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The role of perceptual feature sampling in speeded matching and recognition was explored in 4
experiments. Experiments 1–3 involved a perceptual matching task with pictures of various objects and
scenes. In Experiments 2 and 3, same–different judgments were given under time pressure. The main
objective of the matching task was to obtain measures of the perceptual processing rates of different
object features. Experiment 4 was an old–new recognition experiment, in which the same stimuli as those
in the matching task were used. Response signals were used to limit processing time in the recognition
task. The results demonstrated that it is possible to predict speeded recognition performance from
performance in perceptual matching. A simple stochastic feature-sampling model provides a unified
account of the data from the 4 experiments.

The ability to classify perceived objects as familiar or unfamiliar
is an essential component of cognition. When people perceive an
object, they have a remarkable ability to decide very rapidly
whether they have encountered the object before. It is not surpris-
ing, therefore, that old–new recognition memory has become a
central topic in experimental psychology. Many aspects of recog-
nition memory are well understood, and current theories of recog-
nition explain a wide range of empirical findings.

Even without a detailed conceptual analysis, it is clear that
recognition must involve at least three process components. The
first is perceptual processing of stimulus information. Stimulus
information must be acquired first, to support further processing.
This acquisition process is often represented as an information-
accumulation process (e.g., Brockdorff & Lamberts, 2000;
Bundesen, 1990; Busey & Loftus, 1994, 1998; Lamberts, 1995,
2000; Loftus & McLean, 1999). Second, information must be
retrieved from memory. This component is the focus of most
recognition theories, which differ in their assumptions about the
form of stored information and the mechanisms of retrieval. Fi-
nally, an old–new decision must be made, based on the perceived
stimulus information and the information retrieved from memory.

In studying the role of these component processes, mapping the
time course of processing in recognition is particularly relevant.
Recognition response times have been studied extensively (e.g.,
Ratcliff, 1978), providing valuable information about the time
course of retrieval and decision making. In other experiments,
response signals or response deadlines have been used to limit the
processing time on individual recognition trials (e.g., Brockdorff &

Lamberts, 2000; Dosher & Rosedale, 1991; Gronlund & Ratcliff,
1989; Hintzman & Curran, 1994; Rotello & Heit, 1999). The
effects of time pressure on the proportions of “old” responses (or
on some derived measure, such as d�) provide important informa-
tion about the availability of different kinds of information after
varying amounts of processing time.

In a recent article (Brockdorff & Lamberts, 2000), we have
argued that recognition response patterns at different deadlines or
signal intervals may reflect the accumulation of perceptual infor-
mation about the test stimulus rather than the time course of
retrieval or decision making. We proposed a model of old–new
recognition, called the feature-sampling theory of recognition
(FESTHER), which provides a detailed account of the response
patterns in a wide range of recognition experiments with response
deadlines. FESTHER is based on the extended generalized context
model of categorization (EGCM; Lamberts, 1995, 1998, 2000;
Lamberts & Brockdorff, 1997; Lamberts & Freeman, 1999), which
is derived from Nosofsky’s (1986, 1988, 1991) generalized context
model.

FESTHER is an exemplar model of recognition memory (see
also Estes, 1994; Nosofsky, 1988, 1991). It is assumed that each
stimulus in a study set leaves a distinct trace in memory, and that
subsequent recognition judgments are based on the total similarity
of a stimulus to the traces in memory. In FESTHER, it is further
assumed that the earliest stages of recognition involve the con-
struction of a perceptual stimulus representation through a process
of stochastic feature sampling. The time course of this perceptual
process is assumed to be crucial for understanding results on
recognition under time pressure. When a stimulus is presented, its
features are processed in a parallel, independent fashion (see
Lamberts & Freeman, 1999). The time needed for processing each
feature is a random variable, and some features tend to be pro-
cessed faster than others. The probability that a given stimulus
dimension p has been processed at or before a given time t after the
start of processing is given by an exponential distribution function:

ip�t� � 1 � exp��qpt�, (1)

where qp is the processing rate of dimension p. The probability that
any given dimension has been processed increases with processing
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time. Each processed feature is integrated into the current percep-
tual representation of the stimulus. This representation thus be-
comes more complete as more features are processed. Whenever a
feature is processed, the similarity of the current stimulus repre-
sentation to the traces in memory changes (see Brockdorff &
Lamberts, 2000), and these changes determine the probability that
the stimulus will be recognized.

In experiments with response signals or response deadlines,
responses may have to be initiated before stimulus processing is
complete (i.e., before all stimulus features have been processed).
In other studies (Lamberts, 1995, 1998, 2000, 2002; Lamberts &
Brockdorff, 1997; Lamberts & Freeman, 1999), we have shown
that a similar principle explains a wide range of results on timing
effects in categorization. In FESTHER, it is assumed that the
recognition functions in experiments with response signals also
reflect the time course of feature sampling. Brockdorff and Lam-
berts (2000) have shown that FESTHER can provide accurate
accounts of the response patterns for individual stimuli in a num-
ber of recognition experiments in which artificial objects and
words were used as the stimuli and unpredictable response signals
were used to limit processing time. The response patterns were
often complex in the sense that the response proportions did not
always vary monotonically as a function of available processing
time. The model’s feature-sampling assumptions proved sufficient
to reproduce these complex patterns.

Among process models of recognition memory, FESTHER is
quite unique in predicting a strong link between the time course of
perception and the time course of recognition (although Loftus &
McLean, 1999, have made a related proposal, which we discuss in
detail later). Traditional process models of recognition do not
assign a central functional role to perceptual processes. Yet, if
FESTHER proves to be correct, it has the important implication
that we cannot fully understand how people recognize visual
stimuli unless we also understand how these stimuli are perceived.
The experiments in this article aimed to further explore the role of
perceptual processing in recognition. If time-dependent variation
in recognition judgments depends on the time course of perceptual
processing, it should be possible to use information about the time
course of stimulus perception to predict the time course of recog-
nition judgments. That is, if the stimulus dimensions and their
processing rates are known, it is possible to make precise, testable
predictions about the time course of recognition. In the experi-
ments in Brockdorff and Lamberts (2000), the stimulus dimensions
were always known (because artificial stimuli were used), but the
processing rates of the dimensions were free parameters in the
model. Because perceptual processing rates were not measured
independently, the experiments in Brockdorff and Lamberts (2000)
did not provide direct evidence that perceptual processing rates of
stimulus dimensions affect the time course of recognition judg-
ments. Moreover, the use of relatively simple artificial stimuli,
with a small number of well-defined dimensions, restricted the
generality of the conclusions that could be drawn from the exper-
iments. In the research we report in this article, we aimed to
remedy these shortcomings by attempting to predict the time
course of recognition judgments of realistically complex stimuli on
the basis of independent measurements of dimensional processing
rates.

This task raised two important challenges. First, the dimensions
of complex, realistic stimuli (such as photographs or drawings of

objects or scenes) are unknown, which makes it difficult to control
or manipulate similarity between such stimuli. Second, the deter-
minants of feature processing rates are complex (see Lamberts,
1998; Lamberts & Freeman, 1999), precluding the use of a simple
manipulation to produce stimulus sets with reliably different pro-
cessing rates for specific features. To overcome these difficulties,
we used a multiexperiment research strategy. We first carried out
three perceptual matching experiments, the aim of which was
primarily to provide independent measures of perceptual process-
ing rates of stimulus features. Our fourth experiment was a stan-
dard recognition experiment, in which judgments were given under
time pressure.

Our experimental stimuli were drawings of various objects and
scenes. We started with a set of 240 different pictures. We then
added another 48 pictures, which were obtained by modifying 48
pictures from the original set. The modifications always involved
the deletion of one minor feature from an original picture. Exam-
ples of original and modified pictures are shown in Figure 1 and in
Appendix A. Henceforth, we call the modified feature, or the part
of the original picture that corresponded to the modified feature,
the critical feature. These stimuli were used in the four experi-
ments. The first three experiments involved a perceptual matching
task, in which the participants were shown pairs of pictures and
had to decide whether the pictures in each pair were identical. The
fourth experiment was an old–new recognition experiment. In the
matching experiments, three types of picture pairs could be pre-
sented for matching: identical pairs, different pairs (which con-
sisted of two unrelated pictures), and similar pairs (which con-
sisted of an original picture and its modified version). The primary
purpose of the three matching experiments was to measure
perceptual processing rates of features. To do this, we applied
FESTHER’s assumptions about perceptual processing directly to
the matching tasks. (Recall that FESTHER states perceptual
stimulus processing involves independent, stochastic feature
sampling.)

Figure 1. Sample stimuli used in the four experiments.
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In the first experiment, two pictures were presented simulta-
neously on each trial, and the participants were instructed to judge
their identity as quickly and accurately as possible. In this exper-
iment, we were primarily interested in the response times (RTs) for
“different” judgments of similar pairs of items. We assumed that
the participants would respond “different” to these pairs as soon as
they detected the critical feature in both pictures. Because the
stimuli in the matching task were presented simultaneously on the
screen, we interpreted the mean time for correct responses to each
similar pair as an ordinal index of the perceptual processing rate of
the critical feature. On the basis of the RTs for correct responses,
we carried out a median split, dividing the 48 similar pairs into a
set of 24 pairs that yielded the fastest responses (the fast–similar
set) and a set of 24 pairs that produced the slowest responses (the
slow–similar set). This division was maintained throughout the
other three experiments in the series.

On the basis of RTs alone, it is not possible to obtain a reliable
estimate of perceptual processing times, unless the stimulus struc-
ture is directly manipulated (see Lamberts, 2000). Experiments 2
and 3 were designed to produce estimates of the average process-
ing rates of the critical features in the fast–similar and slow–
similar sets. In these experiments, the participants matched the
same pairs of pictures as in Experiment 1, but unpredictable
response signals were used to limit the time available for respond-
ing on any trial. The patterns of responses at different signal
intervals can be used to obtain reliable estimates of processing
rates (Brockdorff & Lamberts, 2000; Lamberts, 1998). Experi-
ments 2 and 3 differed only in the sequence of events on each trial.
In Experiment 2, the two pictures were presented simultaneously
on the screen. In Experiment 3, presentation of the pictures was
sequential, with an interstimulus interval (ISI) of 2,000 ms. On the
basis of the data from Experiments 2 and 3, we aimed to obtain
consistent estimates of the processing rates for the critical features
in the fast–similar and slow–similar stimulus sets. The presentation
mode of the picture pairs (simultaneous or sequential) was varied
between the experiments, because this would allow us to obtain a
critical test of the perceptual processing assumptions in the model.
The assumption that feature processing times are exponentially
distributed led us to predict different functional relations between
available processing time and response rates in simultaneous and
sequential matching, as explained in detail in the modeling section
below.

The recognition task in Experiment 4 used the same stimuli as
did the matching tasks in Experiments 1, 2, and 3. After an initial
study phase, different types of items were presented for recogni-
tion. Old items were part of the study set, new items were unrelated
to the study set, and similar items differed on one critical feature
from a stimulus in the study set. The similar test items were
divided into fast–similar items and slow–similar items, according
to the match RTs in Experiment 1. Response signals could occur
after various lags, and the proportion of “old” responses after
various lags was the variable of interest.

Together, the four experiments provide a critical test of our
assumptions about feature sampling and perceptual processing in
recognition. If the timing effects that have been found in previous
recognition experiments with response deadlines or response sig-
nals are due to the time course of feature sampling, then it should
be possible to fit the data from the matching and recognition
experiments with a single set of processing rate parameters. The

results from the experiments may also have more general impli-
cations for our understanding of the relation between perceptual
matching and recognition of pictures. Although these two tasks
have been widely studied, there have been few previous attempts
to investigate the theoretical and empirical connections between
them (but see Ratcliff, 1981; Van Zandt, Colonius, & Proctor,
2000; also relevant is Cohen & Nosofsky, 2000, which explores
the relation between matching and categorization). Yet, even with-
out much analysis, it is clear that same–different matching tasks
share many characteristics with standard old–new recognition
tasks. In matching, two stimuli are presented simultaneously or in
close succession, and the participants judge the identity of the
stimuli. In recognition, participants first study a set of stimuli, and
then judge whether individual test stimuli occurred in the study set.
Both tasks involve a comparison process. In matching, the com-
parison is between two simultaneously presented stimuli or be-
tween a stimulus in short-term memory and a stimulus on screen.
In recognition, the comparison is between a test stimulus and a
potentially large set of stimuli in long-term memory. Our results
should indicate to what extent a common framework for both tasks
is feasible.

The remainder of this article is organized as follows. We first
present the four experiments, together with a brief discussion of
the results. Next, we discuss the modeling principles that provide
the link between the four data sets. Finally, we apply the model to
the data, and we discuss the implications of the modeling.

Experiment 1

In this experiment, participants were asked to give speeded
identity judgments of pairs of drawings. The stimuli were color
drawings of various everyday office and household items, places,
and people. The pictures were used to construct three classes of
stimulus pairs, called same, different, and similar. The same pairs
were made up of two copies of the same picture, the different pairs
consisted of two different pictures, and the similar pairs were pairs
of pictures produced by making one picture a copy of the other
picture but with part of the image deleted (see Figure 1 for
examples). Pairs of pictures were presented on a computer screen,
and participants were asked to decide as quickly as possible
whether the two members of each pair were identical or different.

Method

Participants. A total of 20 undergraduate and graduate students from
the University of Warwick were recruited through advertisements placed
around campus and paid £2 (approximately $3) each.

Apparatus and stimuli. The experiment was controlled by a Pentium
400 MHz computer with a 17-inch color monitor with a resolution of 1,280
pixels (horizontally) � 1,024 pixels (vertically). Responses were registered
by means of two microswitches connected to the computer’s parallel port.
Responses were timed with an accuracy of 1 ms. The participants viewed
the screen from a distance of 60 cm.

A total of 288 drawings was used in the experiment to produce 48
similar pairs, 48 different pairs, and 96 same pairs. All participants re-
ceived the same pairs of stimuli, but in a different random order. Each
picture occurred only in one pair. The drawings were in full color on a
white background. Each picture measured 5.7 cm � 5.7 cm, and each
stimulus pair consisted of two pictures side by side, centered on a black
screen. The distance between the inner edges of the two pictures in a pair
was 6 mm.
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Design and procedure. Each participant attended one session consist-
ing of 192 trials. Each stimulus pair was shown once. The left–right
position of the pictures that made up the similar and different pairs was
counterbalanced across participants. On each trial, a cue (a cross) was
shown at the center of the screen for 500 ms. The screen was blank (black)
for 100 ms, after which a stimulus pair appeared. The stimuli remained on
screen until a response was made or until 5 s had elapsed, whichever
occurred first.

Participants were instructed to press the same button if the two pictures
shown were exactly the same and to press the different button if the
pictures were different in any way. Participants were asked to respond as
accurately and as quickly as possible. Accuracy feedback was provided
after every trial. Before the experimental session, participants were given
30 practice trials with nonexperimental stimuli. During practice, the need
for quick responding was emphasized.

Results and Discussion

The mean RTs on trials with correct responses and the propor-
tions correct on similar, different, and same pairs of pictures are
shown in Table 1. A repeated measures analysis of variance
(ANOVA) on the mean RTs revealed a reliable main effect of
match type, F(2, 38) � 25.78, p � .01, MSE � 16,970. Planned
comparisons showed that all pairwise RT differences between the
match types were reliable: different versus similar, t(19) � 11.35,
p � .01; different versus same, t(19) � 5.18, p � .01; same versus
similar, t(19) � 1.83, p � .05. An ANOVA of the proportions
correct across the three match types also yielded a reliable main
effect, F(2, 38) � 59.34, p � .01, MSE � 0.003. All pairwise
accuracy differences between the match types were reliable: dif-
ferent versus similar, t(19) � 9.38, p � .01; different versus same,
t(19) � 2.34, p � .01; same versus similar, t(19) � 7.51, p � .01.

Because we were particularly interested in the stimuli that made
up the similar pairs, the responses to these pairs were analyzed
further. We ranked the 48 similar pairs according to mean RT for
correct responses across participants. (See Appendix A for ranking
and mean RT for all similar pairs.) The mean RT for the fastest
pair was 569 ms, and that for the slowest pair was 1,229 ms. Next,
we divided the similar pairs into two sets. The 24 pairs that yielded
the fastest mean RTs formed the fast set, and the 24 pairs with the
slowest mean RTs formed the slow set. Within the fast set, mean
RTs ranged from 569 ms to 749 ms, with a set mean of 662 ms.
Mean RTs in the slow set ranged from 751 ms to 1,229 ms, with
a set mean of 936 ms. The total proportion of correct responses
was .93 in the fast set and .68 in the slow set.

As we indicated in the introduction, Experiment 1 was primarily
carried out to provide data on the relative speed of processing the
critical differences in a wide range of similar pairs. The difference
in accuracy between the slow and fast sets of similar pairs is
potentially important here. The direction of the difference (more

errors on slow pairs) allows us to rule out differential speed–
accuracy trading as a primary source of RT differences between
the slow and fast sets. However, the accuracy difference introduces
the risk that the median split not only separates slow from fast
pairs but also separates pairs in which the difference is perceptible
from pairs in which the difference simply cannot be seen, regard-
less of processing time. To rule out this possibility, we asked 2
additional participants to carry out the matching task with exclu-
sive emphasis on accuracy and without the requirement to respond
as fast as possible. Both participants obtained perfect scores, which
allowed us to assume safely that the median split separated pairs
that differed only in the detection speed of the critical difference.

Experiment 2

As in Experiment 1, in this experiment participants were asked
to give identity judgments of pairs of simultaneously presented
drawings. The stimuli were the same as those in Experiment 1. A
response-signal procedure was used to limit the available response
time on individual trials. On hearing a signal from the computer,
participants were to decide immediately whether the two members
of each pair were identical or different. On the basis of the
classification into fast–similar and slow–similar pairs from Exper-
iment 1, we expected higher proportions of correct “different”
responses to the fast–similar pairs than to the slow–similar pairs,
across all response-signal intervals.

Method

Participants. A total of 16 undergraduate students from the University
of Warwick participated in partial fulfillment of a course requirement.

Apparatus and stimuli. These were the same as those in Experiment 1.
Design and procedure. Each participant attended one session consist-

ing of 192 trials. Each stimulus pair was shown once. The left–right
position of the pictures that made up the similar and different pairs was
counterbalanced across participants. A response-signal procedure was used
on each trial. On each trial, a cue (a cross) was shown at the center of the
screen for 500 ms. The screen was blank (black) for 100 ms, after which
a stimulus pair appeared. At variable time lags after stimulus onset (100,
200, 300, 350, 400, or 600 ms), a 1000-Hz tone sounded, and the picture
pair disappeared from the screen. Participants were instructed to respond
immediately upon hearing the tone. If no response was made within 350 ms
from the onset of the tone, or if a response was made before the onset of
the tone, an appropriate error message was displayed.

Although all participants received the same match stimuli in the course
of the experiment, the presentation order of the match stimuli and the
assignment of stimulus pairs to signal intervals were randomized between
participants, with the constraint that the number of same (16), different (8),
fast–similar (4), and slow–similar (4) pairs was the same in each of the six
response-signal conditions.

Participants were instructed to press the same button if the two pictures
shown were exactly the same and to press the different button if the
pictures were different in any way. Accuracy feedback was provided after
every trial. Before the experimental session, participants were given 48
practice trials with nonexperimental stimuli.

Results and Discussion

Only responses that were given within a 100- to 350-ms window
from the onset of a response signal were analyzed. Overall, a
proportion of .15 responses were outside the response window, and
a repeated measures ANOVA showed that this did not vary sig-

Table 1
Mean Correct Response Times (RTs; in Milliseconds) and
Accuracy as a Function of Match Type in Experiment 1

Match type Mean RT Proportion correct

Similar 761 .80
Different 544 .97
Same 839 .93
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nificantly with match type, F(3, 45) � 1. The proportions of
responses outside the window were .15, .15, .13, and .13 for
fast–similar, slow–similar, different, and same pairs, respectively.
An ANOVA yielded a reliable effect of signal interval on propor-
tions of responses outside the window, F(5, 75) � 7.29, p � .01,
MSE � 0.030; and a significant interaction between match type
and signal interval, F(15, 255) � 2.19, p � .01, MSE � 0.018.
Table 2 summarizes the proportions of responses that were outside
the response window, by signal interval and match type. A de-
crease in the proportion of responses outside the window with
increasing signal lags is a common occurrence in response-signal
experiments (e.g., Brockdorff & Lamberts, 2000). The interaction
between match type and signal interval is potentially important.
The data in Table 2 show that the proportions of excluded trials are
quite similar for the same, slow–similar, and fast–similar trials,
and that the interaction appears to be primarily due to the different
trials. For the different trials, the proportion of excluded trials is
generally low, except at the longest signal interval (.27), at which
it is higher than that for any other match type. Further analyses
showed that this proportion consisted primarily of anticipation
errors (89%). This is compatible with the notion that the different
trials were easiest and that for these trials, the participants some-
times found it difficult to delay a response until the signal at the
longest interval. Although there are no reasons to assume that the
differences in discarded response proportions could have intro-
duced artifacts in our analyses or modeling, we decided to carry
out all analyses on the full data sets as well, without discarding any
trials. Because the conclusions from this exercise were identical to
those from the standard analyses (with discarded trials), we discuss
only the standard analyses in this article.

The proportions of “same” responses for the fast–similar, slow–
similar, different, and same pairs are shown in Figure 2. An
ANOVA on the proportions of “same” responses yielded a main
effect of match type, F(3, 45) � 247.90, p � .01, MSE � 0.036;
and an interaction between match type and deadline, F(15, 225) �
6.04, p � .01, MSE � 0.039. As can be seen from the figure,
fast–similar picture pairs produced consistently higher proportions
of correct responses than did slow–similar pairs. A separate
ANOVA on the data from similar pairs showed only a reliable
main effect of match type (fast or slow), F(1, 15) � 102.96, p �
.01, MSE � 0.035; a main effect of response-signal interval, F(5,
75) � 4.45, p � .01, MSE � 0.070; and an interaction between
match type and signal interval, F(5, 75) � 3.08, p � .05, MSE �
0.066.

The results from Experiment 2 were largely as expected. Accu-
racy generally increased at longer signal intervals. Of particular
interest was the difference between the two types of similar pairs.
The fast–similar pairs generally produced higher proportions of
correct responses than did the slow–similar pairs, and the differ-
ence between the two types became more pronounced at longer
signal intervals. This confirms that the division into two groups on
the basis of RTs in Experiment 1 was useful, because it did
separate similar pairs with a rapidly detectable difference from
similar pairs with a slowly detectable difference. The theoretical
implications of these data are discussed in the modeling section.

Experiment 3

This experiment was identical to Experiment 2, except for the
time course of stimulus presentation on each trial. The pictures that
made up each pair were now presented sequentially. The picture on
the left-hand side of the display always appeared first, followed by
the picture on the right-hand side after a 2.0 s delay. As in
Experiment 2, response signals were used to limit processing time
on individual trials.

Method

Participants. A total of 12 undergraduate students from the University
of Warwick participated in partial fulfillment of a course requirement.

Apparatus and stimuli. These were the same as those in Experiments
1 and 2.

Design and procedure. Each participant attended one session consist-
ing of 192 trials. Each stimulus pair was shown once. The left–right
position of the pictures that made up the similar and different pairs was
counterbalanced across participants. A response-signal procedure was
used. On each trial, the first picture in a pair appeared on the left-hand side
of the screen. After 2,000 ms, the second picture of the pair appeared on the

Table 2
Proportions of Responses Outside the Response Window in
Experiment 2, as a Function of Signal Interval (in Milliseconds)
and Match Type

Interval

Match type

Fast–similar Slow–similar Different Same

100 .22 .30 .18 .25
200 .17 .13 .08 .12
300 .17 .13 .07 .09
350 .13 .11 .08 .11
400 .08 .05 .08 .10
600 .11 .22 .27 .12

Figure 2. Observed proportions of “same” responses in Experiment 2.
Responses to same, fast–similar, slow–similar, and different pairs are
plotted against total time elapsed from presentation of stimulus (mean
response time [RT] across all participants for all stimuli in each type) in the
six response-signal conditions (100, 200, 300, 350, 400, and 600 ms).
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right-hand side of the screen. At variable time lags after the right-hand
element of the pair was displayed on screen (50, 100, 200, 300, 400, and
600 ms), a 1000-Hz tone sounded, and the picture pair disappeared from
the screen. Although all participants received the same match stimuli in the
course of the experiment, the presentation order of the match stimuli and
the assignment of stimulus pairs to signal intervals was randomized be-
tween participants, with the constraint that equal numbers of same, differ-
ent, fast–similar, and slow–similar pairs were assigned to each response-
signal condition.

Participants were instructed to respond immediately upon hearing the
tone. If no response was made within 350 ms from the onset of the tone or
if a response was made before the onset of the tone, an appropriate error
message was displayed. Instructions, feedback, and practice trials were the
same as those in Experiment 2, with obvious modifications related to the
sequential nature of the matching task.

Results and Discussion

The data from trials in which a response was given outside the
100- to 350-ms window after signal onset were excluded from the
analyses. Overall, a proportion of .14 of responses were excluded
in this way. As in Experiment 2, there were no reliable differences
between the proportions of excluded trials for different match
types, F(3, 33) � 1. The proportions of excluded trials were .16,
.14, .13, and .13 for fast–similar, slow–similar, different, and same
pairs, respectively. Again, the effect of signal interval on propor-
tions of responses outside the window was reliable, F(5, 55) �
9.89, p � .01, MSE � 0.203 (see Table 3), but there was no
interaction between signal interval and match type, F(15, 165) �
1.03, p � .43, MSE � 0.018. The proportions of excluded tri-
als were similar to those in Experiment 2, except for a higher
proportion of exclusions at the 600-ms signal interval (.21).
Most of the exclusions (88%) at this signal interval were antici-
patory responses.

The proportions of “same” responses for the fast–similar, slow–
similar, different, and same pairs at different signal lags are shown
in Figure 3. A repeated measures ANOVA on the proportions of
“same” responses yielded a main effect of match type, F(3, 33) �
123.88, p � .01, MSE � 0.065; a main effect of signal interval,
F(5, 55) � 8.44, p � .01, MSE � 0.035; and an interaction
between match type and signal interval, F(15, 165) � 3.64, p �
.01, MSE � 0.040. A separate ANOVA on the similar pairs
showed only main effects of match type, F(1, 11) � 22.49, p �
.01, MSE � 0.089; and signal interval, F(5, 55) � 10.45, p � .01,
MSE � 0.059; and no interaction between type and signal interval,
F(5, 55) � 0.32, p � .90, MSE � 0.075. The results from
Experiment 3 largely replicated the difference between fast–
similar and slow–similar pairs found in Experiment 2. Accuracy

was generally higher in Experiment 3 than in Experiment 2. This
is almost certainly due to the sequential nature of the matching task
in Experiment 3. The 2,000-ms ISI was probably sufficient to
allow complete processing of the first stimulus by the time the
second stimulus was presented.

Experiment 4

As we indicated in the introduction, Experiment 4 was designed
as an old–new recognition experiment, in which response signals
were used to restrict decision times. The task consisted of standard
memorization and testing stages. The pictures from the previous
experiments were used to construct four classes of test stimuli: old
(presented in the initial memorization stage), fast–similar, slow–
similar, and new. One randomly chosen stimulus from each similar
pair was used for the study set, and the other stimulus of the pair
was presented during test.

Method

Participants. A total of 36 undergraduate and graduate students from
the University of Warwick were recruited through advertisements and paid
£3.50 ($5) each.

Apparatus and stimuli. The apparatus and stimuli were the same as in
the previous experiments. Each study block consisted of 30 pictures,
including a primacy buffer and recency buffer, each containing three
nonexperimental pictures (leaving 24 experimental pictures). Presentation
order of the pictures in the study block was randomized. Each test set
consisted of 36 stimuli: 12 old stimuli (taken from the study set), 12 similar
stimuli (obtained by alteration of stimuli from the study set, with 6 of the
12 classified as slow–similar and 6 of the 12 classified as fast–similar), and
12 new stimuli (unrelated to the study set). Half of the similar transfer
stimuli were pictures with deletions, and half were the original pictures.

Design and procedure. Each participant attended one session. The
stimuli in the study block were presented one picture at a time on a

Table 3
Proportions of Responses Outside the Response Window in
Experiment 3, as a Function of Signal Interval (in Milliseconds)

Signal interval Proportion outside

50 .21
100 .12
200 .09
300 .09
400 .10
600 .21

Figure 3. Observed proportions of “same” responses in Experiment 3.
Responses to same, fast–similar, slow–similar, and different pairs are
plotted against total time elapsed from presentation of stimulus (mean
response time [RT] across all participants for all stimuli in each type) in the
six response-signal conditions (50, 100, 200, 300, 400, and 600 ms).
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computer screen at a rate of 3 s per picture. The participants were told that
their task in the study phase was to try to remember each picture. Following
each study block, a recognition test was given on 12 old, 12 similar (6
slow–similar and 6 fast–similar) and 12 new pictures. Participants were
instructed to press the old button if the test picture was present in the study
block and to press the new button if the picture was different in any way
from any picture seen in the study block.

A response-signal procedure was used on each test trial. Pictures were
presented one at a time and appeared in the center of the screen on a black
background. Each test picture was shown once in the test phase. On each
trial, a cue (a cross) was shown at the center of the screen for 500 ms. The
screen was blank (black) for 100 ms, and then a picture appeared. At
variable time lags after the stimulus onset on screen (100, 300, 500, 700,
1,000, and 1,250 ms), a 1000-Hz tone sounded, and the stimulus disap-
peared from the screen. Participants were instructed to respond immedi-
ately upon hearing the tone. If no response was made within 350 ms of the
onset of the tone, or if a response was made before the onset of the tone,
an appropriate error message was displayed. No accuracy feedback was
provided after the trials, but the proportion of correct responses and the
proportion of responses made within 350 ms of the response signal were
shown after each block.

A total of four study–test experimental blocks were presented. Each of
the four blocks contained a different set of pictures. Each participant was
shown the same old, similar, and new pictures within each block, but the
presentation order of the blocks and the order of the stimuli within each
block were randomized. An equal number of pictures of each type (old,
fast–similar, slow–similar, and new) was assigned (at random for each
participant) to each response-signal condition. Before the experimental
blocks, participants were given a practice block to familiarize them with
the experimental procedure. The practice block was identical to a test block
except that the stimuli used were not experimental stimuli.

Results and Discussion

The data were trimmed to remove trials in which participants
either took more than 350 ms to respond to the signal or responded
faster than 100 ms after the response signal. An ANOVA on the
proportions of discarded trials showed the expected main effect of
signal interval, F(5, 175) � 67.29, p � .01, MSE � 0.073 (with
more trials discarded at the shortest intervals); but also a reliable
effect of stimulus type, F(3, 105) � 5.36, p � .01, MSE � 0.026.
The effect of stimulus type is potentially problematic, because
differences in proportions of discarded trials can introduce artifi-
cial shifts in proportions of correct responses. Table 4 shows the
proportions of discarded trials for the four stimulus types in the
experiment. The proportion was lowest for the old and new stimuli
and highest for the similar stimuli. The difference between the
fast–similar and slow–similar types was small and nonsignificant.
Moreover, this difference was in the opposite direction from what
might be expected, with slightly more responses outside the win-
dow for fast–similar stimuli than for slow–similar stimuli. It is

unlikely, therefore, that differential rates of discarded stimuli
would introduce significant artifacts in the data. As an additional
check, we also analyzed the data from Experiment 4 without
discarding any responses. This alternative method of analysis did
not alter the results or the conclusions from the modeling in any
meaningful way.

The proportions of “old” responses for old, fast–similar, slow–
similar, and new stimuli are shown in Figure 4.1 A repeated
measures ANOVA on the proportion of “old” responses showed a
reliable main effect of stimulus type, F(3, 105) � 295.52, p � .01,
MSE � 0.430; and a reliable interaction between stimulus type and
response-signal condition, F(15, 525) � 11.23, p � .01, MSE �
0.031.2 To obtain a better view of the difference between the
fast–similar and slow–similar stimuli, we also carried out an ad-
ditional ANOVA looking at only these two types of stimuli, using
response-signal condition and stimulus type (fast or slow) as
independent variables. This ANOVA produced a reliable main
effect of stimulus type, F(1, 35) � 109.97, p � .01, MSE � 0.238;
and a reliable interaction between response-signal condition and
stimulus type, F(5, 175) � 4.94, p � .01, MSE � 0.362.

For the old and new stimuli, there was a monotonic increase in
the proportion of correct responses with increasing signal lag, as
observed in other experiments with response signals (e.g., Brock-
dorff & Lamberts, 2000). The asymptotic response levels with
these stimuli indicate that the recognition task was relatively easy.
For our purposes, the responses to the similar items are most
relevant. For both the fast–similar and slow–similar items, the
response function was nonmonotonic, as is often the case in
experiments with test items similar to study items (e.g., Brockdorff
& Lamberts, 2000). The initial increase in errors at shorter lags
was followed by a decrease at longer lags. Overall, the slow–
similar items produced more errors than did the fast–similar items.
The response function for the fast–similar items also reached a
maximum at a shorter lag than did the response function for the
slow–similar items.

Modeling

The primary purpose of the formal modeling was to provide a
unifying account of the data from the matching and recognition
experiments by applying our assumptions about the time course of
feature sampling. We did not attempt to model the data from
Experiment 1. This experiment was used only to classify the
similar pairs into slow and fast groups. First, we discuss the
assumptions that were made in the modeling of the results from
Experiments 2–4.

1 Rotello and Heit (1999) have recently argued in favor of a difference
score measure (d� or dL) rather than raw scores such as proportion of “old”
responses. However, we focus on raw scores because we are primarily
interested in showing a difference between false-alarm rates on fast–similar
and slow–similar stimuli. Rotello and Heit suggested subtracting a baseline
measure of false alarms to completely new items. We note that subtracting
the same baseline from both kinds of similar items would not affect the
difference between the two kinds of similar stimuli.

2 In the ANOVAs on the recognition data, we carried out an arcsine
transformation before analysis to improve conformity of the data to the
standard assumptions of an ANOVA (e.g., Kirk, 1995). Although the F
values and mean square errors are based on the transformed data, we report
mean proportions without transformation.

Table 4
Proportions of Responses Outside the Response Window in
Experiment 4, as a Function of Stimulus Type

Stimulus type Proportion outside

Old .24
New .26
Fast–similar .30
Slow–similar .28
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Experiment 2 involved matching of simultaneously presented
stimuli under various response deadlines. We assumed that per-
ceptual processing of the stimuli involves stochastic, parallel, and
independent sampling of features and that the processing times are
exponentially distributed. Because the stimuli in this experiment
were presented simultaneously, we assumed that the feature-
sampling process started at the same time for both stimuli (thus
assuming complete parallelism within and between stimuli). We
further assumed that the response signal interrupted perceptual
processing of both stimuli, such that the time available for percep-
tual processing on a group of trials with a given signal interval i (ti)
was

ti � RTi � tres, (2)

in which RTi is the mean RT (measured from match stimuli onset)
on the group of trials, and tres is the latency period after stimulus
onset and the time needed for response production.3 In the mod-
eling, tres was a single free parameter that applied across all
experiments.

On trials with similar pictures, computing the probability that
the participants would detect a difference between the match
stimuli in the processing time available is relatively straightfor-
ward. We assumed that similar pairs differed in only a single
feature. Detection of the difference requires that the critical feature
is processed in both pictures before the response is initiated:

pdet�simultaneous, similar, ti� � �1 � exp��qcritti�	
2, (3)

in which pdet(simultaneous, similar, ti) is the probability of detect-
ing the difference between two simultaneously presented similar
stimuli within perceptual processing time ti, and qcrit is the pro-
cessing rate of the critical dimension. In the modeling, qcrit was a
free parameter and allowed to have different values for the slow–
similar and fast–similar pairs.

Next, we needed to determine the probability of a “same” or a
“different” response. We assumed that the participants would
always respond “different” if they had detected a difference be-

tween the stimuli. However, in experiments with response signals,
it is not realistic to assume that all “different” responses are
actually based on detection of a difference. Especially at shorter
signal intervals, in which the time pressure is quite severe, some
proportion of “different” responses can be expected even on trials
in which the difference between the stimuli had not been detected.
The data from trials with identical match stimuli were used to
estimate the proportion of “different” responses to similar pairs
that were not the result of detection of a difference. For conve-
nience, we call a “different” response to a similar or different pair
a hit and a “different” response to an identical pair a false alarm.
We denote the hit and false alarm rates at signal interval i as Hi and
Fi, respectively. On trials with a similar or a different pair of
pictures, the total hit rate equals the weighted sum of the true hit
rate (for which a difference has actually been detected) and the rate
of “different” responses when a difference has not been detected
(estimated by Fi):

Hi � pdet�ti� � �1 � pdet�ti�	 � ui, (4)

in which ui is equal to Fi.
In this formulation, Fi is effectively used as a bias measure.

Formally, this model is equivalent to the single high-threshold
theory of discrimination (Macmillan & Creelman, 1990). We also
explored other discrimination theories (such as the double high-
threshold theory, Macmillan & Kaplan, 1985) in our modeling of
the matching and recognition data, but the single high-threshold
model provided the best compromise between a good fit and
parsimony across the data sets.

Modeling the choice proportions for different pairs in Experi-
ment 2 was somewhat more complex. If we assumed that the
stimuli in a different pair differed on all of the stimulus dimen-
sions, we could show that the probability of detecting any differ-
ence within a given time interval depends on the number of
stimulus dimensions that are involved in the comparison. Because
we do not know the dimensional composition of the stimuli, we
estimated the number of dimensions for comparison by a free

3 In Experiments 2, 3, and 4, the stimuli disappeared from the screen as
soon as the response signal was presented. However, the stimuli were not
masked, so it is likely that perceptual processing continued for a short time
after signal presentation. This leaves two alternative methods for estimat-
ing perceptual processing times. The first method assumes that total per-
ceptual processing time equals presentation time Ti (i.e., the signal interval)
plus a constant that represents the duration of iconic memory: ti � Ti 

t
visual memory

. Although this method would be acceptable, it relies on the
assumption that stimulus persistence time in memory after signal presen-
tation is a constant. This assumption may not be correct; it is possible, for
instance, that persistence is longer at longer presentation times. Therefore,
we chose the second method, which is based on observed RTs from which
we subtracted a residual time to estimate perceptual processing times. This
method does not assume that visual persistence time is constant, but it
relies on the assumption that response production always has the same
duration. Although this assumption also may not be justified, we have used
it consistently in previous work (e.g., Brockdorff & Lamberts, 2000)
without difficulties. In this article, as a final check, we also used the first
method to model the data. The model fits for the two methods were almost
identical (slightly better for the RT-based method), so we do not report the
modeling outcomes obtained with the first estimation method.

Figure 4. Observed proportions of “old” responses in Experiment 4.
Responses to old, fast–similar, slow–similar, and new stimuli are plotted
against total time elapsed from presentation of stimulus (mean response
time across all participants for all stimuli in each type) in the six response-
signal conditions (100, 300, 500, 700, 1,000, and 1,250 ms). Error bars
represent 95% confidence intervals.
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parameter, �. The probability of detecting any difference between
the stimuli in time interval ti is given by

pdet�simultaneous, different, ti� � 1 � �1 � �1 � exp��qti�	
2��,

(5)

in which q is the processing rate of the dimensions involved (we
made the simplifying assumption that all dimensions of both
stimuli had the same processing rate), and � is the number of
dimensions (see Appendix B for a derivation of this equation). The
detection rates were translated into response rates in the same way
as the similar pairs (see Equation 4).

The response proportions from same pairs were not explicitly
modeled, because we assumed that these proportions reflected only
response bias. However, the results from trials with identical
stimuli were taken into account in the modeling of the results from
similar and different trials (through Equation 4).

In Experiment 3, the matching task was sequential. We assumed
that the interstimulus interval was sufficiently long (at 2,000 ms)
to allow complete processing of the first stimulus by the time the
second stimulus was also presented. This assumption made it
possible to model the results from the similar and different trials.
On similar trials, the difference between the stimuli would be
detected as soon as the critical dimension of the second match
stimulus had been processed:

pdet�sequential, similar, ti� � 1 � exp��qcritti�, (6)

in which all symbols have the same meaning as in Equation 5.
(Note that ti now refers to the perceptual processing time for the
second stimulus only.) As for the simultaneous matching task,
the detection probability is translated into a response rate by
Equation 4.

In modeling different trials, we again assumed that the stimuli
differed on a number of dimensions, estimated as �. The proba-
bility that any difference between the match stimuli is detected
equals one minus the probability that no dimensions of the second
match stimulus have been processed in the interval ti:

pdet�sequential, different, ti� � 1 � �exp��qti�	
�, (7)

in which the symbols have the same meaning as in Equation 5.
Finally, we used the model to predict proportions of “old”

responses to similar and new test items in the recognition task
in Experiment 4. In modeling recognition, we relied only on
FESTHER’s assumptions about feature sampling, without using
the component of the model that translates total similarity to
studied items into choice probabilities. Instead, the recognition
task was modeled entirely as an analog to the sequential matching
task from Experiment 3. For test items that were similar to a
studied item, we assumed that the probability of a correct “new”
response was contingent on the detection of the difference between
the items. The probability of detecting the difference within time
interval ti is given by

pdet�recognition, similar, ti� � 1 � exp���qcritti�. (8)

This equation is identical to Equation 6, with the exception of
the rate scaling parameter �. This parameter reflects that the
recognition task is sensitive not only to the perceptual processing
rate of the critical stimulus dimension but also to the rate at which

the information about the critical dimension in memory becomes
available. This particular model assumes that the total processing
rate of the critical dimension (including its perceptual and retrieval
components) is proportional to the purely perceptual processing
rate of the dimension, as measured by the matching tasks. We
justify this assumption later, when we compare this model’s per-
formance to that of models with different assumptions about the
time course of perception and retrieval. In any case, the best-fitting
value of � provides information about the contribution of purely
perceptual processes to the time course of recognition.

The model for recognition of new items assumed that new items
differed from studied items on all dimensions. This leads to the
following expression for the probability that any dimension of the
test stimulus has been processed in interval ti:

pdet�recognition, different, ti� � 1 � �exp���qti�	
�. (9)

The detection probabilities in the recognition task were trans-
lated into response proportions using Equation 4, in the same way
as the matching tasks. The only difference with the matching tasks
was that a hit in recognition is defined here as a correct “new”
response to a new or similar test item, whereas a false alarm was
defined as a “new” response to an old item. (Note that this
definition differs from the conventional definition of hits and false
alarms in recognition tasks; see, e.g., Rotello & Heit, 1999.)

The data from Experiments 2–4 were modeled jointly, using
only one set of six parameters. Three dimensional processing rates
were estimated: qcrit(fast) and qcrit(slow) were the processing rates
of the critical dimensions for fast–similar and slow–similar stimuli,
respectively, and q was the (average) processing rate of the di-
mensions of the stimuli from different pairs (in matching) or of the
new stimuli (in recognition). The fourth parameter was �, the rate
scaling parameter which applied only to the recognition task. The
fifth parameter was the residual time, tres. Finally, � estimated the
number of dimensions on which stimuli from different match pairs
or new stimuli from recognition were compared. A maximum-
likelihood criterion was used to determine the best-fitting param-
eter values, assuming that response proportions in all tasks had a
joint binomial distribution. (See Lamberts, 1995, for a discussion
of the likelihood function that was applied; see also Riefer &
Batchelder, 1988.)

Figure 5 shows the observed and predicted response proportions
in the three experiments that were modeled. The best-fitting pa-
rameter values are shown in Table 5. From Figure 5, it is clear that
the model provided a good account of the choice data in the three
experiments. Across the experiments, the model explained 93.1%
of the variance in the choice proportions, ln(L) � �140.594.

For the simultaneous matching task, the model’s predictions of
the response proportions for the different pairs were very accurate.
The predicted proportions for the fast–similar and slow–similar
pairs were not as close to the observed proportions as were the
predicted proportions for the different pairs, because the observed
proportions for the similar pairs were more irregular. However, the
model captured the difference between the fast–similar and slow–
similar pairs well. In the model, the only difference between the
fast–similar and slow–similar pairs was the processing rate of the
critical feature. In all other respects, the model was identical for
these two types of stimuli. It is especially interesting that the model
captured the difference in overall appearance of the fast and slow
response curves (see Figure 5A). The predicted and observed
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curves for the slow–similar pairs are clearly nonmonotonic, with a
peak between 400 and 600 ms. The observed curve for the fast–
similar pairs was less regular and not obviously nonmonotonic.
The predicted curve for these pairs was almost linear, and it closely
approximated the best-fitting linear regression line for the data, as
well as the best-fitting second- and third-degree polynomials.

The model predictions for the sequential matching task were
also good (see Figure 5B). As for the simultaneous matching task,
the fit to the data from different trials was nearly perfect. The

difference between the fast–similar and slow–similar trials was
well-predicted, as well as the general shape of the response func-
tions for these trial types. The model predicted a nearly monotonic
decline of the proportion of “same” responses with processing time
for both of these stimulus types, and this corresponded well to the
observed data.

Overall, the model provided a good account of the data from
both matching tasks. It is important to note that the fits to the data
from both experiments were achieved with a single set of param-
eters (which also applied to the recognition task). The models for
the simultaneous and sequential matching task only differed in
their functional form, and this difference appeared to be sufficient
to explain the main differences between the response functions for
the two tasks. The values of the parameters that applied to the
matching tasks (see Table 5) were largely as expected. The esti-
mated processing rate of the critical dimension was higher for the
fast–similar pairs than for the slow–similar pairs. The estimated
mean perceptual processing time (calculated as 1/qcrit) for the
critical dimension was 204 ms for the fast–similar pairs and 455
ms for the slow–similar pairs. The mean processing time for the
dimensions of the different pairs was estimated to be 127 ms, and
the estimated value of � shows that the participants took an
average of 1.6 dimensions into account in their comparisons.
Figure 6 shows the probability of detecting any difference between
the different types of stimuli for the simultaneous and sequential
matching tasks, as a function of processing time.

For the recognition task (see Figure 5C), the model predictions
for the new stimuli are close to the observed values. The same is
true for the slow–similar stimuli. The nonmonotonic response
pattern is closely mimicked by the model. The model correctly
predicts that the response function will peak at the third signal
interval. For the fast–similar stimuli, the predictions are not quite
so accurate. Again, the model predicts a nonmonotonic response
pattern, but it underestimates the proportion of “old” responses at
the two shortest signal intervals. Nevertheless, the model correctly
predicts a peak in the response function at the second signal
interval.

The only model parameter that applied exclusively to the rec-
ognition task was �, which was used as a multiplier for the
processing rates that applied to the matching tasks. The theoretical
justification for the inclusion of this parameter was based on the
consideration that the matching tasks did not involve the same
memory components as did the recognition task. For the purpose
of recognition, a dimension is processed only if a comparison with
information retrieved from memory has been carried out (see also
Lamberts & Freeman, 1999). If recognition performance suggests

Table 5
Best-Fitting Model Parameters for Data From
Experiments 2, 3, and 4

Parameter Value

q 0.0079
qcrit(fast) 0.0049
qcrit(slow) 0.0022
tres 218.5
� 0.280
� 1.617

Figure 5. Observed and predicted response proportions in Experiments 2,
3, and 4. A: Simultaneous matching. B: Sequential matching. C: Recog-
nition. Pred � predicted; Obs � observed; RT � response time.
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that a particular dimension has not been processed, this could be
due to a failure of perceptual processing (the feature may not have
been seen), a failure of retrieval (the feature may not have been
stored in the first place, or could somehow not be retrieved), or a
failure of both. Therefore, the recognition task measures an aggre-
gate of perceptual and retrieval components. The matching tasks
presumably provide a much cleaner measure of purely perceptual
processing times, because both match stimuli on any trial were
always present when the same–different decision was made. The
memory demands in the matching task were thus kept to a
minimum.

We tested whether � was an essential parameter by carrying out
a series of model comparisons. First, we fit a model version to the
data from the three experiments, in which � was clamped at a value
of 1.00. This model version thus assumed that the processing rates
in the recognition task were the same as those in the matching
tasks. A likelihood-ratio test (see Lamberts, 1995) showed that this
version fit the data much worse than the general model version,
ln(L) � �350.667, �2(1) � 420.146, p � .01. This reliable
difference indicates that the time course of processing in the

matching and recognition tasks is different and that this difference
should be an essential component of the model. Second, we tested
whether the difference in time course could be explained in terms
of a difference in the residual time between the tasks; perhaps the
time course of perceptual processing was identical in matching and
recognition, but the time course of decision making (including
retrieval) and response production was different. To verify this, we
applied a model version in which the same processing rates applied
to the matching and recognition tasks, but in which a separate
residual time parameter was estimated for the recognition task.
This model version also fit the data much worse than the standard
version, ln(L) � �203.266, R2 � .825, despite having the same
number of free parameters. (Note that a likelihood-ratio test cannot
be applied here, because the two model versions that are compared
are not hierarchically related.)

The inclusion of � as a multiplier of the matching processing
rates thus seems essential, and it implies a strong theoretical
statement about the relation between purely perceptual processing
and combined perception and retrieval. The model states that the
combined perception–retrieval time is proportional to the percep-
tual processing time. The estimated value for � of 0.28 indicates
that the combined perception–retrieval time is about 3.57 times the
perception time. To verify the multiplicative assumption, we ap-
plied a model version in which the relation between processing
rates in matching and recognition was unconstrained. This was
achieved by estimating three separate processing rates for the
recognition task and three separate processing rates for the match-
ing tasks. This model, with a total of eight free parameters, did not
fit the data reliably better than the standard model with six param-
eters, ln(L) � �140.338, �2(2) � 0.512, ns. In fact, the improve-
ment in goodness-of-fit was minimal. Figure 7 presents the pro-
cessing rates estimated by the standard model and the rates
estimated by the more general, eight-parameter model. The esti-
mates are virtually identical, which lends support to the assump-
tion about the multiplicative relation between processing rates in
matching and recognition.

In processing terms, it is not entirely clear why this multiplica-
tive relation emerges. A first possibility is that the retrieval time of

Figure 7. Processing rates for critical stimulus dimensions of different,
fast–similar, and slow–similar stimuli estimated by the standard six-
parameter model and by the more general, eight-parameter model. par. �
parameters.

Figure 6. Detection probabilities of any difference between different,
fast–similar, and slow–similar pairs for the simultaneous (A; Experiment 2)
and sequential (B; Experiment 3) matching tasks, plotted as a function of
processing time.
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features is proportional to their perceptual processing time, such
that features that are quickly perceived (e.g., very salient features)
are also quickly retrieved. A second possibility is that retrieval
times are constant across features but that perceptual processing
times themselves differ between matching and recognition. In the
sequential matching task, processing of the second stimulus may
have been primed by the first stimulus. In the simultaneous match-
ing task, some form of copriming may also have induced faster
processing rates. Note that a similar principle could explain the
ubiquitous fast–same effect in matching (see Van Zandt et al.,
2000), which was incidentally not observed in Experiment 1. In
recognition, any priming effects are bound to be much weaker,
because the stimuli that are compared are separated by a longer
time interval and by other stimuli.

The difference in absolute processing rates between the match-
ing and recognition tasks should certainly not be taken as evidence
against our assumption about the role of perceptual processing in
recognition. On the contrary, the proportionality of the rates in the
different tasks suggests that the tasks are intimately linked, in the
sense that the variables that determine processing rates in matching
also determine processing rates in recognition. The classification
into fast–similar and slow–similar items on the basis of matching
RTs in Experiment 1 proved to have great predictive value for
response patterns in all the other experiments.

Alternative Accounts

An explanation of the data in terms of perceptual processing
rates is certainly not the only possibility. Perhaps the link between
perceptual matching and recognition memory is not as direct as we
assumed but exists only by virtue of a hitherto unexplored process
or mechanism. One obvious possibility is that the response patterns
at different signal intervals in the recognition task do not reflect the
time course of perceptual processing but reflect the time course of
a different process.

This assumption is central to dual-process accounts of recogni-
tion memory (e.g., Atkinson & Juola, 1973, 1974; Hintzman &
Curran, 1994; Mandler, 1980). Dual-process models assume that
recognition judgments reflect the outcome of two distinct pro-
cesses. The first process is a fast familiarity-based process that
yields information very quickly but that may not be very accurate.
The second process is a slower recall process, which is assumed to
be more accurate than the familiarity-based process. Dual-process
models are compatible with a wide range of findings (e.g., Hintz-
man & Curran, 1994; Hintzman, Curran, & Oppy, 1992; Jacoby,
1991; Ratcliff, Clark, & Shiffrin, 1990; Ratcliff, Sheu, & Gron-
lund, 1992; Yonelinas, 1994; Yonelinas & Jacoby, 1994). Al-
though dual-process models have not been implemented formally
(but see Brockdorff & Lamberts, 2000, for an initial attempt), a
dual-process account could probably explain some aspects of the
data from our recognition experiment. The nonmonotonic response
functions for similar items that we observed are similar to the
nonmonotonic functions in the experiments of Hintzman and Cur-
ran (1994). The dual-process interpretation of these functions is
that the initial rise in “old” responses is due to the fast familiarity
process, whereas the subsequent decline of “old” response rates
reflects the slower but more accurate recall process. In addition, to
explain the difference in recognition response functions between
fast–similar and slow–similar items, a dual-process model would

have to assume that the recall process takes longer for the slow–
similar items than for the fast–similar items. However, within a
dual-process account, this assumption would be entirely ad hoc
and without theoretical foundation. It seems fair to conclude,
therefore, that a dual-process account does not explain the relation
between perception and recognition, and that dual-process models
provide at best an incomplete account of the time course of
recognition.

The main advantages of our perceptual-processing account com-
pared with the dual-process explanation are its parsimony and its
productivity. The perceptual-processing model is parsimonious,
because it relies on only a single process that is not substantially
different between tasks. The account is also productive, because it
predicts very specific and systematic links between tasks (in this
case, matching and recognition, but one could also include cate-
gorization) that would not be seen as related in other accounts.
Therefore, we would propose that a single-process account of our
data is quite sufficient.

Another alternative explanation of our results would be in terms
of storage and/or retrieval probabilities of critical features. Perhaps
features that are processed slowly in the matching tasks are less
likely to be stored in memory in the recognition task or less likely
to be retrieved. Whereas this explanation has some intuitive ap-
peal, it cannot explain the complex response patterns for similar
stimuli in the recognition task. Without an additional process, this
account could not predict nonmonotonic response functions for the
similar stimuli in the recognition task. And if an additional process
were included (such as the fast familiarity-based process from the
dual-process account), the model would still be bound to predict
that the recognition response functions for the fast–similar and
slow–similar stimuli are linearly related. This is clearly not the
case; the response function for the fast–similar items peaks earlier
than that for the slow–similar items, for instance. We have carried
out formal model comparisons, which confirm that an explanation
in terms of differential storage and/or retrieval probabilities is not
feasible.

Our proposal for a perceptual front-end to a theory of recogni-
tion is related (but not identical) to a theory of visual information
acquisition developed by Busey, Loftus, and McLean (e.g., Busey
& Loftus, 1994, 1998; Loftus & McLean, 1999). Of particular
interest is the recent article by Loftus and McLean (1999) in which
they apply the theory to picture recognition. According to the
theory, the initial stages of the visual system act as a linear
temporal filter that generates a sensory response from the physical
stimulus. This is followed by an information-sampling process, the
sampling rate of which is based in part on the magnitude of the
sensory response. Loftus and McLean (1999) tested the theory in
four recognition experiments in which they manipulated stimulus
duration, stimulus contrast, the duration of a gap between succes-
sive stimulus presentations, and the presence of a mask following
stimulus presentation. Unlike our own experiments, these manip-
ulations were carried out during only the memorization stage of the
experiments. Subsequent old–new recognition testing involved no
time pressure. Loftus and McLean’s (1999) model provided an
excellent account of their experimental data.

We see Loftus and McLean’s (1999) model as largely comple-
mentary to our own account. The perceptual processing component
in the Loftus model is more sophisticated than our own and can
almost certainly better account for fine-grained effects in the time
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course of perception. However, FESTHER contains a more elab-
orate decision and performance component, which is necessary to
explain many of the results that we have reported previously (see
Brockdorff & Lamberts, 2000). Therefore, a promising avenue for
future research would be to integrate the perceptual assumptions of
Loftus et al.’s theory into FESTHER.

The fact remains, however, that FESTHER in its current form
does not specify the nature of perceptual processing in recognition
in great detail. This relative lack of specificity is inevitable, given
our limited understanding of the time course of information accu-
mulation in the perception of complex visual stimuli. The model’s
assumption that perception involves stochastic accumulation of
information about stimulus features is a very general one, which is
compatible with a wide range of possible specific processes. For
instance, the model can accommodate psychophysical evidence for
temporal asynchrony in visual perception, which shows that dif-
ferent attributes of visual stimuli are consciously perceived at
different times after stimulus onset (e.g., Zeki & Bartels, 1998).
When participants are asked to pair two rapidly alternating states
of two attributes, such as color and orientation of a line, they make
consistent binding errors. Using this technique, it has been shown
that color is perceived about 30 or 40 ms before orientation, which
in turn is perceived faster than motion (Moutoussis & Zeki, 1997).
These asynchronies have been attributed to the functional organi-
zation of the visual system, with different visual attributes being
processed in different brain regions (Moutoussis & Zeki, 1997).
However, little is known about asynchronies in the processing of
more complex visual properties in complex visual stimuli. The
data we reported in this article, together with the findings from
previous experiments (e.g., Lamberts & Freeman, 1999), suggest
that these asynchronies typically involve larger timescales than
those for simple visual properties.

Finally, we would like to discuss some of FESTHER’s specific
processing assumptions and consider alternatives to these assump-
tions. First is the assumption concerning the exponential distribu-
tion of feature sampling times. The model-fitting results from
Experiments 2–4 suggest that this distribution is appropriate; the
exponential model predicts response functions that have the cor-
rect shape for the data. Although it is possible that other distribu-
tions could also provide good fits, the exponential distribution has
many advantages. It has been used successfully in other models of
information accumulation in perception and decision making (see
Townsend & Ashby, 1983). Lamberts (2000) has shown that
exponential processing functions can provide the basis not only for
the correct prediction of choice proportions and mean RTs in
categorization but also for the prediction of RT distributions and
latency–accuracy functions. Lamberts and Freeman (1999) explic-
itly compared an exponential-distribution model of the time course
of feature sampling in categorization with an alternative model in
which processing probabilities of features were required only to
increase monotonically over time. Despite the latter model’s
greater flexibility and larger number of free parameters, it pro-
duced only a negligible increase in goodness-of-fit compared with
the standard exponential model. Therefore, we believe that the
assumption about exponential distribution of processing times is
reasonable and that it is unlikely that an alternative distribution
would yield significantly better model fits.

The second model assumption concerns the stochastic indepen-
dence of the sampling processes for different features. In previous

research on feature sampling in object perception, the assumption
of sampling independence has often been supported (e.g., Lam-
berts & Freeman, 1999; Townsend, Hu, & Ashby, 1981; Wand-
macher, 1976; Wandmacher, Kammerer, & Glowalla, 1980), al-
though there have also been reports indicating that sampling
independence does not hold universally (e.g., Townsend & Ashby,
1982; Townsend, Hu, & Evans, 1984). The data from the current
experiments did not allow us to test the independence assumption
(see Lamberts & Freeman, 1999, for a description of the method-
ology of such a test). The independence assumption can be tested
by comparing the goodness-of-fit of models that make the assump-
tion with models that do not make the assumption. Such a com-
parison requires a data set in which stimuli contain different
combinations of features (as in a factorial design), which cannot be
achieved with the realistically complex stimulus materials that we
used in the current experiments. We do not see this as an important
shortcoming, however. The critical result of our experiments,
which concerns the systematic relation between the time course of
perception and the time course of recognition, could also have
been predicted from a model in which feature sampling was not
independent. In any case, an independence model is simpler than
a model that allows for dependencies in feature sampling (see
Lamberts & Freeman, 1999), and the fact that the independence
model that we applied provided a good account of the data sug-
gests that little could be gained from exploring models that aban-
don the independence assumption.

Conclusions

The experiments in this article and the modeling results lead to
the following conclusions. First, there is a systematic empirical
relation between the time course of perceptual matching and the
time course of recognition judgments. Stimuli that are compared
rapidly are also recognized more accurately when processing time
is limited. Second, this relation between the two tasks can be
understood in terms of the processing rates of the stimulus dimen-
sions. The model applications confirm that our assumptions about
feature sampling are sufficient to explain the results from all the
experiments. An important assumption in the modeling was that
processing rates in recognition are proportional to those in
matching.

Our results have general implications for process models of
recognition. They indicate that the time course of perceptual pro-
cessing could be an important element of an account of the time
course of recognition. Stimuli that have the same logical status
(such as the similar stimuli in our recognition experiment) can still
produce very different response patterns, depending on how
quickly their features are processed. This implies that process
models of recognition can be complete only if they include some
form of analysis of the perceptual structure of the stimuli.
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Appendix A

Mean RTs on Correct Responses Across Participants for Similar Pairs in Experiment 1



Appendix B

Derivation of Probability of Detection of Any Difference
Between Two Simultaneously Presented Stimuli

The probability that dimension x has been processed in Stimulus A
within time interval ti is given by an exponential distribution function:

p�x processed, A� � 1 � exp��qxti�.

Given that the probability of dimension x having been processed in
Stimulus A is independent of dimension x having been processed in
Stimulus B, the probability that x has been processed in both A and B is
given by

p�x processed, A and B) � [1 � exp(�qxti�]2.

It is assumed that if any difference exists between two stimuli on a
dimension x, then the difference will be detected if dimension x has been
processed in both stimuli. It follows that the probability that no difference
is detected on dimension x on both stimuli is

1 � p�x processed, A and B� � 1 � �1 � exp��qxti�	
2.

If it is assumed that the processing rates for all � dimensions are equal
and independent, it follows that the probability that no difference is
detected between two simultaneously presented different stimuli in time
interval ti is

pnot det�simultaneous, different, ti� � �1 � �1 � exp��qti�	
2��.

From the above, it follows that the probability that any difference
between two simultaneously presented stimuli has been detected in time ti
is given by

pdet�simultaneous, different, ti� � 1 � pnot det�simultaneous, different, ti�

� 1 � �1 � �1 � exp��qti�	
2��.
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