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 1 Introduction The isothermal volume compressibil-
ity 

V
β , and its inverse, the bulk modulus K are two proper-

ties which describe how the volume V of materials change 
when subjected to changes in the external hydrostatic pres-
sure P and are defined by [1–4]: 

1 1

V

T

V

K V P
β

∂Ê ˆ= = - Ë ¯∂
 . 

In general, most common materials contract in all direc-
tions when the external pressure is increased so that com-
pressibilities are normally positive. However, it has re-
cently been shown that negative compressibilities are  
possible and in fact, in their recent work, Lakes and Woj-
ciechowski [3] argue that the existence of negative com-
pressibility does not violate classical thermodynamic  
theory which in fact only strictly forbids this property for 
unconstrained systems. In fact, Lakes and Wojciechowski 
also report that they have observed and measured negative 
compressibility in pre-strained foams. In this respect one 
should also mention the work by Grima et al. [4] and Gatt 
et al. [5] who have proposed examples of systems which 
show such properties and also the work by Baughman et al. 
[6] who had proposed a networked polymeric carbon based 
polymer which is predicted to exhibit negative linear com-
pressibility (defined below). Also, it should be noted that it 

is well known that negative linear compressibility is possi-
ble in the presence of significant anisotropy as such sys-
tems could still behave in such a way that the overall 
volumetric compressibility is positive. 
 A very basic, yet simple unit that has a potential to ex-
hibit negative compressibility is a triangle constructed 
from pin-jointed rods made from conventional materials, 
where the rod forming the base of the triangle is made up 
of a material that has a different compressibility than that 
of the other two rods making up the sides of the triangle. 
More specifically, if the base rod expands to a higher ex-
tent than the sides when the structure is subjected to a de-
crease in pressure (i.e. the base rod material has a lower 
compressibility than the material used for the sides of the 
triangles), the height of the triangle shortens (the ‘triangu-
lar shortening’ effect) as a result of the constraint that the 
sum of internal angles of the triangle must remain equal to 
180°. All this makes such triangular truss systems exhibit 
linear negative compressibility in the direction orthogonal 
to the base of the triangle. (Note that this ‘triangular short-
ening’ concept has already been used before for generating 
negative thermal expansion [7–9], although it is well 
known that negative thermal expansion may occur through 
many other mechanisms and does not require anisotropy 
[10].) 

We propose novel two- and three-dimensional truss structures 

made from rods of different materials connected together 

through pin-joints to form triangular units which can exhibit 

anomalous compressibility properties. In particular, we show 

that these systems may be made to exhibit negative linear 

compressibility along certain directions or compressibilities 

that are even more positive than any of the component

 materials, i.e. the end product is a system with tunable com-

pressibility properties that can be tailor made for particular 

practical applications. We also show that in specific cases, 

these systems can exhibit an overall  negative area compres-

sibility and sometimes even negative volumetric compressibi-

lity (i.e. negative bulk modulus) thus confirming that this 

property can indeed exist. 
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 In this work, we analyse and discuss 2D truss struc-
tures based on this idea, which are constructed from rods 
made of different materials which behave differently when 
subjected to pressure changes as a result of differences in 
their mechanical properties. We derive expressions for 

L
β , 

a property which quantifies the change in a length L of the 
sample as a result of a change in the pressure P and is the 
1D equivalent of the compressibility (the inverse of the 
bulk modulus) defined by1 [6]: 

1

L

T

L

L P
β

∂Ê ˆ= - Ë ¯∂
 , (1) 

which at constant temperature may be re-written in terms 
of 

L
ε , the strain in the direction of L, by: 

d

L

L

P

ε
β = -  . (2) 

In particular, for 2D systems which when subjected to a 
change in pressure dP deforms by a strain defined by the 
2D strain tensor ijε  ( , 1,2i j = ), we derive expressions for 
the linear compressibility at any direction ζ  to the 

1
Ox  di-

rection which is given by: 

( )

( ) ( ) ( ) ( )2 211 12 22cos 2 sin cos sin ,
d d d

L

P P P

β ζ

ε ε ε
ζ ζ ζ ζ

=

È ˘- + +Í ˙Î ˚

  
(3)

 

a property which is at a maximum/minimum at mutually 
orthogonal directions which are oriented at an angle of 

max/min
ζ  to the Ox

i
 axis where 

max/min
ζ  is given by: 

1 12

max/min

11 22

1 2
tan

2

ε
ζ

ε ε

-

Ê ˆ= Á ˜Ë ¯-
 , (4) 

 
1 Note that for isotropic materials, 1/3

L V
β β= . 

at which points the magnitude of the linear compressibility 
is given by: 

( )

22

12

max /min
2 d d dP P P

ε ε ε ε ε
β ζ 11 22 11 22

+ - Ê ˆÊ ˆ= ± +Á ˜ Á ˜Ë ¯ Ë ¯2
 . (5) 

We also derive expressions for 
A

β , a property which quan-
tifies the change in an area A of the sample as a result of a 
change in the pressure and is the 2D equivalent of the 
compressibility defined by2 [6]: 

1

A

T

A

A P
β

∂Ê ˆ= - Ë ¯∂
 , (6) 

where for 2D systems, since 
11 22

dA

A
ε ε= + , the expression 

for 
A

β  may be re-written as: 

11 22
d d

d d
A

P P

ε ε
β

È ˘= - +Í ˙Î ˚
 . (7) 

Finally, we also discuss some simple 3D systems based on 
this idea which can exhibit negative volumetric compressi-
bility (i.e. negative bulk modulus). 
 
 2 Analytical model for a 2D simplified system 
made from two materials Let us first consider a sim-
plified system, more specifically a 2D periodic truss sys-
tem constructed using rods made of two different types of 
isotropic materials, which we shall denote by ‘1’ and ‘2’ 
respectively connected together as illustrated in Fig. 1, i.e. 
in the same way as that proposed earlier which exhibits 
negative thermal  expansion [9].  This  construct  may be   
 
2 Note that for isotropic materials, 2 2/3

A L V
β β β= = . 

 

  

Figure 1 (online colour at: www.pss-

b.com) A simple 2D system where the ba-

sic unit is an isosceles triangle built from 

two different materials. Note that if the 

response of material 2 to an externally 

applied reduction in the hydrostatic pres-

sure is sufficiently larger than that of ma-

terial 1, the system can exhibit negative 

compressibility. 
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considered as a porous solid system placed in a fluid 
(which may be air). Note that as illustrated in Fig. 1, if the 
vertical rods ‘2’ expand much more that those of material 
‘1’ when the external pressure decreases, then the width of 
the system decreases (i.e. negative linear compressibility in 
the Ox1 direction), an effect which can even lead to an 
overall decrease in or overall shrinkage of the structure 
(the total area of the structure decreases, i.e. negative area 
compressibility). 
 To model this effect, we describe the shape and size of 
the system by a parallelogramic unit cell containing two 
triangles, as illustrated in Fig. 1 and if it is oriented such 
that l2 is aligned parallel to the 

2
Ox  direction, the unit cell 

vectors are given by ( )
11 12
,X X=a  and ( )

22
0, X=b  where: 

2 2

1 2

11

4

2

l l
X

-

=  , (8) 

22 2
X l=  , (9) 

2

12

2

l
X =  . (10) 

 If the materials m = 1, 2 have different Young’s moduli 

S
,

m
E  Poisson’s ratio 

Sm
ν  i.e. bulk modulus K

m
, then when 

the structure is subjected to a change in the external pres-
sure dP, the lengths 

m
l  of each type of element varies by a 

different amount d
m
l  given by: 

d d
m m m
l l s P= -  , (11) 

where for three dimensional isotropic rods (i.e. rods which 
can experience a pressure from all three dimensions), the 
term 

m
s  which is the linear compressibility of the material 

m is given by: 

S

S

1 1 2

3

m

m

m m

s
K E

ν-

= =  . (12) 

These changes in 
m
l  due to a variation in the external pres-

sure will result in changes in size and shape of the macro-
structure which may be quantified through the 2 × 2 strain 
tensor ( ) , 1, 2ij i jε =  where 

11
ε  and 

22
ε  are the axial strains 

in the Ox1 and Ox2 directions respectively, and 
12
ε  and 

21
ε  

are equal to half the shear strain .γ  These strains are given 
by: 

11

11

11

dX

X
ε =  ,  22

22

22

dX

X
ε =  , 

12

12 21 12 22

11 22

1
d d

2 2

X
X X

X X

γ
ε ε

È Ê ˆ ˘= = = - Á ˜Í ˙Ë ¯Î ˚
 . (13) 

Thus, in analogy to the thermal model [9], since: 

2 2

1 1

d d d
ij ij

ij m m m

m mm m

X X
X l l s P

l l
= =

∂ ∂
= = -

∂ ∂
Â Â  (i, j = 1,2) (14) 

from Eqs. (8)–(14), these elements of the strain tensor are 
given by: 

11 11 11

11 1 1 2 2

11 11 1 2

2 2 2 2

1 1 2 2 1 1 2 2

2 2 2

11 1 2

d 1
d

4 4
d d ,

4 4

X X X
l s l s P

X X l l

l s l s l s l s
P P

X l l

ε

∂ ∂Ê ˆ= = - +Á ˜Ë ¯∂ ∂

- -
= - = -

-

 

(15) 

22 22

22 2 2 2

22 22 2

d 1
d d

X X
l s P s P

X X l
ε

∂Ê ˆ= = - = -Á ˜Ë ¯∂
 (16) 

[ ]

12 12 22

12 21 2 2 2 2

11 2 22 2

11

1
d

2

1
0 d 0 ,

2

X X X
l s l s P

X l X l

P
X

ε ε

∂ ∂È Ê ˆ ˘= = - - Á ˜Í ˙Ë ¯∂ ∂Î ˚

= - =
 

and using Eq. (5), the linear compressibility at an angle ζ  
to the Ox1 direction is given by: 

( ) ( ) ( )
2 2

2 21 1 2 2

2 22 2

1 2

4
cos sin

4
L

l s l s
l s

l l
β ζ ζ ζ

-
= +

-

 , (18) 

a function which is at a maximum/minimum on-axis 
( 90ζ = ∞). 
 Furthermore, referring to Eq. (7), the area compressi-
bility βA for this system is given by [3]: 

( )2 2

1 1 2 2 2

2 2

1 2

4 2

4
A

l s s l s

l l
β

+ -
=

-

 . (19) 

These two equations suggest that in general, the values of 
the linear and area compressibilities for this simplified sys-
tem can be both positive or negative with the actual sign 
and magnitude being dependent on: 
 (i) the geometry of the system (i.e. the relative magni-
tudes of 

m
l ); 

 (ii) the properties of the materials (i.e. the magnitudes 
of 

Sm
E  and 

Sm
ν ); 

and, in the case of the linear compressibility 
L

β  also on the 
direction of measurement (i.e. the angle ζ ) as clearly illus-
trated by plots of 

L
β  against ζ for various combinations of 

1 2 1 2
, ,  and l l s s  (see Figs. 2, 3) which show that the com-

pressibility can be negative for some but not all values of 
ζ  with maximum negative compressibility being exhibited 
in the Ox1 direction. 
 In fact, the equations and plots suggest that for this 
structure to exhibit negative linear compressibility, it is re-
quired that the compressibility in the Ox1 direction is nega-
tive, i.e. [ ]1 11

d 0
L
Ox Pβ ε= - < . Thus, since from geomet-

ric considerations 
2
l  must be at least equal to 

1
2 ,l  i.e. 

2 2

1 2
4 0l l- > , the requirement for negative linear compressi-
bility in at least one direction will reduce to 2 2

2 2 1 1
4l s l s>  in 

which case, for [ ]90 , 90ζ Œ - ∞ ∞ , the compressibility will be 
negative in the ranges ( ),

m m
ζ ζ ζŒ -  where 

m
ζ  is defined by: 

( )

2 2

1 2 2 1 1

2 2

2 2 1 2

4
tan

4
m

l s l s

l s l l
ζ -

-

=

-

 . (20) 

(17) 
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Figure 2 (online colour at: www.pss-b.com) Plots of ( ),
L

β ζ  the linear compressibility against ζ (the direction of measurement) for 

simple systems where the basic unit is an isosceles triangle made from two materials with (a) 
1 2
s s≥  and (b) 

1 2
s s£  where for (i) 

1
1l = , 

2
0.5l = , (ii) 

1 2
1l l= =  and (iii) 

1
1l = , 

2
1.5l = . Note that the values chosen are in arbitrary units. 

 
Thus, for this simple system, the effect of negative com-
pressibility can be maximized (i.e. increasing the magni-
tude of the most negative 

L
β  and widening the range of 

values of ζ  where negative compressibility is exhibited) by 
increasing the magnitude of 2 2

2 2 1 1
4l s l s-  and minimising 

that of ( )2 2

2 2 1 2
4l s l l- . This can be achieved by: 

 1. maximizing 
2
l  and/or minimizing 

1
,l  two properties 

which are easy to control but are however limited by the 
geometric constraint that 

1 2
2l l> ; 

 2. maximising 
2
s  and/or minimising 

1
s , two properties 

which are limited by the availability of materials.     

 

 

Figure 3 (online colour at: www.pss-b.com) Plots of ( ),
L

β ζ  the linear compressibility against ζ (the direction of measurement) where 

the basic unit is an isosceles triangle made up from two materials where (a) 
1

1l = , 
1

1s =  and 
2

2s =  (b–c) 
1

1l = , 
2

1.5l = , 
1

100E = , 

2
10E =  where for (b) 

1
ν  is held fixed at a value of 1 while for (c) 

2
ν  is held fixed at a value of 1. Note that the values chosen are in ar-

bitrary units.  
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 For normal three-dimensional rods where  
S

1 2 /
m m
s ν= -  

ESm, the value of 
2
s  may be increased either by reducing 

the value of the Young’s modulus or by reducing the value 
of the Poisson’s ratio. In this respect it is interesting to note 
that for isotropic materials, the Poisson’s ratio is bound to 
be within the range of –1 to 0.5, and hence auxeticity of 
rods ‘2’ enhances the extent of negative compressibility 
while auxeticity of rods ‘1’ enhances positive compressi-
bility. This effect is illustrated in Fig. 3a, b which shows 
several plots of ( )

L
β ζ  against ζ  for various combinations 

of the lengths, moduli and Poisson’s ratios. All this is very 
significant and provides another possible application where 
auxetic materials can result in a significant enhancement in 
performance when compared to conventional materials 
[11–25]. 
 The plots in Figs. 2, 3 also highlight the fact that: 
 1. in the limit when 

2 1
2l lÆ , the percentage of values 

of ζ  where 
L

β  is negative will tend to 100%; 
 2. in some cases, the positive linear compressibilities in 
certain directions is greater in magnitude than the linear 
compressibilities of the components, i.e. the system can act 
as ‘a linear compressibility amplifier’. 
 Let us now analyse the equation for the area compres- 
sibility .

A
β  In this case, since the denominator is al- 

ways positive, negative compressibility arises when 

( )2 2

2 2 1 1 2
2l s l s s> +  since then, the numerator of Eq. (19) 

would be negative. Thus, due to the geometric constraint 
that 

1 2
2l l> , for negative area compressibility it is required 

that: 

1 2

1 2 1

2

2 2
s

s s
l l l

+
> >  , 

a condition which will only be satisfied if: 

1 2

2

s
2

s

s +
<  fi  

1 2
s s<  

 

 

Figure 4 (online colour at: www.pss-b.com) Plots of 
A

β , the area 

compressibility against  ζ  for simple systems made from two ma-

terials where the basic unit is an isosceles triangle for different 

combinations of 
1
l , 

2
l , 

1
s and 

2
s . Note that the values chosen are in 

arbitrary units. 

 All this is graphically illustrated in Fig. 4. 
 At this stage it is important to emphasise that although 
the ‘structure’ may exhibit a net negative linear or area 
compressibility, each individual component of the system 
will still be exhibiting conventional positive compressibil-
ity, i.e. the total actual volume occupied by the three solid 
rods would have increased when the external pressure is 
decreased thus ensuring that there are no violations of the 
energy conservation law. In fact, the negative linear or area 
compressibilities are solely due to the fact that the rods 
making up the triangle would experience different strains 
in the free (unbound) state, and, since they are constrained 
to maintain a triangular shape and due to the fact that the 
sum of the internal angles of a triangular unit must remain 
equal to 180° the triangular construct must necessarily be-
come shorter. 
 
 3 Analytical Model for generalised 2D systems 
made from three different materials Having estab-
lished the properties for this simplified case, let us now ex-
amine more complex cases. In particular, we consider a 2D 
periodic truss system constructed using rods made of three 
different types of isotropic materials, which we shall de-
note by ‘1’, ‘2’ and ‘3’ (see Fig. 5). Once again, the shape 
and size of the system is described by a parallelogram unit 
cell containing two triangles where in this case: 

( ) ( ) ( ) ( )
11 1 2 3 1 2 3 1 2 3 1 2 3

2

1

2
X l l l l l l l l l l l l

l
= + + - + + - + + -  

(21) 

22 2
X l=

 (22) 
2 2 2

2 2 1 2 3

12 1 11

2

.
2

l l l
X l X

l

+ -
= - =  (23) 

 

Figure 5 (online colour at: www.pss-b.com) A more general 2D 

system that can exhibit negative compressibility which can be 

constructed using three materials where the basic unit is a scalene 

triangle. 
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 Thus, from Eqs. (8)–(14), the elements of the strain 
tensor are given by: 

11

11

11

11 11 11

1 1 2 2 3 3

11 1 2 3

d

1
d

X

X

X X X
l s l s l s P

X l l l

ε =

∂ ∂ ∂Ê ˆ= - + +Á ˜Ë ¯∂ ∂ ∂
 ,

 

(24)

 

22 22

22 2 2

22 22 2

d 1
d ,

X X
l s P

X X l
ε

∂Ê ˆ= = - Á ˜Ë ¯∂
 (25) 

12 21

11

12 12 12 12 22

1 1 2 2 3 3 2 2

1 2 3 22 2

1

2

d .

X

X X X X X
l s l s l s l s P

l l l X l

ε ε= = -

∂ ∂ ∂ ∂È ˘Ê ˆ+ + - Á ˜Í ˙Ë ¯∂ ∂ ∂ ∂Î ˚

 

(26) 
 
 Thus, in this case, whilst the linear compressibility in 
the Ox2 direction which is given by [ ]2 22

d
L
Ox Pβ ε= -   

is still always positive and given by 
2
s , the linear com-

pressibility in the Ox1 direction (which is equal to 

[ ]1 11
d

L
Ox Pβ ε= - ) will once again be able to assume 

both positive and negative values since all three 
11
/d

i
X l∂  

terms have both positive and negative components given by: 

( )2 2 3

1 2 311 1

2 2

1 11 2 11 2
2 2

l l lX l

l X l X l

+∂
= -

∂
 , (27) 

4 4 4 2 2

11 3 1 2 1 3

2 2

2 11 2 11 2

2

4 4

X l l l l l

l X l X l

∂ + +
= -

∂
 , (28) 

( )2 2 3

3 1 211 3

2 2

3 11 2 11 2
2 2

l l lX l

l X l X l

+∂
= -

∂
 , (29) 

i.e. the linear compressibility in the Ox1 direction 

[ ]1 11
d

L
Ox Pβ ε= -  is given by: 

[ ] ( )11 11

1 2 2

11 11 2

d 1

4
L

X
Ox F G

P X X l

ε
β = - = = -

∂
 , (30) 

where: 

( ) ( ) ( )2 2 2 4 4 2 2 2

1 2 3 1 2 3 1 2 3 1 2 3
2 2F l l l s l l l s l l l s= + + + + +  , 

( )4 4 2 2 4

1 1 2 2 1 3 2 3 3
2 2 2G l s l l l l s l s= + + +  , 

thus suggesting that [ ]1 11
d

L
Ox Pβ ε= -  is positive when 

F G>  and negative when .G F>  
 Furthermore, it is interesting to note that in general, 

12 21
ε ε=  are not zero and instead these assume values given 
by: 

( )

( ) ( )

12 21

2 2 2 2 2 212

1 1 1 2 3 2 3 3 2 2

2 11 22

2 2

1 1 2 3 3 2

11 2

2

1
d

2

d .
2

X
l s l l l s l s l s P

l X X

l s s l s s
P

X l

γ
ε ε= =

È Ê ˆ ˘= - + - + + - - Á ˜Í ˙Ë ¯Î ˚
- - -

= -

 

 
This suggests that in general, provided that the system is 
anisotropic, the macrostructure shears when subjected to a 
change in pressure, unless ( ) ( )2 2

1 1 2 3 3 2
l s s l s s- = - , a condi-

tion which may be satisfied in a number of special cases 
including the situation when 

1 2 3
s s s= =  (the trivial solu-

tion corresponding to a structure made from one material 
in which case the compressibility is equal to the intrinsic 
compressibility of the materials), or the situation described 
in the previous section. Furthermore, we note that when 

12 21
0,ε ε= π  then the directions of maximum/minimum 

linear compressibilities will not be on-axis, as in fact illus-
trated in Fig. 6. Thus, in this case, maximum negative 
compressibility is not given by [ ]1 11

d ,
L
Ox Pβ ε= -  but by 

Eq. (5). In fact, it is important to note that such systems 
may be able to exhibit negative linear compressibilities in 
off-axis directions even if 

11
dPε-  is positive. Nevertheless, 

for negative 
A

β , the term [ ]1 11
d

L
Ox Pβ ε= -  must not only 

be negative, but its magnitude must be greater then 

[ ]2 22 2
d

L
Ox P sβ ε= - = . 

 

 

Figure 6 (online colour at: www.pss-b.com) Variation of linear compressibility ( )
L

β ζ  with the angle of loading (ζ) for a 2D system 

where the basic triangular unit has 
1

1l = , 
2

1.5l =  and 
3

2l = . Note that the values chosen are in arbitrary units. 

(31) 
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 4 Three dimensional systems Let us now consider 
a three dimensional truss system which in general may be 
described by parallel layers of the 2D structure in Fig. 1 
aligned in the 

1 2
Ox Ox-  plane where half of the triangles 

(the ones shaded in Fig. 7a) form the base of two tetrahe-
dra, one on either side of the 2D structure. Whilst in gen-
eral, the six edges of the tetrahedra may have different 
lengths 

1 2 6
, , ...,l l l  provided that they satisfy some geomet-

ric criteria) and can be made from different materials ‘1’, 
‘2’, … ‘6’, here we only consider the simple case when the 
base is an isosceles triangle made from two materials with   
 

side lengths 
1
l , 

2
l  and 

3 1
l l=  (i.e. the structure as in Fig. 8) 

where the two edges opposite to those of length 
1
l  also have 

an equal length 
4
l  and are made from the same material 

(material ‘4’) whilst the edge opposite to that of length 
2
l  

has a length 
5
l  and is made from material ‘5’. 

 It can be easily shown that this system can form a peri-
odic system with a unit cell (which is not the smallest unit 
cell), where if we assume that b  is always aligned in the 

2
Ox  direction and a  is always in the 

1 2
Ox Ox-  plane, then 

the unit cell vectors will be ( )
11 12
, ,0X X=a , ( )

22
0, ,0X=b  

and ( )
13 23 33
, ,X X X=c  where, referring to Figs. 7, 8, c  re-

fers to the vector AD with 
33

X  being the height h of the
tetrahedron ABCD which is given by: 

( )( )( )( )CD + CE + DE CD + CE + DE CD CE + DE CD + CE DE
DF

2 CE
h

- - -

= =  (32) 

 
where: 

5
CD l=   

2

2 2

1
CE

4

l
l= -   

2

2 2

4
DE

4

l
l= -  , (33) 

whilst: 

2 2

13
EF DEX h= = -  , (34) 

2

23
AE

2

l
X = =  . (35) 

 
 
 The changes in shape and size when the system  
is subjected to a pressure change can be defined by  
the 3 × 3 strain tensor ijε  ( , 1,2,3i j = ) where 

11
ε  and 

22
ε   

are given by Eq. (15) and (16) respectively (i.e. the  
discussion in section 2 also applies for the 

1 2
Ox Ox-   

plane of this structure) whilst the linear compressibility  
in the Ox3 direction which is equal to 

33
dPε  is given  

by: 

[ ] 33 33

3

33

1 d 1 d

d d d
L

X h
Ox

P X P h P

ε
β = - = - = -  , (36) 

 

Figure 7 (online colour at: www.pss-

b.com) A 3D truss system which can ex-

hibit negative volume compressibility, 

constructed of layers of the 2D structure 

shown in Fig. 1 using 4 different materi-

als. 

Figure 8 (online colour at: www.pss-

b.com) Basic 3D unit (which is analogous 

to the 2D triangular unit) that can be used 

to construct 3D truss system similar to that 

shown in Fig. 7. 
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where since ( )

1 2 4 5
, , ,h h l l l l= , the linear compressibility in 

the Ox3 direction 

[ ]3 1 1 2 2 4 4 5 5

1 2 4 5

1 d

d
L

h h h h h
Ox s l s l s l s l

h P l l l l
β

∂ ∂ ∂ ∂È ˘
= - = + + +Í ˙∂ ∂ ∂ ∂Î ˚

 . 

(37) 
 
As in the case of the 2D systems, for this system to exhibit 
linear compressibility in the Ox3 direction, it is required 
(but not sufficient) that at least one of the four partial de-
rivatives  ( 1, 2, 4, 5)

i
h l i∂ ∂ =  in the expression for dh h 

must be negative. It may be shown that for particular com-
binations of  ( 1, 2, 4, 5)

i
l i = , some of these partial deriva-

tives are indeed negative and in fact, it may be shown that 
for 

1
1l = , 

2
1.8l = , 

4
1.1l =  and 

5
0.5l = , the term [ ]3L

Oxβ  is 
given by: 

[ ] ( )

( )

3 1 2

4 5

1 d
0.380 0.036

d

0.514 0.902 ,

L

h
Ox s s

h P

s s

β = - ª - +

+ +

 

i.e. the linear compressibility in the Ox3 direction is nega-
tive if the terms  ( 1, 2, 4, 5)

i
s i =  are such that (0.380s1 + 

0.036s2) > (0.514s4 + 0.902s5). Note that as discussed in 
Section 2, these length combination may also result in 
negative linear and area compressibility in the 

1 2
Ox Ox-  

for certain combinations of  ( 1, 2)
i
s i = . 

 Having determined the strains in the Ox
i
 directions, one 

should note that these may be used to calculate the volume 
compressibility 

V
β  (the inverse of the bulk modulus, K) 

which at constant temperature is given by: 

11 22 33
1 1 d d d

d d d
V

T

V

K V P P P P

ε ε ε
β

∂Ê ˆ È ˘= = - = - + +Í ˙Ë ¯∂ Î ˚
 (38) 

i.e.: 

[ ]3V A L
Oxβ β β= +  (39) 

 All this suggests that for certain combinations of 
i
l  and 

 ( 1, 2, 4, 5)
i
s i = , 

V
β  (and hence the bulk modulus) for this 

simple truss system can indeed be negative, for example if 
for the length combination that we have just considered 

1
3,s =  

2
6,s =  

4
1s =  and 

5
0.5s =  negative volume com-

pressibility is observed. Once again it is important to em-
phasise that although this ‘structure’ exhibits a net negative 
volume compressibility, each individual component of the 
system will still be exhibiting conventional positive com-
pressibility, i.e. the total actual volume occupied by the 
solid rods would have increased when the external pressure 
is decreased thus ensuring that there are no violations of 
the energy conservation law. 

 
 5 Final considerations Before we conclude this dis-
cussion, it is important to highlight some important aspects 
of the model presented here. 

 First of all, it is important to note that the systems de-
scribed here are of interest not only due to the fact that 
they can exhibit negative compressibility/bulk modulus but 
also because these models allow for the possibility to con-
struct them with a pre-desired set of compressibility char-
acteristics, i.e. they can be tailor made for particular practi-
cal applications. 
 In this respect it is important to highlight that the val-
ues of the compressibility of the structure depend on the 
relative instantaneous lengths 

m
l  of the trusses in the sys-

tem which in turn depend on the external pressure. In fact, 
it is important to note that the compressibility properties 
discussed above are only valid for small pressure changes. 
This pressure dependence of the compressibility can have 
some very interesting consequences as may be illustrated, 
for example, by considering a special case of the simple 
model where the triangles are equilateral at a temperature 
T0, with 

2 1 3
4 4s s s= = . From Eq. (18), this system exhibits 

zero compressibility in the Ox1 direction at P = P0, How-
ever, as the pressure is decreased, the lengths l

m
 will in-

crease in length in such a way that 
2
l  will always be longer 

than l1 for pressures P < P0, and conversely, if the pressure 
is increased, the lengths l

m
 decrease in length in such a way 

that 
2
l  is always shorter than l1 and l3 for pressured P > P0 

with the result that although the system exhibits zero com-
pressibility in the 

1
Ox  direction at P = P0, it will exhibit 

negative compressibility in the 
1

Ox  direction when P < P0, 
which becomes more negative as P is increased and posi-
tive compressibility in the 

1
Ox  direction when P > P0. 

 Furthermore, in this discussion the behaviour of this 
system has been discussed at constant temperature condi-
tions. In reality, when this system is constructed using dif-
ferent materials, these materials will not only have differ-
ent mechanical properties, but probably also different 
thermal expansion properties. In this respect, it is impor-
tant to note that the thermal expansion properties of such 
systems have already been discussed before [7–9], where, 
for example, it was shown that the 2D systems in Figs. 1 
and 5 can also be constructed to exhibit pre-desired ther-
mal expansion properties (which could include negative 
thermal expansion). Since in practical applications it is 
possible for, such systems to experience a simultaneous 
change in both the external hydrostatic pressure and the 
temperature, it is important that the model presented here 
for the compressibility is considered together with the 
model for thermal expansion properties presented else-
where [9] so as to obtain a more complete picture of the 
behaviour of these systems. In particular it would be inter-
esting to investigate systems where changes in shape/size 
due to changes in temperature could be reduced or even 
nullified by counter changes caused by a change in pres-
sure. 
 Also, it is important to highlight that this system can be 
considered as a ‘multifunctional negative system’ which 
can exhibit more than one negative property at the same 
time, in particular negative compressibility and negative 
thermal expansion. Furthermore, the concept presented he-
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re for generating negative compressibility due to triangle 
shortening can easily be applied in the construction of sys-
tems similar to the one proposed to exhibit simultaneous 
negative thermal expansion (due to triangular shortening) 
and negative Poisson’s ratio (due to rotating triangles) so 
as to achieve systems which can exhibit all these three ne-
gative properties simultaneously [25]. 
 In this respect it is important to note that to maximise 
the effects of negative compressibility and negative ther-
mal expansion, it may be very useful if the rods which are 
meant to respond mostly to changes in tempera-
ture/pressures could be replaced by piston-like elements 
filled with a gas (see Fig. 9). In such cases, assuming that 
the gas obeys ideal PV = nRT behaviour where V = Al with 
A being the cross-sectional area and l being the length of 
the piston containing the gas, then the changes in length as 
a result to a change in pressure or temperature (with the 
other component being kept constant) is given by: 

2
d d

nRT
l P

AP
= -  ,  d d

nR
l T

AP
=  , 

i.e.: 

1

i
s

P
=  ,  

1
d

i
T

T
α =  , 

which in practice results in values of 
i
s  and 

i
α  which may 

have much greater values than those afforded by conven-
tional commonly available solid materials. 
 Finally, it is important to highlight that the properties 
described here can be exhibited at any length scale, i.e. the 
systems presented here can be constructed at the micro 
and/or nano level so that the resultant product can be con-
sidered as a solid ‘material’ rather than a ‘structure’ which 
exhibits negative compressibility (i.e. negative bulk modu-
lus). This would result in the first solid state material that 
exhibits negative bulk modulus, thus confirming the neces-
sity that scientists and engineers must allow for the possi-
bility that the bulk modulus is negative in their investiga-
tions. 
 
 
 

 

 

Figure 9 (online colour at: www.pss-b.com) A triangular unit, 

which exhibits negative linear compressibility, constructed using 

a gas-filled piston which can be used to maximise the negative 

compressibility effect. 

 6 Conclusion In this study we have shown that it is 
possible to engineer 2D and 3D systems, that can be con-
structed at any scale, with adjustable linear, area and/or 
volume compressibility, which can also be negative, i.e. 
systems which shrink in size (at least in one dimension) 
when the external pressure decreases and that the linear 
compressibility of these systems is highly anisotropic and 
pressure dependent. We have also shown that these sys-
tems may also exhibit other negative properties, including 
negative thermal expansion. Given the simplicity of the 
construction, its adjustability and its structural rigidity 
(since the construct under analysis consists of triangles 
which confer substantial structural rigidity), we envisage 
that the proposed construct or variations of it should find 
extensive use in many practical applications. 
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