]ϕ′ then bv(p) ⊆ fv(c) and
fv(ϕ′) = ∅. Note that any symbolic action p, c can be easily converted into an equivalent
one using normalised patterns as shown in the next example.

Example 11 Consider the symbolic action d!ans, d ‰ j where d is free in the SA and ans is a
data value. Such SAs can be converted to a corresponding normalised SA by replacing every
occurrence of a data value and free data variable in the pattern by a fresh binding variable,
and then add an equality constraint between the fresh variable and the data value or free
variable it has replaced in the pattern, to the SAs condition. In our case, we would obtain
(e)!(f), d‰ j ∧ e=d ∧ f =ans where e and f are fresh, and although d is free in the SAs
condition, it no longer forms part of the pattern. ��

Our algorithm for converting closed sHML formulas (with normalised patterns) to
sHMLnf formulas, 〈〈−〉〉, is based on Aceto et al.’s work [67] for determinising (possibly
open) sHML formulas defining concrete actions, and on Rabinovich’s work [74] for deter-
minising systems of equations, both of which rely on the standard powerset construction for
converting NFAs into DFAs. With this algorithm we can prove the second main result of this
paper.

Theorem 5 (Normalisation equivalence) For every closed sHML formula ϕ there exists a
formula ψ ∈ sHMLnf such that �ϕ�=�ψ�. ��

5.3 Reconstructing SHML into SHMLnf wrt. singleton symbolic actions

We first define the normalisation algorithm for sHML formulas that only define singleton
symbolic actions. Since singleton SAs do not bind user data, these can be easily distinguished
statically based on their syntactic form, e.g., i!ans ‰ i?req implies �i!ans� ∩ �i?req� = ∅,
unlike non-singleton ones, e.g., although (d)?ans ‰ i?(e)we have that �(d)?ans� ‰ �i?(e)� =
{i!ans}.

We define the algorithm in terms of the five constructions given below; each construction
is accompanied by a proof guaranteeing semantic preservation, i.e., that the result of each
translation is equivalent to its input. The construction sequence is as follows:

§1. Unguarded fixpoint variable removal: the formula is modified to ensure that the
fixpoint variables in the formula are all guarded (Sect. 5.3.1).

123

412 L. Aceto et al.

Fig. 5 The sHML1 syntax

Fig. 6 The unguarded fixpoint removal algorithm

§2. Equation construction: the formula is reformulated into a system of equations to
enable easier manipulation in later stages (Sect. 5.3.2).
§3. Powerset construction: the resultant system of equations is restructured into an
equivalent system that defines syntactically disjoint conjunctions (Sect. 5.3.3).
§4. Formula reconstruction: the system of equations is converted back into an sHML
formula with disjoint conjunctions which may define redundant fixpoints (Sect. 5.3.4).
§5. Redundant fixpoint removal: finally, fixpoint variable declarations, max X .ϕ, are
removed whenever variable X is not used in ϕ (i.e., X /∈ fv(ϕ)) − this produces the
required sHMLnf formula (Sect. 5.3.5).

For conciseness, we use notation η to refer to an arbitrary symbolic action p, c, p[d] for
an arbitrary pattern that binds variable d , and c[d] for a condition whose evaluation depends
on the value of variable d .

5.3.1 Unguarded fixpoint variable removal

We start the normalisation procedure by converting the sHML formula into a semantically
equivalent sHML1 formula, i.e., an sHML formula in which every fixed point variable is
guarded by a modal necessity as specified in Fig. 5.

Example 12 Formula max X .([α]X∧X) can be rewritten as max X .([α]X), and
max X .(max Y .([α]Y∧X)) into max X .(max Y .([α]Y)). ��

Function 〈〈−〉〉1 : sHML → sHML1 in Fig. 6 compositionally analyses a formula
and removes every unguarded fixpoint variable. Specifically, when analysing a fixpoint,
max X .ϕ′, it is recursively applied to the fixpoint body ϕ′ such that 〈〈ϕ′〉〉1 returns ψ∧∧ f (ϕ′)
where f (ϕ′) contains all free and unguarded fixpoint variables defined in ϕ′. If X ∈ f (ϕ′)
it means that X is unguarded in ϕ′ and is thus removed from the resulting formula, i.e.,
max X .(ψ∧∧ f (ϕ′)\{X}). Conjunct formulas, ψ1∧ψ2, are analysed separately and the free
and unguarded variables of each branch are grouped at the top level. The remaining cases
are unremarkable.

Example 13 Consider ϕ5
def=max X0.([i?req]([i!ans][i!ans]ff)∧([i!ans]X0)∧X0), a reformu-

lated version of ϕ0 from Example 2. By applying 〈〈−〉〉1 to ϕ5,
we obtain ψ3

def=max X0.[i?req]([i!ans][i!ans]ff)∧([i!ans]X0) where ψ3 ∈ sHML1 as it
does not define any unguarded fixpoint variables. ��

123

On first-order runtime enforcement of branching-time properties 413

Fig. 7 A syntactic restriction for equated formulas

Lemma 2 For every sHML formula ϕ we have that �〈〈ϕ〉〉1� = �ϕ�.

Proof The proof follows from Lemma 8 in [67]. Although Lemma 8 is proven wrt. a version
of sHML that only allows for defining concrete actions, the proof of this lemma still applies
to our setting, since 〈〈−〉〉1 pays no regard to the type of actions described in the modal
necessities. Adapting the proof for our setting thus only requires minor syntactic changes.

��

5.3.2 Equation construction

This construction produces a system of equations from a given sHML formula. Systems of
equations (SoEs) provide an alternative way for defining recursive sHML formulas without
resorting to maximal fixpoints.

Definition 11 (System of equations) A system of equations is defined as a triple (Eq , X , Y),
where X represents the principal logical variable which identifies the starting equation, Y is
a finite set of free logical variables, and Eq is an n-tuple of equations, i.e.,

{
X1 = ψ1, X2 =

ψ2, . . . , Xn = ϕn
}
, where for 1 ≤ i < j ≤ n, Xi is different from X j , and each ϕi is a

sHMLeq expression as defined in Fig. 7. ��
Two systems of equations are equivalent (written as ≡) when their largest solution assigns

the same meaning to their principal variable. We abuse notation and use Eq as a map where
Eq(Xi) = ϕi when Xi = ϕi ∈ Eq. A maximal fixpoint max X .ϕ is represented in a SoE
by the X -component of the greatest solution of the SoE over (2Sys)n (where n refers to the
number of equations in the equation tuple). A SoE is closed when Y is empty.

Example 14 A recursive formula such as max X0.[i?3]([i!4]X0∧[i!5]ff) can be repre-
sented as a system of four equations (Eq , X0, Y) where X0 is the principal variable,
Eq

def= {X0=[i?3]X1, X1=[i!4]X2∧[i!5]X3, X2=[i?3]X1, X3=ff
}
, where X1=X0 and Y=∅

as all the logical variables defined in the system are bound, i.e., equated to some sHMLeq
formula. Notice how recursion is represented by referring to X1 in the penultimate equation.

��
Function 〈〈−〉〉2 : sHML1 → Eq × Var × P(Var), in Fig. 8, compositionally inspects

a given closed sHML1 formula ϕ and translates it into an equivalent SoE. Truth, tt, and
falsehood, ff, are, respectively, translated into equations X j = tt and X j =ff, with j being a
fresh index and X j being the principal variable of the resultant SoE. Logical variables Y are
initially translated into a SoE defining: equation X j = Y , X j as the principal variable, and
Y = {Y}, signifying that Y is free. Although equation X j = Y does not comply to sHMLeq
(and is thus invalid), since we assume closed formulas, this equation gets fixed when 〈〈−〉〉2
recurses back to the binding fixpoint.

Fixpoints, max Y .ϕ, are converted into equation Y = Eq(Xi), where Xi is the principal
variable of the SoE obtained from the recursive application on the continuation ϕ′, i.e.,
〈〈ϕ′〉〉2 = (Eq , Xi , Y). This is added to the equation set Eq. Variable Y is then removed
from Y, denoting that although Y is free in ϕ′, this is no longer the case in ϕ =max Y .ϕ′.

123

414 L. Aceto et al.

Fig. 8 The conversion algorithm from a sHML1 formula to a SoE

Equations of the sort X j = Y in Eq are reformulated into valid equations as X j = Eq(Xi)

where Xi points to the same equation as Y ; this ensures that every logical variable is guarded
by a modal necessity.

Modal necessities, [η]ϕ, are reformed as a SoE defining equation set {X j = [η]Xk}∪ Eq,
where Xk and Eq are the principal variable and equation set obtained from 〈〈ϕ〉〉2, respec-
tively. Conjunctions,

∧
i∈I ϕi , are converted into a SoE containing the equations obtained

from analysing every conjunct formula ϕi , i.e., Eqi for every i∈I , along with equation
X j = ∧i∈I Eqi (Xi), where Xi is the principal variable of every SoE obtained from 〈〈ϕi 〉〉2
(for every i ∈ I). Note that since the introduced variables are chosen to be fresh, the equation
sets Eqi are defined over pairwise disjoint sets of bound variables.

Example 15 Recall ψ3
def=max X0.[i?req]([i!ans][i!ans]ff)∧([i!ans]X0) from Example 13.

From 〈〈ψ3〉〉2 we obtain (Eq , X0, ∅) where

Eq =
⎧
⎨

⎩

X0 = Eq(X1)= [i?req]X2, X1 =[i?req]X2 , X3 = [i!ans]X5 ,

X2 = Eq(X3)∧Eq(X4)= [i!ans]X5∧[i!ans]X6, X4 = [i!ans]X6 ,

X5 = [i!ans]X7, X6 = X0 = Eq(X1)= [i?req]X2, X7 =ff

⎫
⎬

⎭
.

The greyed formulas are not reachable from the principal equation and are thus redundant.
We ignore them in forthcoming examples. ��
Lemma 3 For every closed sHML1 formula ϕ, the SoE obtained from 〈〈ϕ〉〉2 has the same
meaning as ϕ.

Proof The proof follows from Lemma 10 given in [67]. Although this lemma is proven in
relation to formulas that define concrete actions, it still applies for formulas defining symbolic
actions, since the construction is independent of the type of action described in the modal
necessities.

5.3.3 Powerset construction

In this step we convert a SoE into an equivalent SoE in which every equated formula meets the
restrictions of sHML#

eq in Fig. 9. Conjunctions in the equated formulas are now required to be
guarded by disjoint modal necessities. Figure 10 presents 〈〈−〉〉3 : (Eq ×Var×P(Var)) →
(Eq# ×Var×P(Var)) where for every logical variable X , Eq#(X)∈ sHML#

eq. This func-
tion generates a new SoE containing the powerset combinations of the equations from the
original SoE. Intuitively, it takes two or more equations and combines the equated formulas

123

On first-order runtime enforcement of branching-time properties 415

Fig. 9 A disjointness requirement,#i∈I ηi , for equated formulas entailing that for every i, j ∈ I , �ηi �∩�η j � =
∅

Fig. 10 The powerset construction for systems of equations

with a conjunction. This technique mimics the classic powerset construction for determinising
automata in automata theory [74].

Specifically, 〈〈−〉〉3 creates a new equation set in which the index of each equation is
I ⊆ I (Eq), i.e., an element of the powerset of all indices defined by the equation set Eq
of the given SoE. The formula ϕI of a new equation XI = ϕI is constructed by analysing
every equation Xi = ϕi where i ∈ I . If there exists at least one index j ∈ I so that X j = ff,
then XI is immediately set to ff. This is done since if ff is used to reconstruct a conjunction
along with the other formulas ϕi (where i ‰ j), the resultant conjunction would still be
semantically equivalent to ff. Otherwise, XI is reconstructed as the merged conjunction∧

η∈G(I ,Eq) [η]XCI (I ,Eq,η) which is created using functions G and C I in Fig. 9.
The former function is used to retrieve the set of all the syntactically unique SAs, η, defined

by the equated formulas ϕi for each i∈I . The latter returns the set of indices containing the
index j of every variable X j that is guarded by a modal necessity defining SA η in ϕi .
Hence, every branch in the resultant conjunction

∧
η∈G(I ,Eq) [η]XCI (I ,Eq,η) is guarded by a

syntactically disjoint modal necessity.

Remark 1 Function 〈〈−〉〉3 makes a crucial assumption that actions that vary syntactically are
also semantically disjoint, and so if η1 ‰ η2 then no action can match both SAs. For now,
this assumption holds since we are only considering singleton SAs. In Sect. 5.4 we will see
how additional transformations are required to ensure this for non-singleton SAs. ��

Example 16 Recall the SoE obtained in Example 15, i.e., (Eq , X0, ∅) where

Eq =
{
X0 =[i?req]X2, X2 = [i!ans]X5∧[i!ans]X6,

X5 = [i!ans]X7, X6 =[i?req]X2, X7 =ff

}

.

When 〈〈−〉〉3 is applied, it generates every possible combination and merges the modal
necessities where necessary. From 〈〈(Eq , X0, ∅)〉〉3 we therefore obtain

(
Eq# , X{0}, ∅)

where Eq# = {X{0} = [i?req]X{2}, X{2} = [i!ans]X{5,6}
} ∪ Eq′

#. Notice how continua-
tions X5 and X6 in X2 =[i!ans]X5∧[i!ans]X6 were combined into a single continuation in
X{2} = [i!ans]X{5,6}. The algorithm constructs all the formula combinations including those
for X{5,6} as per Eq′

#:

Eq′
= { X{5,6} = [i!ans]X{7}∧[i?req]X{2}, X{7} = ff, . . .

}
.

123

416 L. Aceto et al.

Fig. 11 The sHML2 syntax

Fig. 12 Converting a SoE in conj. normal form into an sHML2 formula

We omit the redundant combinations that are not reachable from the new principal variable
X{0}, from the resultant equation set. ��
Lemma 4 For every SoE (Eq , X0, Y), if 〈〈(Eq , X0, Y)〉〉3 = (

Eq′ , X{0}, Y) then
(Eq , X0, Y) ≡ (Eq′ , X{0}, Y) and for every (Xi = ϕi)∈Eq′, ϕi∈sHML#

eq.

Proof In [67] the authors present a version of 〈〈−〉〉3 which processes equations that equate
formulas which only specify concrete actions. By definition syntactically different concrete
actions are also disjoint, which is not always the case with SAs. As for now we are assuming
that our formulas can only include singleton SAs, semantic preservation is ensured by Lemma
11 in [67]. In Sect. 5.4 we will present the necessary steps for ensuring that this criterion holds
for every kind of SA.

5.3.4 Formula reconstruction

With this step we convert the SoE back to a formula that adheres to the restrictions imposed by
sHML2 in Fig. 11. sHML2 requires conjunctions to be guarded by disjoint modal necessities,
but allows for defining redundant fixpoint declarations.

Figure 12 presents 〈〈−〉〉4: (Eq# , Var, P(Var)) →sHML2, which internally employs
σshml:(sHML2 × Eq)→sHML2 to construct the corresponding sHML2 formula. Initially,
σshml takes as input the principal variable X i along with the equation set Eq. Since Xi is
an open term, fv(Xi) = {Xi }, the function searches for equation Xi=ϕi in Eq and con-
verts it into a substitution environment which substitutes variable Xi with max Xi .ϕi , i.e.,
{max Xi .ϕi/Xi }. This substitution is then applied to Xi and the function recurses with the sub-
stituted value, σshml(max Xi .ϕi , Eq); recursion stops when the resultant formula ϕ becomes
closed, fv(ϕ) = ∅, in which case it is returned.

Example 17 Recall the SoE
(

Eq# , X{0}, ∅) obtained in Example 16, where

Eq# =
{
X{0} = [i?req]X{2}, X{2} = [i!ans]X{5,6},
X{5,6} = [i!ans]X{7}∧[i?req]X{2}, X{7} = ff

}

.

and so by applying 〈〈−〉〉4 we obtain ψ4 ∈ sHML2 where

ψ4 = σshml(X{0}, Eq#)

=max X{0}.
([i?req]max X{2}.

([i!ans]max X{5,6}.(ψ ′
4∧ψ ′′

4)
))

where ψ ′
4 =[i!ans]max X{7}.ff and ψ ′′

4 = [i?req]X{2}.

��

123

On first-order runtime enforcement of branching-time properties 417

Fig. 13 Converting sHML2
formulas into sHMLnf

Lemma 5 For every SoE
(

Eq , X{0}, Y), if 〈〈(Eq , X{0}, Y)〉〉3 = ϕ then ϕ conveys the same
meaning as

(
Eq , X{0}, Y) and that ϕ ∈ sHML2.

Proof Since construction 〈〈−〉〉4 is independent of the type of actions defined in the modal
necessities of the given SoE, we refer to Lemma 12 from [67] as proof that 〈〈−〉〉4 always
produces a semantically equivalent formula ϕ∈sHML2.

5.3.5 Removing redundant fixpoints

The final construction produces a sHMLnf formula in which every logical variable X defined
by a fixpointmax X .ϕ is free in the continuation formula ϕ (i.e., X ∈ fv(ϕ)), meaning that X is
used at least once in ϕ. We formalise this construction as function 〈〈−〉〉5: sHML2 → sHMLnf
in Fig. 13. This function compositionally inspects a given formula ϕ and removes maximal
fixpoint declarations whenever their variable is not free (and so never used) in ϕ.

Example 18 The redundant fixpoints in ψ4 from Example 17 can be removed via function
〈〈−〉〉5, thus obtaining the following sHMLnf formula:

ψ5
def= [i?req]max X{2}.[i!ans]([i!ans]ff∧[i?req]X{2}).

Notice that the obtained formula ψ5 is identical to ϕ0 (modulo α-renaming) from Example 2,
and are both definable via the sHMLnf syntax, and thus in normal form. ��
Lemma 6 For every formula ϕ ∈ sHML2, �〈〈ϕ〉〉5� = �ϕ�.

Proof We prove that for every system s,

(a) s ∈ �〈〈ϕ〉〉5� implies s ∈ �ϕ�; and
(b) s ∈ �ϕ� implies s ∈ �〈〈ϕ〉〉5�.

The proofs for both of these cases are provided in Appendix A.1.

We have presented a sequence of constructions that transform sHML formulas defining
singleton SAs into their normalised equivalent in sHMLnf. We thus conclude that when we
only consider singleton SAs, Theorem 5 holds as a result of Lemmas 2 and 6.

5.4 Reconstructing SHML into SHMLnf wrt. any symbolic action

Up until now we have only considered normalising sHML formulas defining singleton SAs
as these events are easy to statically differentiate from each other which is a crucial require-
ment for merging branches in §3.. However, modal necessities in general can also describe
non-singleton SAs for which syntactic difference does not necessarily reflect disjointness.
For instance, although (d)!(e), e = 5 and (d)!(e), d = i differ syntactically, they define
intersecting sets of actions, �(d)!(e), e = 5� ∩ �(d)!(e), d = i� = {i!5}, meaning that both
can match the same system action i!5.

123

418 L. Aceto et al.

As shown in Example 19, normalising a non-singleton symbolic formula using the algo-
rithm in Sect. 5.3, may sometimes fail to produce a normalised equivalent formula.

Example 19 Consider ϕ6 a variant of ϕ4 from Example 9.

ϕ6
def= max X0.

(

[(d1)?req, true]
(
[(d2)!ans, d2‰h=d1][(d4)!ans, d4=d2]ff∧
[(d3)!ans, d3‰j=d1]X0

))

.

By applying §1.and §2., we construct (Eq4 , X0, ∅) where

Eq4 =
{

X0 = [(d1)?req, true]X1,

X1 = [(d2)!ans, d2‰h=d1]X2 ∧ [(d3)!ans, d3‰j=d1]X3, . . .

}

.

However, when we apply §3. the algorithm fails to combine symbolic actions
(d2)!ans, d2‰h=d1 and (d3)!ans, d3‰j=d1 as despite not being disjoint, they still differ
syntactically, and so the equations defining these actions remain unmerged. We thus end up
with
(

Eq4
, X{0}, ∅) where

Eq4
=
⎧
⎨

⎩

X{0} = [(d1)?req, true]X{1},

X{1} = [(d2)!ans, d2‰h=d1]X{2} ∧ [(d3)!ans, d3‰j=d1]X{3}, . . .

⎫
⎬

⎭
.

This error propagates through to steps §4.and §5.which produce a formula that despite being
semantically equivalent to the original formula ϕ5, it is still not in normal form due to its
non-disjoint conjunctions. The current algorithm thus fails in the general case. ��

When dealing with non-singleton SAs, we must introduce additional constructions to
ensure that §3.correctly merges the conjunctions within a formula.

Example 20 To give some intuition of the necessary steps, consider again actions
(d1)?(e1), e1 = 5 and (d2)?(e2), d2 = i. Despite being syntactically different, these SAs are
not disjoint as both can match i?5. The information they convey can, however, be encoded
into 4 SAs (amounting to 3 disjoint ones) as follows:
− (d1)?(e1), e1=5 becomes (d)?(e), e=5 ∧ d=i and (d)?(e), e=5 ∧ d‰i, while
− (d2)?(e2), d2=i becomes (d)?(e), e=5 ∧ d=i and (d)?(e), e‰5 ∧ d=i
where d and e are fresh variables. Since these newly encoded SAs differ syntactically and
are also disjoint, they can be distinguished via a simple syntactic check. For instance,
(d)?(e), e=5 ∧ d=i and (d)?(e), e‰5 ∧ d=i are not only syntactically different, but their
contradicting conditions, e=5 and e‰5, also guarantee their disjointness. ��

5.4.1 Additional steps for normalising necessities defining symbolic actions

We formally define two additional constructions that must be applied between steps §2.and
§3.. They convert conjunctions that are guarded by necessities defining non-disjoint SAs, into
equivalent conjunctions guarded by syntactically disjoint necessities, i.e., necessities describ-
ing SAs that are syntactically (hence semantically) disjoint. The additional steps include:

§i.step:alpha-equiv-cons Conversion to uniform SAs: we inspect modal necessities
defined at the same modal depth within a conjunction and substitute their data variables
with the same fresh variable whenever they define pattern equivalent SAs (Sect. 5.4.2).
§i.step:truth-combos-cons Condition reformulation of conjunct SAs: once uniformed,
the conjunctions are recomposed to define branches that are prefixed by modal necessities
specifying syntactically disjoint SAs (Sect. 5.4.3).

123

On first-order runtime enforcement of branching-time properties 419

Fig. 14 The breadth first traversal algorithm

Fig. 15 A pictorial view of an example equation set traversal

Example 21 Recall (d1)?(e1), e1 = 5 and (d2)?(e2), d2 = i from Example 20. Construction
§i.uniforms the SAs by assigning the same fresh variables to both SAs, and so they become
(d)?(e), e = 5 and (d)?(e), d = i. Construction §i. then reformulates the conditions of
the resulting SAs to obtain (d)?(e), e=5 ∧ d=i, (d)?(e), e‰5 ∧ d=i and (d)?(e), e=5 ∧ d‰i
which are disjoint. ��

Internally, constructions §i. and §i. both use the traverse function defined in Fig. 14 to
process the given set of equations in a tree-like manner. traverse : (Eq ×P(Index)×Fun×
Acc) → Acc is a higher order function which takes as input: a set of equations Eq, a set of
indices I , an arbitrary projection function λ, and an accumulator argument δ.

It conducts a breadth first traversal on an equation set, starting from the equation of
the principal variable as the root of the tree traversal. For instance, in Fig. 15 equation
X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3 is the root of the traversal since X0 is the principal variable
of (Eq , X0, Y).

The children of the root are calculated via the child:(Eq× Index)→P(Index) function. It
takes as input an equation set Eq along with the index i of the parent equation, e.g., index 0 for
equation X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3. It then scans the equated formula and returns the
set containing the indices of every branch, defined in the equated formula, which is prefixed
by a modal necessity. For example in Fig. 15, the children of X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3

are
{
1, 2, 3

}
, and so branches [η1]X1, [η2]X2 and [η3]X3 are siblings as they are defined at

the same modal depth of the conjunction.
Cycles in the traversal are avoided since the child function is always executed wrt. a

restricted set of equations, i.e., one which does not include the parent equation. Cycles to the

123

420 L. Aceto et al.

(immediate) parent are also avoided by removing the parent’s index from the returned set of
child indices.

Example 22 While analysing equation X1=[η4]X0 in Fig. 15, traverse is evaluated wrt. Eq′
which does not include the parent equation, i.e., since Eq′=Eq\Eq//{0} where Eq//{0} =
{X0=[η1]X1 ∧ [η2]X2 ∧ [η3]X3}. In this way, when computing the children of X1 (via
child(Eq′, 1)) index 0 is not added to the resultant set of child indices, since X0 /∈ dom(Eq′);
this avoids cycling back to some (grand) parent equation. Moreover, when evaluating
child(Eq′, 3) to retrieve the child indices of equation X3=[η6]X3, index 3 is removed thus
avoiding the creation of a loop in the traversal. ��

While traversing the equation set, the traverse function can apply an arbitrary projection
function λ. As mentioned above, despite being an arbitrary function, λ must adhere to a
specific type, namely, λ : (Eq×P(Index)×Acc)→Acc. It must take three inputs including:
the current equation set Eq, a set of indices I and an accumulator value δ, and must return
an updated accumulator δ′.

Upon termination, the traversal returns the latest version of the accumulator. The traversal
terminates when either all the equations in Eq have been processed such that the traverse
function is applied wrt. Eq=∅, or whenever no further children can be visited, i.e., for every
branch i , child(Eq, i)=∅. The latter is an optimisation which omits the redundant processing
of equations that are not reachable from the principal equation.

With this mechanism in place, we can now define steps §i.and §i.in Sects. 5.4.2 and 5.4.3.

5.4.2 Uniformity of symbolic actions

Intuitively, this part of the normalisation algorithm renames the data variables of pattern
equivalent sibling modal necessities, to the same variable names. This produces a uniform
system of equations.

Definition 12 (Uniform system of equations) An equation is uniform when every pattern
equivalent SA defined by sibling necessities within a conjunction, defines the exact same
data variable names. A system of equations is uniform when all of its equations are uniform.

��
Example 23 The SAs in X0 =[(d1)?(d2), c1[d1, d2]]X1∧[(e1)?(e2), c2[e1, e2]]X2 are both
pattern equivalent, yet not uniform as they do not define the same variable names. Uniformity
can be attained by renaming d1 and e1 to the same f 1 and similarly d2 and e2 to a fresh
variable f 2, so to obtain X0 = [(f 1)?(f 2), c1[f 1, f 2]]X1∧[(f 1)?(f 2), c2[f 1, f 2]]X2. ��

Figure 16 presents 〈〈−〉〉(i) : (Eq , Var, P(Var)) → (Equni , Var, P(Var)
)
. This inter-

nally uses the uni function to create the required uniform set of equations Equni from a given
equation set. Specifically, uni reconstructs the equation set by performing a linear scan during
which it converts equations of the form Xi=∧ j∈I [η j]X j∧ϕ to Xi=∧ j∈I [η jζ(j)]X j∧ϕ

where ζ : Index→σ is a map that provides a substitution environment σ for a given index
j . For the reconstruction to be correct, the ζ must be well-formed.

Definition 13 (A well-formed ζ map) We say that ζ is a well-formed map for an equation set
Eq, whenever it provides a set of mappings which allow for

(i) uniformly renaming the data variables of pattern equivalent sibling necessities, defined
in Eq, by setting them to the same set of fresh variables, and for

123

On first-order runtime enforcement of branching-time properties 421

Fig. 16 The uniformity algorithm for symbolic actions

Fig. 17 A Tree representation of the uni traversal performed on Eq

(i i) renaming any data variable reference that is bound to a renamed parent modal necessity
defined in Eq.

We assume that by default ζ(i) = ∅ when i is the index of the root equation. ��

Example 24 Consider the following system of equations (Eq , X0, ∅) where

Eq =
{

X0=[(d1)?(d2), d1‰i]X1∧[(d3)?(d4), d4‰3]X2, X3=ff,

X1=[(d5)!(d6), true]X3, X2=[(d7)!(d8), d7=d3]X4, X4=ff

}

.

For convenience, we also represent these equations as a tree starting from the principal
equation X0=[(d1)?(d2), d1‰i]X1∧[(d3)?(d4), d4‰3]X2 as the root of the tree. We also
assume the knowledge of a well-formed ζ map:

ζ =
{

0 �→ {∅}, 1 �→ ζ(0) ∪̇ {d1/e1, d2/e2}, 2 �→ ζ(0) ∪̇ {d3/e1, d4/e2},
3 �→ ζ(1) ∪̇ {d5/e3, d6/e4}, 4 �→ ζ(2) ∪̇ {d7/e3, d8/e4}

}

.

As shown by the tree representation in Fig. 17, actions (d1)?(d2), d1‰i and (d3)?(d4), d4‰3
are pattern equivalent and defined by sibling necessities in the conjunction of equation
X0. For these to be uniformed, the substitution map ζ projects indices 1 and 2 onto
substitutions {d1/e1,d2/e2} and {d3/e1,d4/e2} resp. Once the substitution is applied

123

422 L. Aceto et al.

Fig. 18 A breadth first traversal using partition to obtain ζ

to both SAs we obtain (e1)?(e2), e1‰i and (e1)?(e2), e2‰3. Notice how the patterns in
both of the necessities are now syntactically equal, meaning that the resulting equation
X0=[(e1)?(e2), e1‰i]X1∧[(e1)?(e2), e2‰3]X2 is now uniform.

Since (d5)!(d6), true and (d7)!(d8), d7=d3 are pattern equivalent siblings in X0, to
achieve uniformity ζ provides mappings 3 �→ ζ(1) ∪̇ {d5/e3, d6/e4} and 4 �→ ζ(2) ∪̇
{d7/e3, d8/e4} that rename these SAs to (e3)!(e4), true and (e3)!(e4), e3=e1. Notice how
condition d7=d3 in (d7)!(d8), d7=d3 was also renamed to e3=e1 as variable d3 was sub-
stituted by e1 when its binding SA (d3)?(d4), d4‰3 was uniformed into (e1)?(e2), e2‰3.
This substitution was possible since mapping ζ(4) includes the substitutions returned by the
parent’s index, i.e., ζ(2) that allows for applying the substitutions performed upon the parent,
to its children, thus keeping the SoE closed. ��

So far we have assumed the existence of a well-formed ζ map that provides all the necessary
information, without having any knowledge as to how it is created. The ζ map is created as a
result of conducting a breadth first traversal, via the traverse function, on the given equation
set, using the partition function (defined in Fig. 16) as the λ projection function for traverse.
The function partition:(Eq×P(Index)×Acc)→Acc follows the format dictated by λ, i.e.,
it takes as input a set of equations Eq, a set of indices I and an accumulator − in this case ζ

− and returns an updated version of ζ as a result. To update ζ , partition inspects the sibling
equations denoted by the indices in I and as a result creates a substitution environment which
renames the variable names of each pattern equivalent sibling necessity, to the same fresh set
of variables.

Example 25 Recall (Eq , X0, ∅) from Example 24 where

Eq =
{

X0=[(d1)?(d2), d1‰i]X1∧[(d3)?(d4), d4‰3]X2, X3=ff,

X1=[(d5)!(d6), true]X3, X2=[(d7)!(d8), d7=d3]X4, X4=ff

}

.

Fig. 18 depicts the breadth first traversal performed by the traverse function in which the
projection function partition was applied on each set of siblings. Notice that when partition
is applied on the root equation, the initially empty ζ map gets extended by two entries,
namely ζ=∅∪{1 �→∅∪̇ {e1/d1, e2/d2}, 2 �→∅∪̇ {e1/d3, e2/d4}}. As shown in Example 24,
this allows for the sibling necessities defined in X0 to be uniformed. The ζ map is further
extended into ζ ′=ζ∪{3 �→ ζ(1) ∪̇ {e3/d5, e4/d6}, 4 �→ ζ(2) ∪̇ {e3/d7, e4/d8}}, since the
partition function recognises that sibling SAs (d5)!(d6), true and (d7)!(d8), d7=d3 are also
pattern equivalent. It therefore maps variables d5, d7 to the same fresh variable e3, and d6,
d8 to e4. ��

123

On first-order runtime enforcement of branching-time properties 423

Lemma 7 For every SoE (Eq , X0, Y) if 〈〈(Eq , X0, Y)〉〉(i) = (
Eq′ , X ′

0, Y′) then
(Eq , X0, Y) ≡ (Eq′ , X ′

0, Y′) and
(

Eq′ , X ′
0, Y′) is uniform.

Proof To prove this statement, we assume knowledge of Lemmas 8 and 9 both of which are
proved in Appendix A.

Lemma 8 For every equation set Eq if traverse(Eq, {0}, partition,∅)=ζ then ζ is a well-
formed map for Eq.

Lemma 9 For every ζ map, and equation set Eq, if ζ is a well-formed map for Eq then
uni(Eq, ζ)≡Eq and every equation (Xk=ψk)∈ uni(Eq, ζ) is Uniform.

Now assume that 〈〈(Eq , X0, Y)〉〉(i) = (Eq′ , X ′
0, Y′) and so by the definition of 〈〈−〉〉(i) we

have that X ′
0 = X0, Y′ = Y and Eq′ = uni(Eq, ζ) where ζ = traverse(Eq, {0},partition,∅)

from which by Lemma 8 we can deduce that ζ is a well-formed map for Eq. This means that
from Lemma 9 we can infer that

uni(Eq, ζ)≡Eq (75)

every equation (Xk=ψk) ∈ uni(Eq, ζ) isuni f orm (76)

and so since from (75) we know that the uniformed equation set is equivalent to Eq and from
(76) we have that every equation is uniform, we conclude that

(Eq , X0, Y) ≡ (Eq′ , X ′
0, Y′) and that

(
Eq′ , X ′

0, Y′) is uniform (77)

as required, and so we are done.

5.4.3 Condition reformulation of sibling symbolic actions

By reformulating the conditions of sibling symbolic actions in a uniform SoE, we aim to
obtain its equi-disjoint equivalent.

Definition 14 (System of equi-disjoint equations) An equation is equi-disjoint when it is
uniform, and its sibling necessities cannot be satisfied by the same concrete action α, unless
they are syntactically equal. A SoE is equi-disjoint when all of its equations are equi-disjoint.

��
Example 26 As per Definition 14, we can thus infer that equation

X0 = [(d)?(e), e>5]X1∧[(d)?(e), e>5]X2∧[(d)?(e), e≤5]X3

is equi-disjoint since there does not exist a system action that can satisfy both (d)?(e), e>5
and (d)?(e), e≤5. The only two branches that are satisfied by common actions are
[(d)?(e), e>5]X1 and (d)?(e), e>5X2 but they are both prefixed by syntactically equal
necessities. However, for equation X1 =[(d1)?(e1), true]X4 ∧ [(d1)?(e1), e1 ‰ 5]X5 we can
immediately conclude that it is not equi-disjoint. ��

Figure 19 presents function 〈〈−〉〉(ii):
(

Equni , Var, P(Var)
) → Eqed for recomposing

uniform SoEs into equi-disjoint ones. Internally, this function uses the traverse function to
perform a breadth first traversal on the given uniform equation set, Equni, starting from the
principal equation, i.e., with I={0}. While conducting the traversal, it applies the cond_comb

123

424 L. Aceto et al.

Fig. 19 The Conjunction Reformulation Algorithm

function to reconstruct the uniform conjunctions, defined in (Xi=ϕi) ∈ Equni, into equi-
disjoint ones, thereby producing an equi-disjoint equation set Eqed at the end of the traversal.

The function cond_comb:(Equni × P(Index) × Acc)→Acc is a projection function
that takes as input a uniform equation set Equni, a set of indices I , and an accumulator ω.
The accumulator ω contains a partial equi-disjoint set of equations which is first initialised
to ∅ and is constantly extended by recursive cond_comb applications until the traversal is
complete, in which case ω is returned as the resultant equi-disjoint equation set. In order to
update ω, the cond_comb function inspects the sibling equations denoted by the indices in
I , i.e., (Xi=ϕi) ∈ Eq//I , and computes the truth combinations of the conditions defined by
sibling symbolic necessities defining syntactically equal patterns.

To compute these truth combinations, the cond_comb function starts by computing the
child indices of the current sibling equations, denoted by I , by using the child function, i.e.,
I ′=⋃l∈I child(Eq, l). It then inspects the conjunctions defined in the selected equations, i.e.,∧

j∈I ′′ [p j , c j]X j ∧ϕ, and reconstructs them into
∧

ck∈C(j,I ′) [p j , ck]X j ∧ϕ. Notice that ck
is a truth combination of all the filtering conditions that are defined by modal necessities
that specify syntactically equal patterns and which are defined by the branches identified
by the indices in I ′. For instance, if I ′={1, 2, 3}, then one possible truth combination ck is
c1∧¬c2∧c3.

The truth combinations, such as ck , are generated through the combinatorial function
C:(Index × P(Index)). It takes as input the index j of the branch that is being analysed,
along with the indices of all the sibling branches specified in I ′. As a result, C(j, I ′)
returns the truth combinations in which the filtering condition, c j , of the branch that
is currently being reconstructed is true. For instance, C(1, {1, 2, 3}) provides combina-
tions
{
(c1∧c2∧c3), (c1∧c2∧¬c3), (c1∧¬c2∧c3), (c1∧¬c2∧¬c3)

}
where c1 is always true.

These truth combinations are then used to reconstruct the existing branch into a collection
of equi-disjoint branches.

The resultant equations are thus equi-disjoint as the truth combination conditions ensure
that a concrete system event α can never satisfy multiple symbolic necessities in the recon-
structed branches, unless these are syntactically equal. Note that the truth combinations
generated by function C(j, I ′) do not include the cases where c j is false. This is essential to
ensure that none of the reconstructed branches can be satisfied when the original condition
c j is false, thereby preserving the semantics of the original branch.

Once the traversal completes, the construction outputs the final accumulator value ω

containing the required equi-disjoint equation set.

123

On first-order runtime enforcement of branching-time properties 425

Example 27 Consider equation X0 = [p, c1]X1∧[p, c2]X2∧[p, c3]X3, using the truth com-
binations provided by C(1, {1, 2, 3}) we can reconstruct branch [p, c1]X1 into:

[p, c1∧c2∧c3]X1∧[p, c1∧c2∧¬c3]X1∧[p, c1∧¬c2∧c3]X1∧[p, c1∧¬c2∧¬c3]X1.

Similarly, with C(2, {1, 2, 3}) and C(3, {1, 2, 3}), we can reconstruct branches [p, c2]X2 and
[p, c3]X3 in the same way such that the resultant equation is:

X0=

⎛

⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎜
⎝

[p, c1∧c2∧c3]X1 ∧[p, c1∧c2∧¬c3]X1 ∧
[p, c1∧¬c2∧c3]X1 ∧[p, c1∧¬c2∧¬c3]X1 ∧

[p, c1∧c2∧c3]X2 ∧[p, c1∧c2∧¬c3]X2 ∧
[p,¬c1∧c2∧c3]X2 ∧[p,¬c1∧c2∧¬c3]X2 ∧

[p, c1∧c2∧c3]X3 ∧[p,¬c1∧c2∧c3]X3 ∧
[p, c1∧¬c2∧c3]X3 ∧[p,¬c1∧¬c2∧c3]X3

⎞

⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎟
⎠

Notice that logical variables X1, X2 and X3 can only be evaluated when their prefixing
modal necessities are satisfied by some system action, meaning that continuation X1 is only
reachable when c1 is true, and resp. X2 and X3 when c2 and c3 are true. Hence, in the
reconstructed equation, these (underlined) conditions are never negated when prefixing the
resp. logical variable. ��

Lemma 10 For every system of equations, (Eq , X0, Y), if (Eq , X0, Y) is uniform then
〈〈(Eq , X0, Y)〉〉(ii) ≡ (Eq , X0, Y) and 〈〈(Eq , X0, Y)〉〉(ii) is equi-disjoint.

Proof For this proof we assume the knowledge of Lemma 11 which is proved in Appendix
A.

Lemma 11 For every equation (X j=ϕ j) ∈ Eq, if X j=ϕ j is uniform then we have that
Eq ≡ traverse(Eq, {0}, cond_comb,)∅ and that every eqn. (Xk=ψk) ∈
traverse(Eq, {0}, cond_comb,∅) is equi-disjoint.

Now, let’s assume that (Eq , X0, Y) is uniform which means that every equation (X j=ϕ j) ∈
Eq is uniform, and so by Lemma 11 we deduce that

Eq ≡ traverse(Eq, {0}, cond_comb,∅) (78)

∀(Xk=ψk)∈ traverse(Eq, {0}, cond_comb,∅) · eqn (Xk=ψk) is equi-disjoint. (79)

Now since 〈〈(Eq , X0, Y)〉〉(ii) = (traverse(Eq, {0}, cond_comb,∅) , X0, Y) by (78) and
(79) we can thus conclude that

〈〈(Eq , X0, Y)〉〉(ii) ≡ (Eq , X0, Y) and 〈〈(Eq , X0, Y)〉〉(ii) is equi − dis joint

as required, and so we are done.
In Example 19 we had shown that the algorithm presented in Sect. 5.3 fails when dealing

with non-singleton SAs. This can now be resolved by applying steps §i. and §i. prior to
applying §3.− we leave this as an exercise to the reader.

With the extended normalisation algorithm we can finally conclude that Theorem 5 also
holds for any sHML formula (defining any kind of SAs) as a result of Lemmas 2 and 3
followed by Lemmas 7 and 10, and then by Lemmas 5 and 6.

123

426 L. Aceto et al.

Fig. 20 Defining the afterϕ function

6 Restricting weak enforcement to SHML

Although in Sect. 4 we prove that Definition 7 is inherently weaker than Definition 4 (i.e.,
Theorem 2), both definitions become equally powerful when restricted to sHML. As both are
defined in terms of Definition 2 (Soundness) and only vary with respect to the transparency
definition, to ensure this result it suffices to prove Theorem 6, i.e., that the Definitions 3
(Transparency) and 6 (Trace Transparency) coincide with respect to sHML formulas.

Theorem 6 For every monitor m and formula ϕ ∈ sHML, tenf(m, ϕ) iff ttenf(m, ϕ). ��
Since the if-case has already been proven to hold for the full μHML (in Theorem 2), this

result implicitly applies for sHML, so no additional proofs are required. For the only-if case
we, however, require an additional proof that uses the following lemmas whose proofs are
provided in Appendix B.

Lemma 12 For every system s, sHML formula ϕ and trace t ∈ traces(s) when s ∈ �ϕ� then
sys(t) ∈ �ϕ� (where traces(s)

def= { t s
t	⇒
}
).

Lemma 13 For every system transition s
α	⇒ s′ and sHML formula ϕ, if s ∈ �ϕ� then

s′ ∈ �afterϕ(ϕ, α)� (where afterϕ(ϕ, α) is defined in Fig.20).

Lemma 14 For every action α, sHML formula ϕ and trace t, if sys(t) ∈ �afterϕ(ϕ, α)� then
sys(αt) ∈ �ϕ�.

Proof We prove Theorem 6 coinductively by showing that relation R def= {(m[s], s)s ∈
�ϕ� and ttenf(m, ϕ)

}
is a strong bisimulation relation and thus satisfies the following transfer

properties, i.e., for each (m[s], s)∈R:

(a) if m[s] μ−→ r ′ then s
μ−→ s′ and (r ′, s′) ∈ R

(b) if s
μ−→ s′ then m[s] μ−→ r ′ and (r ′, s′) ∈ R.

To prove (a), assume that

m[s] μ−→ r ′ (80)

s ∈ �ϕ� (81)

and that ttenf(m, ϕ) from which by Definition 6 we have that

if sys(t) ∈ �ϕ� and m[sys(t)] t ′	⇒ m′[sys(t ′′)] then t = t ′t ′′ (82)

and so by Lemma 12 from (81) and we infer that

∀t ∈ traces(s) · sys(t) ∈ �ϕ�. (83)

123

On first-order runtime enforcement of branching-time properties 427

From (82) and (83), we can thus conclude that monitor m does not modify any of the
behaviours (traces) of s and so we know that

∀t ∈ traces(s) · m[sys(t)] t	⇒ . (84)

We now explore all the possible instrumentation rules by which the reduction in (80) can
occur.

– iAsy: From (80) and rule iAsy, we have that μ = τ and that

s
τ−→ s′ (85)

r ′ = m[s′]. (86)

Since by Proposition 4 we know that sHML is agnostic of τ -actions, from (81) and (85)
we also know that s′ ∈ �ϕ� and so since from (86) we know that m remains unmodified
by the transition, from (82) and the definition of R we conclude that

(m′[s′], s′) ∈ R (87)

as required. Hence, this case holds by (85) and (87).
– iDef: From (80) and rule iDef, we have that μ = α and that

s
α−→ s′ (88)

r ′ = id[s′]. (89)

Since id can only apply identity transformations, we can simply infer that for any formula
ψ , ttenf(id, ψ), and so we conclude that

ttenf(id, afterϕ(ϕ, α)). (90)

Finally, by (81), (88) and Lemma 13 we deduce that s′ ∈ �afterϕ(ϕ, α)�, and so knowing
(90) and by the definition of R we conclude that

(id[s′], s′) ∈ R (91)

as required. Hence, this case holds by (88) and (91).
– iTrn (identity): From (80) and rule iTrn we have that

s
α−→ s′ (92)

m
α�α−−−→ m′′ (93)

r ′ = m′′[s′] (94)

and so by (81), (92) and Lemma 13 we can immediately deduce that

s′ ∈ �afterϕ(ϕ, α)�. (95)

Now, assume that for every trace u, we have that

sys(u) ∈ �afterϕ(ϕ, α)� (96)

123

428 L. Aceto et al.

m′′[sys(u)] u′	⇒ m′[sys(u′′)]. (97)

Knowing (96), by Lemma 14 we have that

sys(αu) ∈ �ϕ� (98)

and so from (82) and (98) we can infer that

if m[sys(αu)] αu′		⇒ m′[sys(u′′)] then αu = αu′u′′ (99)

and thus from (93), (97) and (99) we can conclude that

u = u′u′′. (100)

Hence, from assumptions (96), (97) and deduction (100) we can introduce an implication
so that by Definition 6 we conclude that

ttenf(m′′, afterϕ(ϕ, α)) (101)

and so by (95), (101) and the definition of R we have that

(m′′[s′], s′) ∈ R (102)

as required, and so we are done by (92) and (102).
– iSup, iIns, iTrn (replacement): These cases do not apply since these rules modify the

trace actions executed by s, and so if (80) is the result of any these rules, it would
contradict with (84).

These cases thus allow us to conclude that (a) holds.
We now proceed to prove (b). Assume that

s
μ−→ s′ (103)

s ∈ �ϕ� (104)

ttenf(m, ϕ) (105)

and so since μ ∈ {τ, α} we consider each case separately.

– μ = τ : Since s
τ−→ s′, by (104) and since sHML is agnostic of τ -actions (Proposition 4),

we know that

s′ ∈ �ϕ� (106)

and by rule iAsy we can also deduce that

m[s] τ−→ m[s′]. (107)

Hence, by (105), (106) and the definition of R we can conclude that

(m[s′], s′) ∈ R (108)

as required, and so this case holds by (107) and (108).

123

On first-order runtime enforcement of branching-time properties 429

– μ = α: Since s
α−→ s′ from (104) and Lemma 13 we have that

s′ ∈ �afterϕ(ϕ, α)� (109)

as required. From (105) and by Definition 6, we know that for every trace t

if sys(t) ∈ �ϕ� and m[sys(t)] t ′	⇒ m′[sys(t ′′)] then t = t ′t ′′ (110)

and by Lemma 12 from (104) we infer that for every trace u that can be executed by
s, i.e., u ∈ traces(s), sys(u) ∈ �ϕ� and so since s

α−→ s′ we know that sys(αu′) ∈ �ϕ�

where u′ ∈ traces(s′). Hence, from (110) we can infer that

if m[sys(αu′)] αu′′		⇒ m′[sys(u′′′)] then αu′ = αu′′u′′′ (111)

which means that m is unable to modify any of the α-prefixed behaviours of s, and so
since s

α−→ s′ we have that

∃m′′ · m[s] α−→ m′′[s′] (112)

as required. Finally, let’s assume that for every trace v,

sys(v) ∈ �afterϕ(ϕ, α)� (113)

m′′[sys(v)] v′	⇒ m′[sys(v′′)]. (114)

Since by (113) and Lemma 14 we have that sys(αv) ∈ �ϕ�, from (110) we can infer that

if m[sys(αv)] αv′		⇒ m′[sys(v′′)] then αv = αv′v′′ (115)

and thus from (114) and (115) we can conclude that

v = v′v′′. (116)

Hence, from assumptions (113), (114) and deduction (116) we can introduce an impli-
cation so that by Lemma 6 we conclude that

ttenf(m′′, afterϕ(ϕ, α)) (117)

and so by (109), (117) and the definition of R we have that

(m′′[s′], s′) ∈ R (118)

as required. Hence, this case holds by (112) and (118).

Remark 2 Although we have carried out our investigation for a branching time setting, it is
natural to ask what the relation between enforceable branching-time properties and linear-
time properties is. Intuitively, one might expect that a process satisfies a property ϕ in sHML
if, and only if, each of its traces does so in the linear-time interpretation of ϕ. This intuition is
formalised in [23, Proposition 5.11] for a setting without data. A version of that result should
also hold true also for the version of sHML studied in this paper.

123

430 L. Aceto et al.

7 Conclusion

This paper presents a preliminary investigation of the enforceability of first-order branching-
time properties expressed in a process logic with data bindings and constraints. We have
focussed on a highly expressive and standard logic, μHML, and studied the ability to enforce
μHML properties via a specific kind of monitor that performs suppression-based enforce-
ment. We concluded that the safety fragment of μHML, i.e., sHML, is enforceable via
these kind of monitors. To show this, we first defined enforceability for logics and sys-
tem descriptions interpreted over labelled transition systems. Although enforceability builds
upon soundness and transparency requirements that have been considered in other work,
our branching-time framework required us to consider a broader design spaced for these
requirements, resulting in new definitions for soundness and transparency. We also contend
that the definitions that we develop for the enforcement framework are fairly modular: e.g.,
the instrumentation relation is independent of the specific language constructs defining our
transducer monitors and it functions as expected as long as the transition semantics of the
transducer and the system are in agreement. Based on this notion of enforcement, we devise a
two-phase procedure to synthesise correct enforcement monitors. We first identify a syntactic
subset of our target logic sHML that affords certain structural properties and permits a com-
positional definition of the synthesis function. We then show that, by augmenting existing
rewriting techniques to our setting, we can convert any sHML formula into this syntactic
subset. This yields one of the first syntactic studies of logic enforceability. Although our
logic is declarative in nature (describing what), we are able to demonstrate how its syntactic
constructs can still be used to define a synthesis procedure that generates operational descrip-
tions detailing how a property is enforced. The flip-side of this approach is that we are then
able to precisely describe the properties that we are able to enforce in terms of the grammar
of the logic fragment considered. This modus operandi is essential for ensuring correct tool
construction [32, 51]. Unfortunately this method is rarely used in the literature either because
the properties to be enforced are never defined syntactically or because they are defined in
terms of automata, which already have a strong operational flavour.

Related Work.
In his seminal work [2], Schneider regards a property (in a linear-time setting) to be

enforceable if its violation can be detected by a truncation automaton, and prevents its occur-
rence via system termination; by preventing misbehaviour, these monitors can only enforce
safety properties. In [4], Ligatti et al. extended this work via edit automata—an enforcement
mechanism capable of suppressing and inserting system actions. A property is thus enforce-
able if it can be expressed as an edit automaton that transforms invalid executions into valid
ones via suppressions and insertions. Edit automata are capable of enforcing instances of
safety and liveness properties, along with other properties such as infinite renewal properties
[4, 75]. As a means to assess the correctness of these automata, the authors introduced sound-
ness and transparency along the lines of our trace transparency, Definition 6. All this work
is pitched at a linear-time setting where properties are defined in terms of traces. They are
never characterised syntactically, and they never discuss edit-automata synthesis. Moreover,
first-order properties are not considered, limiting traces to a finite set of actions.

Könighofer et al. in [10] present a synthesis algorithm that produces action replacement
transducers called shields from safety properties encoded as automata-based specifications.
Shields analyse the inputs and outputs of a reactive system and enforce properties by mod-
ifying the least amount of output actions whenever the system deviates from the specified
behaviour. By definition, shields should adhere to two desired properties, namely correctness

123

On first-order runtime enforcement of branching-time properties 431

and minimum deviation. Although these two criteria can be viewed as analogous to sound-
ness and transparency, respectively, they are different from the ones we consider in our work,
Definition 2 and Definition 3, since we operate within a branching-time setting. Moreover,
Könighofer et al. do not study the enforceability of the logic. Falcone et al. in [6, 28], also
propose synthesis procedures to translate properties—expressed as Streett automata—into
the resp. monitors. The authors show that most of the property classes defined within the
safety-progress hierarchy [76] are enforceable, as they can be encoded as Streett automata
and subsequently converted into enforcement automata. Although this is one of the first bod-
ies of work to coin the term enforceability, their investigation of property enforceability is
very different from ours in two respects: they do not consider a declarative logic and con-
sider linear-time properties defined over traces. Neither Könighofer et al. nor Falcone et al.
consider first-order enforcement.

In [77], Pinisetty et al. consider first-order enforcement of timed properties. Apart from
the timing aspect, which is not considered by our work, Pinisetty et al. study linear-time
properties. This work does not define any automated synthesis procedures nor does it present
any correctness proofs for the monitors considered. Instead the authors focus on providing an
empirical assessment of the performance of their monitors. In other work [78, 79], Pinisetty
et al. study the enforcement of input–output properties. Although they provide correctness
guarantees for the enforcement monitors they define in terms of criteria such as soundness
and transparency, they do not attempt to syntactically characterise any enforceable subset
of properties. Crucially, the authors do not consider first-order properties and work in a
linear-time setting.

Lanotte et al. [80] employ a process-based approach for the runtime enforcement of secu-
rity properties that is very similar to our model of process monitors and instrumentation.
Although their implementations handle the enforcement of data-based properties, their for-
malism does not. Their work does study the problem of logic enforceability.

Bielova et al. [70, 75] remark that soundness and transparency do not specify to what extent
a transducer should modify an invalid execution. They thus introduce a predictability criterion
to prevent transducers from transforming invalid executions arbitrarily. More concretely, a
transducer is predictable if one can predict the number of transformations that it will apply
in order to transform an invalid execution into a valid one, thereby preventing monitors from
applying unnecessary transformations over an invalid execution. Using this notion, Bielova
et al. thus devise a more stringent notion of enforceability. Although we do not explore this
avenue, Definition 6 may be viewed as an attempt to constrain transformations of violating
systems in a branching-time setup, and should be complementary to these predictability
requirements. Importantly, the work by Bielova et al. is limited to the regular properties and
does not study the enforcement of first-order computation.

To the best of our knowledge, the only other work that tackles enforceability for the modal
μ-calculus [29] (a reformulation of μHML) is that of Martinelli et al. in [81, 82]. Their
approach is, however, different from ours. In addition to the μ-calculus formula to enforce,
their synthesis function also takes a “witness” system satisfying the formula as a parameter.
This witness system is then used as the behaviour that is mimicked by the instrumentation
via suppression, insertion or replacement mechanisms. Although the authors do not explore
automated correctness criteria such as the ones we study in this work, it would be interesting
to explore the applicability of our methods to their setting.

Bocchi et al. [19] adopt multi-party session types to project the global protocol specifica-
tions of distributed networks to local types defining a local protocol for every process in the
network that are then either verified statically via typechecking or enforced dynamically via
suppression monitors. To implement this enforcement strategy, the authors define a dynamic

123

432 L. Aceto et al.

monitoring semantics for the local types that suppress process interactions so as to conform to
the assigned local specification. They prove local soundness and transparency for monitored
processes that, in turn, imply global soundness and transparency by construction. Their local
enforcement is closely related to the suppression enforcement studied in our work with the
following key differences: (i) well-formed branches in a session type are, by construction,
explicitly disjoint via the use of distinct choice labels (i.e., similar to our normalised subset
sHMLnf), whereas we can synthesise monitors for every sHML formula using a normalisa-
tion procedure; (ii) they give an LTS semantics to their local specifications (which are session
types) which allows them to state that a process satisfies a specification when its behaviour
is bisimilar to the operational semantics of the local specification—we do not change the
semantics of our formulas, which is left in its original denotational form; (iii) our monitor
descriptions sit at a lower level of abstraction than theirs using a dedicated language, whereas
theirs have a session-type syntax with an LTS semantics (e.g., repeated suppressions have
to be encoded in our case using the recursion construct while this is handled by their high-
level instrumentation semantics). Although they consider first-order enforcement, they do
not investigate the enforceability of session types along the lines of Burlo et al. [16].

In [83], Castellani et al. adopt session types to define reading and writing privileges
amongst processes in a network as global types for information flow purposes. These global
types are projected into local monitors capable of preventing read and write violations by
adapting certain aspects of the network. They operate in a first-order setting and their moni-
tors occasionally adapt the network by suppressing messages or by replacing messages with
messages carrying a default nonce value, but their work targets adaptation [3, 84], rather than
enforcement.

Future work. We plan to extend this work along two different avenues. On the one hand,
we will attempt to extend the enforceable fragment of μHML. For a start, we intend to
investigate maximality results for suppression monitors, along the lines of [11, 12], and find
out whether sHML is the largest μHML subset that is enforceable via action suppressions.
We also plan to consider more expressive enforcement mechanisms such as insertion and
replacement actions. Finally, we also want to identify and investigate different classes of
system actions that might require more elaborate instrumentation setups to enforce. For
instance, the mechanism required for suppressing an input action might differ from that of
an output action. Such setups may include the ones explored in [13], that can reveal refusals
in addition to the actions performed by the system.

On the other hand, we also plan to study the implementability and feasibility of our
framework. We will consider target languages for our monitor descriptions that are closer to
an actual implementation (e.g., an actor-based language along the lines of [85]). We could
then employ refinement analysis techniques and use our existing monitor descriptions as
the abstract specifications that are refined by the concrete monitor descriptions. The more
concrete synthesis can then be used for the construction of tools that are more amenable
towards showing correctness guarantees.

AMissing proofs from Sect. 5.2

We provide the proofs for Lemmas 6, 8, 9 and 11 which were omitted from the main text.

123

On first-order runtime enforcement of branching-time properties 433

A.1 Proving Lemma 6

To prove that for every ϕ ∈ sHML2, �〈〈ϕ〉〉5� = �ϕ� we must prove that

(a) ∀s ∈Sys · s � 〈〈ϕ〉〉5 implies s � ϕ; and
(b) ∀s ∈Sys · s � ϕ implies s � 〈〈ϕ〉〉5.

In order to prove (a) and (b) we rely on the following lemmas:

Lemma 15 For every ϕ ∈ sHML2 if X ∈ fv(ϕ) then X ∈ fv(〈〈ϕ〉〉5).

Lemma 16 For every ϕ ∈ sHML2 if X ∈ fv(ϕ) and X ∈ fv(〈〈ψ〉〉5) then 〈〈ϕ{max X .ψ/X}〉〉5 =
〈〈ϕ〉〉5{max X .〈〈ψ〉〉5/X}
We provide the proofs for these lemmas after the proofs for (a) and (b).

Proof for (a) Let R def= { (s, ϕ) s � 〈〈ϕ〉〉5 }, we must prove that R is a satisfaction relation
by showing that it obeys the rules of Fig. 4. We conduct this proof by case analysis on ϕ.
Cases ϕ ∈ {ff, X

}
. These cases do not apply since 〈〈ϕ〉〉5 = ϕ and so the assumption that

s � 〈〈ϕ〉〉5 does not hold when ϕ ∈ {ff, X
}
.

Case ϕ = tt. This case is satisfied trivially since any process satisfies tt which confirms that
(s, tt)∈R.
Cases ϕ = ∧

i∈I [ηi]ϕi . In order to prove this case, we must confirm that

(s,
∧

i∈I [ηi]ϕi)∈R by showing that for every α and i ∈ I , if s
α	⇒ s′ s.t. ηi (α) = σ then

(s′, 〈〈ϕiσ 〉〉5)∈R. Hence, we assume that s � 〈〈∧i∈I [ηi]ϕi 〉〉5 and since by the definition of
〈〈−〉〉5 we know that s �

∧
i ∈ I [ηi]〈〈ϕi 〉〉5 then by the definition of � we have that

∀i ∈ I , α ∈Act · if s
α	⇒ s′ s.t. ηi (α) = σ then s′ � 〈〈ϕiσ 〉〉5. (119)

Hence, by (119) and the definition of R we can finally conclude that

∀i ∈ I , α ∈Act · if s
α	⇒ s′ s.t. ηi (α) = σ then (s′, ϕiσ)∈R

as required.

Case ϕ = max X .ϕ. In order to prove this case, we must confirm that (s,max X .ϕ)∈R by
showing that (s, ϕ{max X .ϕ/X})∈R as well. Hence, we assume that

s � 〈〈max X .ϕ〉〉5 (120)

and consider the following two subcases for 〈〈max X .ϕ〉〉5.

– when X ∈ fv(ϕ): Since X ∈ fv(ϕ), from (120) and the definition of 〈〈−〉〉5 we have that
s � max X .〈〈ϕ〉〉5 and so by the definition of � we can deduce that

s � 〈〈ϕ〉〉5{max X .〈〈ϕ〉〉5/X}. (121)

Since X ∈ fv(ϕ) and by Lemma 15 we have that X ∈ fv(〈〈ϕ〉〉5), and so by Lemma 16,
from (121) we deduce that

s � 〈〈ϕ{max X .ϕ/X}〉〉5. (122)

Hence, by (122) and the definition of R we deduce that

(s, ϕ{max X .ϕ/X})∈R
as required.

123

434 L. Aceto et al.

– X /∈ fv(ϕ): Since X /∈ fv(ϕ), from (120) and the definition of 〈〈−〉〉5 we have that

s � 〈〈ϕ〉〉5. (123)

and so since X /∈ fv(ϕ) from (123) we infer that 〈〈ϕ〉〉5 is equivalent to 〈〈ϕ{max X .ϕ/X}〉〉5
since X is unused in ϕ which means that from (123) we can deduce that

s � 〈〈ϕ{max X .ϕ/X}〉〉5. (124)

Hence, from (124) and the definition of R we conclude that

(s, ϕ{max X .ϕ/X})∈R
as required, and so we are done.

��
Proof for (b) LetR def= { (s, 〈〈ϕ〉〉5) s � ϕ }, once again we must prove thatR is a satisfaction
relation and conduct this proof by case analysis on ϕ.

Cases ϕ ∈ {ff, X
}
. These cases do not apply since the assumption that s � ϕ does not hold

when ϕ ∈ {ff, X
}
.

Case ϕ = tt This cases holds trivially since 〈〈tt〉〉5=tt and since any process satisfies tt which
allows us to affirm that (s, 〈〈tt〉〉5)∈R.

Caseϕ =∧i∈I [ηi]ϕi . In order to prove this case, we must confirm that (s, 〈〈∧i∈I [ηi]ϕi 〉〉5)∈R.
Since 〈〈∧i∈I [ηi]ϕi 〉〉5 =∧i ∈ I [ηi]〈〈ϕi 〉〉5, we instead confirm that (s,

∧
i ∈ I [ηi]〈〈ϕi 〉〉5)∈R

by showing that for every α and i ∈ I , if s
α	⇒ s′ s.t. ηi (α) = σ then (s′, 〈〈ϕiσ 〉〉5)∈R. Hence,

we start by assuming that s �
∧

i∈I [ηi]ϕi and so by the definition of � we have that

∀i ∈ I , α ∈Act · if s
α	⇒ s′ s.t. ηi (α) = σ then s′ � ϕiσ (125)

and so by (125) and the definition of R we conclude that

∀i ∈ I , α ∈Act · if s
α	⇒ s′ s.t. ηi (α) = σ then (s′, 〈〈ϕiσ 〉〉5)∈R

as required.

Case ϕ = max X .ϕ. To prove this case, we must confirm that (s, 〈〈max X .ϕ〉〉5)∈R and so
we start by assuming that s � max X .ϕ from which by the definitions of � and R we deduce
that

(s, 〈〈ϕ{max X .ϕ/X}〉〉5)∈R. (126)

We now consider two subcases for 〈〈max X .ϕ〉〉5.

– 〈〈max X .ϕ〉〉5 = max X .〈〈ϕ〉〉5 when X ∈ fv(ϕ): To confirm that (s, 〈〈max X .ϕ〉〉5)∈R, in
this case we must affirm that (s,max X .〈〈ϕ〉〉5)∈R by showing that
(s, 〈〈ϕ〉〉5{max X .〈〈ϕ〉〉5/X})∈R as well. Hence, since we assume that X ∈ fv(ϕ), by
Lemma 15 we deduce that X ∈ fv(〈〈ϕ〉〉5) and so by Lemma 16 and from (126) we can
conclude that

(s, 〈〈ϕ〉〉5{max X .〈〈ϕ〉〉5/X})∈R
as required.

123

On first-order runtime enforcement of branching-time properties 435

– 〈〈max X .ϕ〉〉5 = 〈〈ϕ〉〉5 when X /∈ fv(ϕ): Hence, to confirm that (s, 〈〈max X .ϕ〉〉5)∈R, we
must now affirm that (s, 〈〈ϕ〉〉5)∈R. Since we now assume that X /∈ fv(ϕ), we know that
ϕ{max X .ϕ/X} ≡ ϕ and so from (126) we confirm that (s, 〈〈ϕ〉〉5)∈R as required.

��
Proof for Lemma 15 We conduct this proof by structural induction on ϕ.

Cases ϕ ∈ {ff, tt
}
. These cases do not apply since X /∈ fv(ϕ) when ϕ ∈ {ff, tt

}
.

Case ϕ =∧i∈I [ηi]ϕi . We first assume that X ∈ fv(
∧

i∈I [ηi]ϕi) and so by the definition of
fv(−) we know that for every i ∈ I , X ∈ fv(ϕi) and so by applying the inductive hypothesis
for every i ∈ I we infer that X ∈ fv(〈〈ϕi 〉〉5). With this result and by the definitions of fv(−)

and 〈〈−〉〉5, we thus conclude that X ∈ fv(〈〈∧i∈I [ηi]ϕi 〉〉5) as required, and so we are done.

Case ϕ = Y . We start by assuming that X ∈ fv(ϕ) and consider the following cases:

– when Y = X : This case holds trivially since 〈〈Y 〉〉5 = Y = X and so since X ∈ fv(X) we
can infer that X ∈ fv(〈〈Y 〉〉5) as required.

– when Y ‰ X : This case does not apply since X /∈ fv(Y) when Y ‰ X .

Case ϕ = max Y .ϕ. We assume that

X ∈ fv(max Y .ϕ) (127)

and consider the following cases:

– when Y = X : This case does not apply since X /∈ fv(max Y .ϕ) when Y = X .
– when Y ‰ X : From (127) and by the definition of fv(−) we can deduce that

X ∈ fv(ϕ) (128)

and so by the inductive hypothesis we have that X ∈ fv(〈〈ϕ〉〉5) from which we can deduce
that

X ∈ fv(max Y .〈〈ϕ〉〉5). (129)

Finally, since Y ∈ fv(〈〈ϕ〉〉5) from (129) and the definition of 〈〈−〉〉5 we can conclude that

X ∈ fv(〈〈max Y .ϕ〉〉5) (130)

as required, and so we are done.

��
Proof for Lemma 16 We conduct this proof by structural induction on ϕ.

Cases ϕ ∈ {ff, tt
}
. These cases do not apply since X /∈ fv(ϕ) when ϕ ∈ {ff, tt

}
.

Case ϕ =∧i∈I [ηi]ϕi We first assume that

X ∈ fv(
∧

i∈I [ηi]ϕi) (131)

X ∈ fv(〈〈ψ〉〉5) (132)

so that by (131) and the definition of fv(−) we know that

∀i ∈ I · X ∈ fv(ϕi). (133)

123

436 L. Aceto et al.

Hence, by (132) we can apply the inductive hypothesis for every i ∈ I and infer that

∀i ∈ I · 〈〈ϕi {max X .ψ/X}〉〉5 = 〈〈ϕi 〉〉5{max X .〈〈ψ〉〉5/X} (134)

and by (134) and the definition of 〈〈−〉〉5 we thus conclude that

〈〈∧i∈I [ηi]ϕiϕi {max X .ψ/X}〉〉5 = 〈〈∧i∈I [ηi]ϕi 〉〉5{max X .〈〈ψ〉〉5/X}
as required.

Case ϕ = Y . We start by assuming that

X ∈ fv(Y) (135)

X ∈ fv(〈〈ψ〉〉5) (136)

and consider the following cases:

– when Y ‰ X : This case does not apply since (135) does not hold when Y ‰ X .
– when Y = X : Since Y = X we can thus unfold Y {max X .ψ/X} into max X .ψ such that

we have that

〈〈Y {max X .ψ/X}〉〉5 = 〈〈X{max X .ψ/X}〉〉5 = 〈〈max X .ψ〉〉5. (137)

Since 〈〈Y 〉〉5 = Y and Y = X we can deduce that

〈〈Y 〉〉5{max X .〈〈ψ〉〉5/X} = X{max X .〈〈ψ〉〉5/X} = max X .〈〈ψ〉〉5. (138)

Since by (136) and the definition of 〈〈−〉〉5 we know that 〈〈max X .ψ〉〉5 = max X .〈〈ψ〉〉5
and so from (137) and (138) we can conclude that

〈〈Y {max X .ψ/X}〉〉5 = 〈〈Y 〉〉5{max X .〈〈ψ〉〉5/X}.
as required.

Case ϕ = max Y .ϕ. We assume that

X ∈ fv(max Y .ϕ) (139)

X ∈ fv(〈〈ψ〉〉5) (140)

and consider the following cases:

– when Y = X : This case does not apply since X /∈ fv(max Y .ϕ) when Y = X .
– when Y ‰ X : From (139) and by the definition of fv(−) we can deduce that X ∈ fv(ϕ)

and so by (140) and the inductive hypothesis we have that

〈〈ϕ〉〉5{max X .〈〈ψ〉〉5/X} = 〈〈ϕ{max X .ψ/X}〉〉5. (141)

Hence, by applying the definition of 〈〈−〉〉5 on both sides of equation (141) we get that

〈〈max Y .ϕ{max X .ψ/X}〉〉5 = 〈〈max Y .ϕ〉〉5{max X .〈〈ψ〉〉5/X}. (142)

as required, and so we are done.

��

123

On first-order runtime enforcement of branching-time properties 437

A.2 Proving Lemma 8.

if traverse(Eq, {0},partition,∅)=ζ then ζ is a well-formed map for Eq.

To prove Lemma 8, we rely on Lemma 17.

Lemma 17 For every set of indices I , ζ map, and equation sets Eq and Eq′, if Eq′ ⊆ Eq
and traverse(Eq′, I , partition, ζ)=ζ ′ and ζ is a well-formed map for Eq//dom(ζ) then ζ ′ is a
well-formed map for Eq.

We provide the proof for this lemma at the end of this section.

Proof for Lemma 8 Assume that

traverse(Eq, {0},partition,∅)=ζ (143)

and since by the definition of Eq//I we know that Eq//dom(∅) = ∅ by the definition of a
well-formed map we infer that

∅ is a Well-formed map for Eq//dom(∅) (144)

and hence by (143), (144) and Lemma 17 we can conclude that

ζ is a well − f ormed map for Eq

as required.

Proof for Lemma17 We proceed by induction on the structure of Eq′.

Case Eq′ = ∅ Initially we assume that ∅ ⊆ Eq and that

traverse(∅, I ,partition, ζ)=ζ ′ (145)

ζ is a well − f ormed map for Eq//dom(ζ). (146)

Since Eq′=∅, by (145) and the definition of traverse we have that ζ = ζ ′ and so from (146)
we can deduce that

ζ ′ is a well − f ormed map for Eq//dom(ζ ′). (147)

From (145) and the definition of traverse, we know that the traversal starts from the full
equation set, i.e., Eq′ = Eq, using an empty ζ map. With every recursive application of
traverse, the equation set Eq′ becomes smaller since when traverse recurses it does so wrt.
Eq′′, i.e., a smaller version of the current Eq′ which is computed via Eq′′=Eq′ \ Eq′

//I . By
contrast, with every recursive application of traverse, the ζ accumulator becomes larger as
it is updated with new mappings for each index specified by the set of indices I , i.e., with
the indices of the equations that are removed from Eq′ when creating Eq′′. Hence, when the
traverse function is recursively applied wrt. some Eq′′′=∅, it means that all the equations
specified in Eq have been analysed by the traversal and their indices were thus added as maps
in the resultant ζ ′. Hence, we can deduce that Eq//dom(ζ ′) = Eq so that from (147) we can
conclude that

ζ ′ is a well-formed map for Eq

as required.

123

438 L. Aceto et al.

Case Eq′ ‰ ∅. Now, assume that

traverse(Eq′, I ,partition, ζ)=ζ ′ (148)

ζ is a well-formed map for Eq//dom(ζ) (149)

Eq′ ⊆ Eq (150)

and consider the following two subcases for the set of indices I .

– I = ∅ :I = ∅ :I = ∅ : Since I=∅, by (148) and the definition of traverse we know that ζ = ζ ′ and so
from (149) we can deduce that

ζ ′ is a well-formed map for Eq//dom(ζ ′). (151)

Since I=∅, this means that the traversal has reached a point where no more children can
be computed, which means that all the relevant equations (i.e., those reachable from the
principle variable) have been analysed. This means that any other equation in Eq (that is
not in Eq//dom(ζ ′), if any) is redundant and irrelevant. Hence, since from (151) we know
that ζ ′ is a well-formed map for the relevant subset of equations in Eq, i.e., Eq//dom(ζ ′),
then it is also well-formed for the full blown subset of equations Eq (i.e., including any
unreachable, redundant equations). Therefore, we can conclude that

ζ ′ is a well-formed map for Eq

as required.
– I‰∅ :I‰∅ :I‰∅ : By the definition of traverse and from (148) we can infer that

ζ ′′ = partition(Eq′, I , ζ) (152)

Eq′′ = Eq′ \ Eq′
//I (153)

I ′ = ⋃
j∈I

child(Eq′, j) (154)

traverse(Eq′′, I ′,partition, ζ ′′)=ζ ′ (155)

By (149) and the definition of a well-formed map, we know that ζ provides a set of
mappings which allow for:

• renaming the data variables of each pattern equivalent sibling necessi t y,
defined inEq//dom(ζ), to the same set of fresh variables.

(156)

• renaming any re f erence to a data variable that is bound by a renamed
parent necessi t y defined in Eq//dom(ζ)

(157)

and by the definition of partition from (152) we have that

123

On first-order runtime enforcement of branching-time properties 439

ζ ′′ = ζ
+++∪

⎧
⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

j �→ ζ(i)
+++∪ { f 1/d1, f 2/d2}

k �→ ζ(l)
+++∪ { f 1/e1, f 2/e2}

∀i, l ∈ I · Eq(i)=∧
j∈I ′

[(d1)$(d2), c j]X j∧ϕ′

and Eq(l)=∧
k∈I ′′

[(e1)$(e2), ck]Xk∧ϕ′′ s.t.

if (d1)$(d2), c j is patternequivalent to

(e1)$(e2), ck, then we assign the same

fresh variables f 1 and f 2.

⎫
⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎭

(158)

From (158) we know that ζ ′′ includes a mapping for each sibling branch that defines
a pattern equivalent SA. The added mappings map the child indices of the conjunction
branches (i.e., j, k∈I ′ since from (154) we know that I ′′ and I ′′′ are subsets of I ′) that
are defined by the equations identified by the parent indices (i.e., i∈I) specified in I , to
a substitution environment. This mapped substitution renames the resp. variable names
of these conjunct pattern equivalent sibling necessities, to the same fresh set of variable
names, thereby making the equivalent sibling patterns, syntactically equal. Hence, from
(156) we can deduce that ζ ′′ provides a set of mappings which allow for

• renaming the data variables of each pattern equivalent sibling necessi t y,
defined in Eq//dom(ζ)∪I ′ , to the same set of fresh variables.

(159)

Similarly, from (158) we also know that the mappings in ζ ′′ include the substitutions
performed upon the parent necessities. This means that in each mapping j �→ σ j , the
mapped substitution environment σ j also includes ζ(i) where i ∈ I is the parent index
of j ∈ I ′. Hence, from (157) we can deduce that the mappings provided by ζ ′′ also allow
for

• renaming any re f erence to a data variable that is bound by a renamed
parent necessi t y defined in Eq//dom(ζ)∪I ′ .

(160)

Hence, by (159), (160) and the definition of a well-formed map we can infer that

ζ ′′ is a well − f ormed map for Eq//dom(ζ)∪I ′ . (161)

From (158) we know that ζ ′′ includes a mapping for each child branch, identified by
j ∈ I ′′ and k ∈ I ′′′ (where I ′′ and I ′′′ are both subsets of I ′), that is defined in the equation
identified by index i ∈ I and which defines a pattern equivalent necessity. Hence, we
know that the domain of ζ ′′ is an extension of the domain of ζ which additionally contains
the child indices defined in I ′, such that we can deduce that dom(ζ ′′) = dom(ζ) ∪ I ′.
Hence, from (161) we can infer that

ζ ′′ is a well-formed map for Eq//dom(ζ ′′). (162)

Finally, since from (153) and (150) we have that Eq′′ ⊆ Eq, by (155), (162) and the
inductive hypothesis we can conclude that

ζ ′ is a well-formed map for Eq

as required, and so we are done.

��

123

440 L. Aceto et al.

A.3 Proving Lemma 9.

For every ζ map, and equation set Eq, if ζ is a well-formed map for Eq then uni(Eq, ζ)≡Eq
and every equation (Xk=ψk)∈ uni(Eq, ζ) is Uniform.

Proof for Lemma 9 We conduct this proof by induction on the structure of Eq.

Case Eq = ∅. This case holds trivially since Eq = ∅ = uni(∅, ζ).

Case Eq = {Xi=
∧

j∈I
[η j]ϕ j ∧ ϕ

} +++∪ Eq′. We start by assuming that

ζ is a well − f ormed map for Eq (163)

and so by (163) and the definition of a well-formed map we know that ζ provides a set of
mappings which allow for

• renaming the data variables of each pattern equivalent sibling necessi t y,
defined in Eq, to the same set of fresh variables.

(164)

• renaming any re f erence to a data variable that is bound by a renamed
parent necessi t y defined in Eq.

(165)

By applying the uni function on Eq and ζ we obtain

uni(
{
Xi=
∧

j∈I
[η j]ϕ j ∧ϕ

} +++∪ Eq′, ζ)

= {Xi=
∧

j∈I
[η jζ(j)]ϕ j ∧ ϕ

} +++∪ uni(Eq′, ζ)
. (166)

Now if we assume that η j defines an arbitrary pattern (d1)$(d2) (where d1 and d2 are newly
bound variables), along with some condition c j [d1, d2, em<i] whose evaluation depends on
d1, d2 and the values of m variables em<i that are bound by parent modal necessities. Hence,
from (164) we can deduce that mapping ζ(j) in (166) produces a substitution environment
which renames the data bindings d1 and d2 to some fresh variables f 1 and f 2, which are
the same for all the other conjunct sibling necessities that are pattern equivalent to η j . From
(165) we can also deduce that any reference being made to some variable em<i will also be
renamed accordingly by ζ(j). Hence, by the definition of a uniform equation, we can deduce
that

equation Xi=
∧

j∈I
[η j]ϕ j ∧ϕ is uniform. (167)

Moreover, from (164) and (165) we can deduce that equation Xi=
∧

j∈I
[η j]ϕ j ∧ϕ is

semantically equivalent to the equation reconstructed by the uni function in (166), i.e.,
Xi=
∧

j∈I
[η jζ(j)]ϕ j ∧ϕ. This holds since when the substitution environment, returned

by ζ(j), is applied to the equated formula, it only substitutes the variable names
in η j and so if η j has an arbitrary form (d1)$(d2), c j [d1, d2, em<i] this will become
(f 1)$(f 2), c j [f 1, f 2, f m<i].

Notice that the new pattern (f 1)$(f 2) is equivalent to the original one (d1)$(d2) since it
only varies by the name of the data variables it binds. The new condition c j [f 1, f 2, f m<i] is
also equivalent to c j [d1, d2, em<i] since by (165) we know that ζ(j) (where ζ(j) also contains

123

On first-order runtime enforcement of branching-time properties 441

ζ(i) where i is the parent of j) renames d1 and d2 to f 1 and f 2 and em<i to the variable names,
f m<i , bound by the renamed parent necessities. This preserves the semantics of the equation
by keeping it closed wrt. data variables. Hence, we can deduce

Xi=
∧

j∈I
[η j]ϕ j ∧ϕ

≡ Xi=
∧

j∈I
[(d1)$(d2), c j [d1, d2, em<i]]ϕ j ∧ ϕ

≡ Xi=
∧

j∈I
[(f 1)$(f 2), c j [f 1, f 2, f m<i]]ϕ j ∧ϕ

≡ Xi=
∧

j∈I
[(d1)$(d2), c j [d1, d2, em<i]ζ(j)]ϕ j ∧ϕ

≡ Xi=
∧

j∈I
[η jζ(j)]ϕ j ∧ ϕ.

(168)

Now since Eq′ ⊂ Eq from (163) we can infer that ζ is also a well-formed map for Eq′ which
allows us to apply the inductive hypothesis and deduce that

every equation (Xk=ψk) ∈ uni(Eq′, ζ) is uniform, and that (169)

uni(Eq′, ζ)≡Eq′. (170)

Hence, by (166), (169) and (167) we can conclude that

every equation (Xk=ψk) ∈ uni(Eq, ζ) is uni f orm (171)

and by (166), (170) and (168) we can conclude
{
Xi=
∧

j∈I
[η j]ϕ j ∧ϕ

} +++∪ Eq′ ≡ {Xi=
∧

j∈I
[η jζ(j)]ϕ j ∧ ϕ

} +++∪ uni(Eq′, ζ) (172)

as required, and so this case is done by (171) and (172). ��

A.4 Proving Lemma 11.

For every eqn. (X j=ϕ j)∈Eq, if X j=ϕ j isuniform then Eq≡traverse(Eq, {0}, cond_comb,∅)

and every eqn. (Xk=ψk) ∈ traverse(Eq, {0}, cond_comb,∅) is equi-disjoint.
The proof for Lemma 11 depends on Lemma 18. This new lemma states that one can obtain

an equi-disjoint equation set,ω′, that is semantically equivalent to the original equation set Eq,
by conducting a traversal upon a uniform subset of Eq (i.e., Eq′). This traversal is conducted
wrt. an equi-disjoint accumulator equation set ω, where ω must be semantically equivalent
to a subset of Eq that is restricted to the indices associated to the logical variables specified
by the domain of ω, i.e., ω ≡ Eq//domind(ω), where domind(ω)

def= { i Xi ∈ dom(ω) }.
Lemma 18 For every index set I , equi-disjoint set ω and equation sets Eq and Eq′, if
Eq′ ⊆ Eq and traverse(Eq′, I , cond_comb, ω)=ω′ and Eq//domind(ω)≡ω and every equa-
tion (X j=ϕ j)∈ Eq′ is uniform and every equation (Xk=ψk)∈ ω is equi-disjoint then every
equation (Xk=ψk)∈ ω′ is equi-disjoint and Eq ≡ω′.

We provide the proof for this lemma at the end of this section.

Proof for Lemma 11 Assume that

∀(X j=ϕ j) ∈ Eq · equation X j=ϕ j is uniform. (173)

123

442 L. Aceto et al.

By applying the traverse function on Eq starting from I={0} and ω=∅, we know that

traverse(Eq, {0}, cond_comb, ω) = ω′ (174)

and so since ω=∅, by the definition of Eq//I we have that Eq//dom(∅) = ∅ = ω which means
that we can also deduce that every equation (Xk=ψk) ∈ ω is equi-disjoint. With this new
information along with (173) and (174), we can use Lemma 18 to infer that

Eq ≡ ω′ and that every equation (Xk=ψk) ∈ ω′ is equi-disjoint

as required, and so we are done. ��
Proof for Lemma 18 We proceed by induction on the structure of I .

Case I = ∅ Let’s start by assuming that

Eq′ ⊆ Eq, (175)

traverse(Eq′,∅, cond_comb, ω)=ω′, (176)

Eq//domind(ω)≡ω, (177)

every equation (X j=ϕ j) ∈ Eq′ is uniform, and that (178)

every equation (Xk=ψk) ∈ ω is equi-disjoint. (179)

By (176) and the definition of traverse, we know that ω = ω′ and so from (177) and (179)
we can deduce that

every equation (Xk=ψk) ∈ ω′ is equi-disjoint (180)

Eq//domind(ω
′)≡ω′. (181)

Since I=∅, by the definition of traverse and (176) we know the traversal has reached a point
where no more children can be computed, which means that all the relevant equations (i.e.,
those reachable from the principle variable) have been analysed. This implies that any other
equation in Eq (if any) is redundant and irrelevant. Hence, since from (181) we know that the
equations in ω′ are equivalent to the relevant subset of equations in Eq, i.e., Eq//domind(ω

′),
and hence, we can conclude that

ω′ ≡ Eq (182)

as required, and so this case is done by (180) and (182).

Case I ‰∅. Let us now assume that

Eq′ ⊆ Eq (183)

traverse(Eq′, I , cond_comb, ω)=ω′ (184)

Eq//domind(ω)≡ω (185)

every equation (X j=ϕ j) ∈ Eq′ is uniform (186)

123

On first-order runtime enforcement of branching-time properties 443

every equation (Xk=ψk) ∈ ω is equi-disjoint (187)

and let’s proceed by case analysis on Eq′.

– Eq′ = ∅ : Since Eq′ = ∅, by (184) and the definition of traverse we know that ω = ω′
and so from (185) and (187) we can deduce that

Eq//domind(ω
′)≡ω′, and that (188)

every equation (Xk=ψk) ∈ ω′ is equi-disjoint. (189)

By (184) and the definition of traverse, we know that the traversal starts from the full
equation set, i.e., Eq′ = Eq, using an empty accumulator, i.e., ω=∅, that would eventually
contain the resultant equi-disjoint equation set. Every recursive application of the traverse
function is then performed wrt.: a smaller version Eq, i.e., Eq′=Eq\Eq//I , and a larger
accumulator ω′ containing the reformulated, equi-disjoint equations whose indices are
defined in I (and which where removed from Eq′). Hence, when Eq′ becomes ∅ it means
that domind(ω

′) = domind(Eq) and so by the definition of Eq//I we can deduce that
Eq//domind(ω) = Eq//domind(Eq) = Eq which means that from (188) we can conclude that

Eq ≡ ω′ (190)

as required, and so this case holds by (189) and (190).
– Eq′ ‰ ∅ : By (184) and the definition of traverse we have that

cond_comb(Eq′, I , ω)=ω′′ (191)

Eq′′ = Eq′ \ Eq′
//I (192)

I ′ =⋃
l∈I

child(Eq, l) (193)

traverse(Eq′′, I ′, cond_comb, ω′′) = ω′, (194)

By applying definition of cond_comb to (191), we deduce that

ω′′ = ω
+++∪

⎧
⎪⎪⎨

⎪⎪⎩

Xi=
∧

ck∈C(j,I ′)
[p, ck]X j∧ϕ(= ψi)

(Xi=
∧

j∈I ′′
[p, c j]X j∧ϕ)∈Eq//I

and I ′=⋃
l∈I

child(Eq, l)

such that I ′′ ⊆ I ′

⎫
⎪⎪⎬

⎪⎪⎭
. (195)

Now from (195) and the definition of C(j, I ′), we know that the conjunctions in the
reformulated equations (i.e., in every ψi) now include an additional branch for each
condition ck ∈ C(j, I ′) where ck is a compound condition, e.g., c0 ∧ c1 ∧ . . . ∧ cn or
c0 ∧ ¬c1 ∧ . . . ∧ ¬cn . These compound conditions consist in a truth combination of the
filtering conditions of the sibling SAs which specify syntactically equal patterns. This
is guaranteed since from (186) we know that the equations in Eq′ are uniform, meaning
that all sibling pattern equivalent SAs are guaranteed to be syntactically equal as well.
Hence, the reconstructed SAs in these new branches are unable to match the same con-
crete event α unless they are define the same pattern and condition. This is so as despite
their pattern being syntactically equal, only one compound filtering condition can at most
be satisfied by the matching concrete event α. Therefore, from (195) and the definition

123

444 L. Aceto et al.

of equi-disjoint, we can deduce that

every equation (Xk=ψk) ∈

⎧
⎪⎪⎨

⎪⎪⎩

Xi=
∧

ck∈C(j,I ′)
[p, ck]X j∧ϕ(= ψi)

(Xi=
∧

j∈I ′′
[p, c j]X j∧ϕ)∈Eq//I

and I ′=⋃
l∈I

child(Eq, l)

such that I ′′ ⊆ I ′

⎫
⎪⎪⎬

⎪⎪⎭

is equi-disjoint
(196)

which means that from (187), (195) and (196) we can conclude that

every equation (Xk=ψk) ∈ ω′′ is equi-disjoint (197)

as required. We also argue that the reconstructed equations in (195) (i.e., Xi=ψi) are
in fact semantically equivalent to the original ones (i.e., (Xi=ϕi)∈Eq//I), since when-
ever a guarded branch, [p, ci]Xi , is reconstructed into (possibly) multiple branches,
[p, ci∧c j . . .ck]Xi∧[p, ci∧¬c j . . .ck]Xi∧ . . . ∧[p, ci∧¬c j . . .¬ck]Xi , via the truth com-
bination function C(i, I ′), the condition, ci , of the original branch is never negated. This
guarantees that continuation Xi can only be reached when the original condition ci is
true, and thus preserves the original semantics of the branch. Therefore, we conclude
that

⎧
⎪⎪⎨

⎪⎪⎩

Xi=
∧

ck∈C(j,I ′)
[p, ck]X j∧ϕ(= ψi)

(Xi=
∧

j∈I ′′
[p, c j]X j∧ϕ)∈Eq//I

and I ′=⋃
l∈I

child(Eq, l)

such that I ′′ ⊆ I ′

⎫
⎪⎪⎬

⎪⎪⎭

≡ Eq//I

which means that from (185) and (195) we can infer that

Eq//domind(ω
′′) ≡ ω′′. (198)

Finally, since from (183) and (192) we know that Eq′′ ⊆ Eq, from (186) we can infer
that every equation (X j=ϕ j) ∈ Eq′′ is uniform. Hence, with this result along with (194),
(197) and (198) we can apply the inductive hypothesis and conclude that

Eq ≡ ω′ and that every equation (Xk=ψk) ∈ ω′ is equi-disjoint

as required, and so we are done.

��

BMissing proofs from Sect. 6

B.1 Proving Lemma 12

We need to prove that for every system s, sHML formula ϕ and trace t ∈ traces(s) when
s ∈ �ϕ� then sys(t) ∈ �ϕ�.

Proof Since when restricted to sHML s ∈ �ϕ� can be defined in terms of the coinductive

satisfaction rules of Fig. 4, we prove that R def=
{

(sys(t), ϕ)

∣
∣
∣ s � ϕ and t ∈ traces(s)

}
is a

satisfaction relation that follows the rules of Fig. 4. We proceed by case analysis on ϕ.

123

On first-order runtime enforcement of branching-time properties 445

Cases ϕ ∈ {ff, X
}
. These cases do not apply since s � ϕ when ϕ ∈ {ff, X

}
.

Case ϕ = tt. This case is satisfied trivially since ϕ = tt.

Case ϕ =∧i∈I ϕi . Assume that s �
∧

i∈I ϕi from which by the definition of � we have that
for every i ∈ I , s � ϕi and so by applying the definition of R for every i ∈ I we get that
∀i ∈ I · (sys(t), ϕi) ∈ R as required.

Case ϕ = max X .ϕ. Assume that s � max X .ϕ from which by the definition of �
we have that s � ϕ{max X .ϕ/X} and so by applying the definition of R we get that
(sys(t), ϕ{max X .ϕ/X}) ∈ R as required.

Case ϕ = [p, c]ϕ Assume that

t ∈ traces(s) (199)

and that s � [p, c]ϕ from which by the definition of � we have that

s
α	⇒ s′ (200)

mtch(p, α) = σ and cσ ⇓ true (201)

s′ � ϕσ. (202)

Since from (200) we know that s transitions to s’ over α, from (199) we can infer that
αt ′ ∈ traces(s) where t ′ ∈ traces(s′) which means that by (202) and the definition of R we
have that

(sys(t ′), ϕσ) ∈ R. (203)

Therefore, this case holds by (201), (203) and since sys(αt ′) α	⇒ sys(t ′) and so we are done.
��

B.2 Proving Lemma 13

We need to prove that for every system transition s
α	⇒ s′ and sHML formula ϕ, if s ∈ �ϕ�

then s′ ∈ �afterϕ(ϕ, α)�. We prove the contrapositive, i.e., if s
α	⇒ s′ and s′ /∈ �afterϕ(ϕ, α)�

then s /∈ �ϕ�.

Proof We proceed by rule induction on afterϕ .

Case afterϕ(ff, α). This case holds trivially since s /∈ �ff�.

Case afterϕ(tt, α). This case does not apply since afterϕ(tt, α) = tt and so the assumption
that s′ /∈ �afterϕ(tt, α)� is invalid.

Case afterϕ(
∧

i∈I ϕi , α). Assume that

s
α	⇒ s′ (204)

and that s′ /∈ �afterϕ(
∧

i∈I ϕi , α)� from which by the definition of afterϕ we have that

s′ /∈ �
∧

i∈I
afterϕ(ϕi , α)� ≡ ∃ j ∈ I · s′ /∈ �afterϕ(ϕ j , α)�. (205)

123

446 L. Aceto et al.

Hence, by (204) and (205) we can apply the inductive hypothesis and deduce that there exists
a j ∈ I such that s /∈ �ϕ j � which means that s /∈⋂i∈I �ϕi � = �

∧
i∈I ϕi � as required.

Case afterϕ(max X .ϕ, α). Assume that

s
α	⇒ s′ (206)

and that s′ /∈ �afterϕ(max X .ϕ, α)� from which by the definition of afterϕ we have that

s′ /∈ �afterϕ(ϕ{max X .ϕ/X}, α)� (207)

and since by (206), (207) and the inductive hypothesis we have that s /∈ �ϕ{max X .ϕ/X}�
and �ϕ{max X .ϕ/X}� = �max X .ϕ� we can conclude that s /∈ �max X .ϕ� as required.

Case afterϕ([p, c]ϕ, α). Assume that

s
α	⇒ s′ (208)

s′ /∈ �afterϕ([p, c]ϕ, α)�. (209)

Now consider the following two cases:

– mtch(p, α) = σ and cσ ⇓ true: By (209) and the definition of afterϕ we know that

s′ /∈ �ϕσ � (210)

and so from (208), (210) and by the definition of �−� we can infer that s /∈ �[p, c]ϕ�

since there exists a transition, i.e., (208), that leads to a violation, i.e., (210).
– Otherwise: This case does not apply since afterϕ([p, c]ϕ, α) = tt which contradicts

assumption (209).

��

B.3 Proving Lemma 14

We need to prove that for every action α, sHML formula ϕ and trace t , if sys(t) ∈
�afterϕ(ϕ, α)� then sys(αt) ∈ �ϕ�.

Proof We proceed by rule induction on afterϕ .

Case afterϕ(ff, α). This case does not apply since afterϕ(ff, α) = ff and so the assumption
that sys(t) ∈ �afterϕ(ff, α)� is invalid.

Case afterϕ(tt, α). This case holds trivially since sys(αt) ∈ �tt�.

Case afterϕ(
∧

i∈I ϕi , α). Assume that sys(t) ∈ �afterϕ(
∧

i∈I ϕi , α)� from which by the
definition of afterϕ we have that

sys(t) ∈ �
∧

i∈I afterϕ(ϕi , α)� ≡ ∀i ∈ I · sys(t) ∈ �afterϕ(ϕi , α)�. (211)

Hence, knowing (211) we can apply the inductive hypothesis for every i ∈ I and deduce that
sys(αt) ∈ �ϕi � which means that sys(αt) ∈⋂i∈I �ϕi � = �

∧
i∈I ϕi � as required.

Case afterϕ(max X .ϕ, α). Assume that sys(t) ∈ �afterϕ(max X .ϕ, α)� from which by the
definition of afterϕ we know that

sys(t) ∈ �afterϕ(ϕ{max X .ϕ/X}, α)� (212)

123

On first-order runtime enforcement of branching-time properties 447

and since by (212) and the inductive hypothesis we have that sys(αt) ∈ �ϕ{max X .ϕ/X}�
and �ϕ{max X .ϕ/X}� = �max X .ϕ� we can conclude that sys(αt) ∈ �max X .ϕ� as required.

Case afterϕ([p, c]ϕ, α). Assume that

sys(t) ∈ �afterϕ([p, c]ϕ, α)� (213)

and consider the following two cases:

– mtch(p, α) = σ and cσ ⇓ true: By (213) and the definition of afterϕ we have that

sys(t) ∈ �ϕσ �. (214)

Since sys(αt) is a trace process that can only perform α and transition to sys(t), i.e.,
sys(αt)

α	⇒ sys(t), and since from (214) we know that sys(t) satisfies ϕσ , by the definition
of �−� we can thus conclude that sys(αt) ∈ �[p, c]ϕ� as required.

– Otherwise: This case is trivially satisfied since knowing that sys(αt)
α	⇒ sys(t) and that

mtch(p, α) = undef or c ⇓ ff, by the definition of �−� we can immediately conclude
that sys(αt) ∈ �[p, c]ϕ� as required.

References

1. Francalanza, A.: A theory of monitors. Inf. Comput. 281, 104704 (2021). https://doi.org/10.1016/j.ic.
2021.104704

2. Schneider, F.B.: Enforceable security policies. ACM Trans. Inf. Syst. Secur. (TISSEC) 3(1), 30–50 (2000)
3. Francalanza, A., Aceto, L., Achilleos, A., Attard, D.P., Cassar, I., Della Monica, D., Ingólfsdóttir, A.:

A foundation for runtime monitoring. In: Lahiri, S., Reger, G. (eds.) Runtime Verification, pp. 8–29.
Springer, Cham (2017)

4. Ligatti, J., Bauer, L., Walker, D.: Edit automata: enforcement mechanisms for run-time security policies.
Int. J. Inf. Secur. 4(1), 2–16 (2005)

5. Ligatti, J., Reddy, S.: A theory of runtime enforcement, with results. In: Gritzalis, D., Preneel, B., Theo-
haridou, M. (eds.) CESORICS, pp. 87–100. Springer, Berlin (2010)

6. Falcone, Y., Mounier, L., Fernandez, J.-C., Richier, J.-L.: Runtime enforcement monitors: composition,
synthesis, and enforcement abilities. Formal Methods Syst. Des. 38(3), 223–262 (2011)

7. Berstel, J., Boasson, L.: Transductions and context-free languages. Ed. Teubner, pp. 1–278 (1979)
8. Sakarovitch, J.: Elements of Automata Theory. Cambridge University Press, New York (2009)
9. Alur, R., Černý, P.: Streaming transducers for algorithmic verification of single-pass list-processing

programs. In: Proceedings of the 38th Annual ACM SIGPLAN-SIGACT Symposium on Principles of
Programming Languages, pp. 599–610. ACM, ISBN 978-1-4503-0490-0 (2011)

10. Könighofer, B., Alshiekh, M., Bloem, R., Humphrey, L., Könighofer, R., Topcu, U., Wang, C.: Shield
synthesis. Formal Methods Syst. Des. 51(2), 332–361 (2017)

11. Francalanza, A., Aceto, L., Ingólfsdóttir, A.: Monitorability for the Hennessy–Milner logic with recursion.
Formal Methods Syst. Des. 51(1), 87–116 (2017)

12. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: Monitoring for silent actions. In: Lokam, S.,
Ramanujam, R. (eds.) FSTTCS 2017: Foundations of Software Technology and Theoretical Computer
Science, volume 93 of LIPIcs, p. 7:1-7:14. Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl
(2018)

13. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A.: A framework for parameterized monitorability.
In: Baier, C., Dal Lago, U. (eds.) Foundations of Software Science and Computation Structures, pp. 203–
220. Springer, Cham (2018)

14. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On bidirectional runtime enforcement. In: Peters,
K., Willemse, T.A.C. (eds.) FORTE, volume 12719 of Lecture Notes in Computer Science, pp. 3–21.
Springer, Cham (2021)

15. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: Comparing controlled system synthesis and
suppression enforcement. Int. J. Softw. Tools Technol. Transf. 23(4), 601–614 (2021)

16. Burlò, C.B., Francalanza, A., Scalas, A.: On the monitorability of session types, in theory and practice. In:
Møller, A., Sridharan, M. (eds.) 35th European Conference on Object-Oriented Programming, ECOOP

123

https://doi.org/10.1016/j.ic.2021.104704
https://doi.org/10.1016/j.ic.2021.104704

448 L. Aceto et al.

2021, July 11–17, 2021, Aarhus, Denmark (Virtual Conference), volume 194 of LIPIcs, p. 20:1-20:30.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstuhl (2021)

17. Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M.R., Pasareanu, C.S., Rosu,
G., Sen, K., Visser, W., Washington, R.: Combining test case generation and runtime verification. Theoret.
Comput. Sci. 336(2–3), 209–234 (2005)

18. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime verification for safe robotics.
In: Lahiri, S., Reger, G. (eds.) Runtime Verification (RV), LNCS, pp. 172–189. Springer, Cham (2017)

19. Bocchi, L., Chen, T.-C., Demangeon, R., Honda, K., Yoshida, N.: Monitoring networks through multiparty
session types. Theor. Comput. Sci. 669, 33–58 (2017)

20. Jia, L., Gommerstadt, H., Pfenning, F.: Monitors and blame assignment for higher-order session types. In:
Proceedings of the 43rd Annual ACM SIGPLAN-SIGACT Symposium on Principles of Programming
Languages. ACM, New York, pp. 582–594 (2016)

21. Ferrando, A., Dennis, L.A., Ancona, D., Fisher, M., Mascardi, V.: Verifying and validating autonomous
systems: towards an integrated approach. In: Colombo, C., Leucker, M. (eds.) Runtime Verification—18th
International Conference, RV 2018, volume 11237 of Lecture Notes in Computer Science, pp. 263–281.
Springer, Cham (2018). https://doi.org/10.1007/978-3-030-03769-7_15

22. Kejstová, K., Ročkai, P., Barnat, J.: From model checking to runtime verification and back. In: Lahiri, S.,
Reger, G. (eds.) Runtime Verification RV 2017. Springer, Cham (2017)

23. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Adventures in monitorability:
from branching to linear time and back again. Proc. ACM Program. Lang. 3, 52:1-52:29 (2019). https://
doi.org/10.1145/3290365

24. Chang, E., Manna, Z., Pnueli, A.: The safety-progress classification. In: Bauer, F.L., et al. (eds.) Logic
and Algebra of Specification, pp. 143–202. Springer, Berlin (1993)

25. Pnueli, A., Zaks, A.: PSL model checking and run-time verification via testers. In: Misra, J., Nipkow, T.,
Sekerinski, E. (eds.) International Symposium on Formal Methods, pp. 573–586. Springer, Berlin (2006)

26. Francalanza, A., Cini, C.: Computer says no: verdict explainability for runtime monitors using a local
proof system. J. Log. Algebraic Methods Program. 119, 100636 (2021). https://doi.org/10.1016/j.jlamp.
2020.100636

27. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: The best a monitor can do. In:
Baier, C., Goubault-Larrecq, J. (eds.) 29th EACSL Annual Conference on Computer Science Logic, CSL
2021, January 25–28, 2021, Ljubljana, Slovenia (Virtual Conference), volume 183 of LIPIcs, p. 7:1-7:23.
Schloss Dagstuhl - Leibniz-Zentrum für Informatik, Dagstu (2021). https://doi.org/10.4230/LIPIcs.CSL.
2021.7

28. Falcone, Y., Fernandez, J.-C., Mounier, L.: What can you verify and enforce at runtime? Int. J. Softw.
Tools Technol. Transf. 14(3), 349 (2012)

29. Kozen, D.C.: Results on the propositional μ-calculus. Theoret. Comput. Sci. 27, 333–354 (1983)
30. Larsen, K.G.: Proof systems for satisfiability in Hennessy–Milner logic with recursion. Theor. Comput.

Sci. 72(2), 265–288 (1990)
31. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons using branching time

temporal logic. In: Kozen, D. (ed.) 25 Years of Model Checking, pp. 196–215. Springer, Berlin (2008)
32. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: An operational guide to moni-

torability with applications to regular properties. Softw. Syst. Model. 20(2), 335–361 (2021). https://doi.
org/10.1007/s10270-020-00860-z

33. Bauer, A., Leucker, M., Schallhart, C.: The good, the bad, and the ugly, but how ugly is ugly? In:
Sokolsky, O., Tasiran, S. (eds.) International Workshop on Runtime Verification, pp. 126–138. Springer,
Berlin (2007)

34. Artho, C., Barringer, H., Goldberg, A., Havelund, K., Khurshid, S., Lowry, M.R., Pasareanu, C.S., Rosu,
G., Sen, K., Visser, W., Washington, R.: Combining test case generation and runtime verification. Theor.
Comput. Sci. 336(2–3), 209–234 (2005)

35. Leucker, M.: Sliding between model checking and runtime verification. In: Qadeer, S., Tasiran, S. (eds.)
RV, volume 7687 of Lecture Notes in Computer Science, pp. 82–87. Springer, Berlin (2012)

36. Decker, N., Leucker, M., Thoma, D.: junitrv-adding runtime verification to junit. In: Brat, G., Rungta,
N., Venet, A. (eds.) NASA Formal Methods, volume 7871 of Lecture Notes in Computer Science, pp.
459–464. Springer, Berlin (2013)

37. Desai, A., Dreossi, T., Seshia, S.A.: Combining model checking and runtime verification for safe robotics.
In: Lahiri, S., Reger, G. (eds.) RV, volume 10548 of Lecture Notes in Computer Science, pp. 172–189.
Springer, Cham (2017)

38. Kejstová, K., Rockai, P., Barnat, J.: From model checking to runtime verification and back. In: Lahiri, S.,
Reger, G. (eds.) RV, volume 10548 of Lecture Notes in Computer Science, pp. 225–240. Springer, Cham
(2017)

123

https://doi.org/10.1007/978-3-030-03769-7_15
https://doi.org/10.1145/3290365
https://doi.org/10.1145/3290365
https://doi.org/10.1016/j.jlamp.2020.100636
https://doi.org/10.1016/j.jlamp.2020.100636
https://doi.org/10.4230/LIPIcs.CSL.2021.7
https://doi.org/10.4230/LIPIcs.CSL.2021.7
https://doi.org/10.1007/s10270-020-00860-z
https://doi.org/10.1007/s10270-020-00860-z

On first-order runtime enforcement of branching-time properties 449

39. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Testing equivalence vs. runtime
monitoring. In: Boreale, M., Corradini, F., Loreti, M., Pugliese, R. (eds.) Models, Languages, and Tools
for Concurrent and Distributed Programming, volume 11665 of Lecture Notes in Computer Science, pp.
28–44. Springer, Berlin (2019)

40. Monica, D.D, Francalanza, A.L.: Pushing runtime verification to the limit: may process semantics be with
us. In: OVERLAY@AI*IA, volume 2509 of CEUR Workshop Proceedings, pp. 47–52. CEUR-WS.org
(2019)

41. Havelund, K., Peled, D.: Bdds for representing data in runtime verification. In: Deshmukh, J., Nickovic,
D. (eds.) RV, volume 12399 of Lecture Notes in Computer Science, pp. 107–128. Springer, Cham (2020)

42. Guzmán, M., Riganelli, O., Micucci, D., Mariani, L.: Test4enforcers: test case generation for software
enforcers. In: Deshmukh, J., Nickovic, D. (eds.) RV, volume 12399 of Lecture Notes in Computer Science,
pp. 279–297. Springer, Cham (2020)

43. Burlò, C.B., Francalanza, A., Scalas, A.: Towards a hybrid verification methodology for communication
protocols (short paper). In: Gotsman, A., Sokolova, A. (eds.) FORTE, volume 12136 of Lecture Notes in
Computer Science, pp. 227–235. Springer, Cham (2020)

44. Shijubo, J., Waga, M., Suenaga, K.: Efficient black-box checking via model checking with strengthened
specifications. In: Feng, L., Fisman, D. (eds.) RV, volume 12974 of Lecture Notes in Computer Science,
pp. 100–120. Springer, Cham (2021)

45. Martinelli, F., Matteucci, I.: Partial model checking, process algebra operators and satisfiability procedures
for (automatically) enforcing security properties. In: Foundations of Computer Security. Citeseer, pp.
133–144 (2005)

46. Andersen, H.R.: Partial model checking. In: Proceedings of Tenth Annual IEEE Symposium on Logic in
Computer Science. IEEE, pp. 398–407 (1995)

47. Lang, F., Mateescu, R.: Partial model checking using networks of labelled transition systems and Boolean
equation systems. In: Flanagan, C., König, B. (eds.) TACAS, pp. 141–156. Springer, Berlin (2012)

48. Attard, D.P., Francalanza, A.: A monitoring tool for a branching-time logic. In: Falcone, Y., Sanchez, C.
(eds.) Runtime Verification, pp. 473–481. Springer, Cham (2016)

49. Attard, D.P., Cassar, I., Francalanza, A., Aceto, L., Ingolfsdottir, A.: A Runtime Monitoring Tool for
Actor-Based Systems, pp. 49–74. River Publishers, Aalborg (2017)

50. Francalanza, A., Xuereb, J.: On implementing symbolic controllability. In: Bliudze, S., Bocchi, L. (eds.)
COORDINATION, volume 12134 of Lecture Notes in Computer Science, pp. 350–369. Springer, Cham
(2020)

51. Attard, D.P., Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Lehtinen, K.: Better late than
never or: verifying asynchronous components at runtime. In: Peters, K., Willemse, T.A.C. (eds.) For-
mal Techniques for Distributed Objects, Components, and Systems—41st IFIP WG 6.1 International
Conference, FORTE 2021, Held as Part of the 16th International Federated Conference on Distributed
Computing Techniques, DisCoTec 2021, Valletta, Malta, June 14–18, 2021, Proceedings, volume 12719
of Lecture Notes in Computer Science, pp. 207–225. Springer, Cham (2021). https://doi.org/10.1007/
978-3-030-78089-0_14

52. Achilleos, A., Exibard, L., Francalanza, A., Lehtinen, K., Xuereb, J.: A synthesis tool for optimal monitors
in a branching-time setting. In: ter Beek, M.H., Sirjani, M. (eds.) COORDINATION, volume 13271 of
Lecture Notes in Computer Science, pp. 181–199. Springer, Cham (2022)

53. Aceto, L., Achilleos, A., Attard, D.P., Exibard, L., Francalanza, A., Ingólfsdóttir, A.: A monitoring tool
for linear-time μhml. In: ter Beek, M.H., Sirjani, M. (eds.) COORDINATION, volume 13271 of Lecture
Notes in Computer Science, pp. 200–219. Springer, Cham (2022)

54. Aceto, L., Cassar, I., Francalanza, A., Ingólfsdóttir, A.: On runtime enforcement via suppressions. In:
29th International Conference on Concurrency Theory, CONCUR 2018, September 4–7, 2018, Beijing,
China, pp. 34:1–34:17 (2018). https://doi.org/10.4230/LIPIcs.CONCUR.2018.34

55. Milner, R., Parrow, J., Walker, D.: A calculus of mobile processes. I. Inf. Comput. 100(1), 1–40 (1992)
56. Sangiorgi, D.: Introduction to Bisimulation and Coinduction. Cambridge University Press, New York

(2011)
57. Aceto, L., Ingólfsdóttir, A., Larsen, K.G., Srba, J.: Reactive Systems: Modelling, Specification and Veri-

fication. Cambridge University Press, New York (2007)
58. Hennessy, M., Milner, R.: Algebraic laws for nondeterminism and concurrency. J. ACM 32(1), 137–161

(1985)
59. Stirling, C.: Handbook of logic in computer science, vol. 2. Modal and Temporal Logics, pp. 477–563.

Oxford University Press, Inc., New York (1992)
60. Stirling, C.: Model checking and other games. In: Notes for Mathfit Workshop on Finite Model Theory.

University of Wales, Swansea (1996)

123

https://doi.org/10.1007/978-3-030-78089-0_14
https://doi.org/10.1007/978-3-030-78089-0_14
https://doi.org/10.4230/LIPIcs.CONCUR.2018.34

450 L. Aceto et al.

61. Francalanza, A.: A Theory of Monitors (extended abstract). In: International Conference on Foundations
of Software Science and Computation Structures. Springer, pp. 145–161 (2016)

62. Francalanza, A.: Consistently-detecting monitors. In: 28th International Conference on Concurrency The-
ory (CONCUR 2017), volume 85 of Leibniz International Proceedings in Informatics (LIPIcs). Schloss
Dagstuhl–Leibniz-Zentrum fuer Informatik, Dagstuhl, pp. 8:1–8:19 (2017)

63. d’Amorim, M., Roşu, G.: Efficient monitoring of ω-languages. In: CAV, pp. 364–378 (2005)
64. Wolff, E.M., Topcu, U., Murray, R.M.: Efficient reactive controller synthesis for a fragment of linear

temporal logic. In: 2013 IEEE International Conference on Robotics and Automation, pp. 5033–5040,
May (2013). https://doi.org/10.1109/ICRA.2013.6631296

65. Dolzhenko, E., Ligatti, J., Reddy, S.: Modeling runtime enforcement with mandatory results automata.
Int. J. Inf. Secur. 14(1), 47–60 (2015). https://doi.org/10.1007/s10207-014-0239-8

66. Debois, S., Hildebrandt, T., Slaats, T.: Safety, liveness and run-time refinement for modular process-aware
information systems with dynamic sub processes. In: Bjørner, N., de Boer, F. (eds.) FM 2015: Formal
Methods, pp. 143–160. Springer, Cham (2015)

67. Aceto, L., Achilleos, A., Francalanza, A., Ingólfsdóttir, A., Kjartansson, S.Ö.: Determinizing monitors
for HML with recursion. J. Log. Algebraic Methods Program. 111, 100515 (2020). https://doi.org/10.
1016/j.jlamp.2019.100515

68. van Hulst, A.C., Reniers, M.A., Fokkink, W.J.: Maximally permissive controlled system synthesis for
non-determinism and modal logic. Discrete Event Dyn. Syst. 27(1), 109–142 (2017)

69. Milner, R.: Communication and Concurrency. PHI Series in Computer Science, Prentice Hall, Upper
Saddle River (1989)

70. Bielova, N., Massacci, F.: Predictability of enforcement. In: Erlingsson, U., Wieringa, R., Zannone, N.
(eds.) International Symposium on Engineering Secure Software and Systems, pp. 73–86. Springer, Berlin
(2011)

71. Attard, D.P., Francalanza, A.: Trace partitioning and local monitoring for asynchronous components. In:
Cimatti, A., Sirjani, M. (eds.) Software Engineering and Formal Methods—15th International Confer-
ence, SEFM 2017, Trento, Italy, September 4–8, 2017, Proceedings, volume 10469 of Lecture Notes
in Computer Science, pp. 219–235. Springer, Cham (2017). https://doi.org/10.1007/978-3-319-66197-
1_14

72. Aceto, L., Attard, D.P., Francalanza, A., Ingólfsdóttir, A.: On benchmarking for concurrent runtime
verification. In: Guerra, E., Stoelinga, M. (eds.) Fundamental Approaches to Software Engineering—
24th International Conference, FASE 2021, Held as Part of the European Joint Conferences on Theory
and Practice of Software, ETAPS 2021, Luxembourg City, Luxembourg, March 27–April 1 (2021),
Proceedings, volume 12649 of Lecture Notes in Computer Science, pp. 3–23. Springer, Cham (2021).
https://doi.org/10.1007/978-3-030-71500-7_1

73. Aceto, L., Ingólfsdóttir, A.: Testing Hennessy–Milner logic with recursion. In: Thomas, W. (ed.) Foun-
dations of Software Science and Computation Structures, pp. 41–55. Springer, Berlin (1999)

74. Rabinovich, A.M.: A complete axiomatisation for trace congruence of finite state behaviors. In: Brookes,
S., Main, M., Melton, A., Mislove, M., Schmidt, D. (eds.) Proceedings of the 9th International Conference
on Mathematical Foundations of Programming Semantics, pp. 530–543. Springer, London (1994)

75. Bielova, N.: A theory of constructive and predictable runtime enforcement mechanisms. Ph.D. Thesis,
University of Trento (2011)

76. Pnueli, Z.M.A.: A hierarchy of temporal properties. In: Proceedings of the 2nd Symposium. ACM of
Principle Of Distributed Computer (1990)

77. Pinisetty, S., Falcone, Y., Jéron, T., Marchand, H.: Runtime enforcement of parametric timed properties
with practical applications. In: IEEE International Workshop on Discrete Event Systems, Cachan, France,
May, pp. 46–53 (2014)

78. Pinisetty, S., Roop, P.S., Smyth, S., Tripakis, S., von Hanxleden, R.: Runtime enforcement of reactive
systems using synchronous enforcers. CoRR, arxiv:1612.05030 (2016)

79. Pinisetty, S., Roop, P.S., Smyth, S., Allen, N., Tripakis, S., Hanxleden, R.V.: Runtime enforcement of
cyber-physical systems. ACM Trans. Embed. Comput. Syst. 16(5), 178:1-178:25 (2017)

80. Lanotte, R., Merro, M., Munteanu, A.: Runtime enforcement for control system security. In: 33rd IEEE
Computer Security Foundations Symposium, CSF 2020, Boston, MA, USA, June 22–26, 2020. IEEE,
pp. 246–261 (2020). https://doi.org/10.1109/CSF49147.2020.00025

81. Martinelli, F., Matteucci, I.: Through modeling to synthesis of security automata. Electron. Not. Theor.
Comput. Sci. 179, 31–46 (2006)

82. Martinelli, F., Matteucci, I.: An approach for the specification, verification and synthesis of secure systems.
Electron. Not. Theor. Comput. Sci. 168, 29–43 (2007)

83. Castellani, I., Dezani-Ciancaglini, M., Pérez, J.A.: Self-adaptation and secure information flow in multi-
party communications. Formal Asp. Comput. 28 (4): 669-696 (2016)

123

https://doi.org/10.1109/ICRA.2013.6631296
https://doi.org/10.1007/s10207-014-0239-8
https://doi.org/10.1016/j.jlamp.2019.100515
https://doi.org/10.1016/j.jlamp.2019.100515
https://doi.org/10.1007/978-3-319-66197-1_14
https://doi.org/10.1007/978-3-319-66197-1_14
https://doi.org/10.1007/978-3-030-71500-7_1
http://arxiv.org/abs/1612.05030
https://doi.org/10.1109/CSF49147.2020.00025

On first-order runtime enforcement of branching-time properties 451

84. Cassar, I., Francalanza, A.: On implementing a monitor-oriented programming framework for actor sys-
tems. In: Abraham, E., Huisman, M. (eds.) International Conference on Integrated Formal Methods, pp.
176–192. Springer, Cham (2016)

85. Francalanza, A., Seychell, A.: Synthesising correct concurrent runtime monitors (extended abstract). In:
Legay, A., Bensalem, S. (eds.) RV, volume 8174 of Lecture Notes in Computer Science, vol. 8174, pp.
112–129. Springer, Cham (2013)

Publisher’s Note Springer Nature remains neutral with regard to jurisdictional claims in published maps and
institutional affiliations.

Springer Nature or its licensor (e.g. a society or other partner) holds exclusive rights to this article under
a publishing agreement with the author(s) or other rightsholder(s); author self-archiving of the accepted
manuscript version of this article is solely governed by the terms of such publishing agreement and applicable
law.

123

	On first-order runtime enforcement of branching-time properties
	Abstract
	1 Introduction
	2 Preliminaries
	3 An operational model for enforcement
	4 Enforcement and enforceability
	5 Synthesising suppression monitors
	5.1 The synthesis function
	5.2 The normalisation algorithm
	5.3 Reconstructing sHML into sHMLnf wrt. singleton symbolic actions
	5.3.1 Unguarded fixpoint variable removal
	5.3.2 Equation construction
	5.3.3 Powerset construction
	5.3.4 Formula reconstruction
	5.3.5 Removing redundant fixpoints

	5.4 Reconstructing sHML into sHMLnf wrt. any symbolic action
	5.4.1 Additional steps for normalising necessities defining symbolic actions
	5.4.2 Uniformity of symbolic actions
	5.4.3 Condition reformulation of sibling symbolic actions

	6 Restricting weak enforcement to sHML
	7 Conclusion
	A Missing proofs from Sect.5.2
	A.1 Proving Lemma 6
	A.2 Proving Lemma 8.
	A.3 Proving Lemma 9.
	A.4 Proving Lemma 11.

	B Missing proofs from Sect.6
	B.1 Proving Lemma 12
	B.2 Proving Lemma 13
	B.3 Proving Lemma 14

	References

