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Abstract:  
Generalised linear models (GLMs) overcome the limitations of Normal regression 
models since they can accommodate any distribution that is a member of the 
exponential family. These models allow transformation of the response variable 
through the canonical link function. This paper presents two GLMs to analyze a 
data set provided by a car insurance company. The first model is a lognormal 
regression model that relates claim size to a number of demographic, car-related 
and policy-related predictors and the second model is a Poisson regression model 
that relates the number of claims filed by a policy holder to these explanatory 
variables. An appropriate model that describes the aggregate claim amount in a 
portfolio of insurance contracts during a fixed period combines both claim size 
and number of claims through a compound Poisson distribution.   
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Introduction 
 

One of the most far-reaching contributions in statistical modelling is the concept 
of generalized linear models introduced by John Nelder and Robert Wedderburn 
(1972).  These models relate the response variable to the linear predictor (non-
random component) through any invertible link function and accommodate any 
error distribution that is in the exponential family. Analyzing car claim data using 
traditional ordinary least squares regression models and ANOVA methods can be 
problematic.  Firstly the distribution of car claim size is very often right skewed 
and do not follow a Normal distribution; secondly the number of claims made by 
a policyholder is a discrete variable and would be better accommodated by a 
discrete distribution. GLMs, on the other hand, provide an integrated conceptual 
and theoretical framework that can be used to analyze both continuous and 
categorical response data. Logistic and Probit regression models are appropriate 
to analyze Binomial response data; whereas Loglinear models are suitable to 



analyze Multinomial and Poisson response data. The iteratively re-weighted least 
squares algorithm that maximizes the log-likelihood function in Generalized 
Linear models makes use of Fisher scoring.  Although GLMs accommodate most 
of the assumptions of Regression models they still rely on the assumption that the 
responses are independent. 

 
 

Estimation 
 

The unity of several statistical methods to analyze response data that departs from 
the normality assumption was demonstrated by (Nelder and Wedderburn 1972) 
using the idea of a generalized linear model. This section provides an outline of 
the properties of GLMs as a comprehensive structure.  
 
Consider a random variable iY  whose probability mass function, if it is discrete, 

or probability density function, if it is continuous is assumed to follow the form of 
the exponential family of distributions. 
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It is assumed that the responses iY  are independent and identically distributed and 

the distribution of each iY  is a member of the exponential family. Moreover the 

known values of the explanatory variables influence the distribution of iY  through 

a single linear function or linear predictor iη  
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It is also assumed that the mean ( )ii YE=µ , and linear predictor iη  are related by 

a smooth invertible link function ( )⋅g . 
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Considering the likelihood L as a function of β , one can find the maximum of L 

by maximizing 
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The log-likelihood function is maximized by solving the equations 0=
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pj ,...,1= .  Let jU  be the scores with respect to parameters jβ  such that 
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In general the equations 0=jU  for pj ,...,1=  are non-linear and they have to be 

solved by numerical iteration.  The Newton-Raphson approach to solving these 
equations would be to set up an iterative scheme for the vector β .  The thm  
approximation is given by 

( ) ( ) ( )111ˆˆ −−− −= mmm UHββ  

where 
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ββ  and the score 

vector ( )1−mU  is also evaluated at the previous iteration.  These second derivatives 
are often complicated to calculate.  An alternative procedure, which is sometimes 
simpler than the Newton-Raphson method is called the Fisher scoring technique.  
It involves replacing the matrix of second derivatives by its matrix of expected 
values where 
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whose diagonal elements are 2 21 ( )ii i iw dσ=  and ( ) ( ) ( )[ ] ( )1111ˆˆ −−−− += mmmm UΨββ .  

Multiplying throughout by ( )1−m
Ψ  we get ( ) ( ) ( ) ( ) ( )1111 ˆˆ −−−− += mmmmm UβΨβΨ .  The 

right hand side of this iterative scheme can be written as:    
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The generalized linear model maximum likelihood estimators are obtained by an 
iterative weighted least squares procedure.   
 
 

Application 
 

To implement the theory of GLMs we utilized a data set provided by a local 
insurance car company, to relate the number of claims filed annually by each 
policyholder and the claim size made by each claimant to a number of predictors. 
These explanatory variables included policy-related variables (cover subscription, 
premium paid annually by policyholder), car-related variables (number of owned 
cars, engine size) and individual covariates (age of policyholder). Premium paid 
annually and claim size are continuous variables; number of claims and number of 
owned cars are discrete variables; whereas cover subscription (Third party only, 
third party fire and theft, fully comprehensive), engine size (less than 1100, 1100-
1500, more than 1500cc) and age of policy holder (18-30, 31-50, more than 50 
years) are categorical variables. 
 

 
Figure 1: Frequency distribution of car claim size 



The data comprised 9107 policyholders of which 497 made at least one claim. 
The frequency distribution of claim size, displayed in Figure 1, was considerably 
right skewed and fitting a Normal regression model to this data was not deemed 
appropriate. EasyFitXL was used to identify the best contender for the distribution 
of claim size using the Kolmogorov Smirnov, Anderson Darling and Chi squared 
criteria. Undoubtedly the Lognormal distribution is identified as the best fitting 
distribution for claim size. 
 

 
Distribution 

Kolmogorov Smirnov Anderson Darling Chi squared 
Statistic Rank Statistic Rank Statistic Rank 

Lognormal 0.0231 1 0.2676 1 4.1677 2 
Normal 0.1701 17 26.127 17 131.54 18 

Table 1: Goodness of fit using Lognormal and Normal distributions 
 
Figure 2 displays that 94.5% of policyholders made no car claims throughout a 
year, 5.2% made one claim and the remaining 0.3% made at least two claims.  
The Poisson distribution is appropriate for the number of claims made yearly by a 
policyholder because this random variable is discrete, does not have an obvious 
maximum and making a claim is considered to be a rare event. 
 

 
Figure 2: Frequency distribution of number of car claims  
 
 

Fitting a Lognormal regression model to car claim size 
 
If the logarithm of the response variate log( )iy  has a Normal distribution with 

mean iµ  and variance 2σ  then iy  has a lognormal distribution. Assume that claim 

sizes ,  1,...,iy i n=  are independent and follow a lognormal distribution whose 

density function is: 
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This can be expressed as: 
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The mean and variance of iy  are respectively  

( ) ( )2exp 0 5i iE Y .µ σ= +  and ( ) ( ) ( )2 2Var exp 2 exp 1i iY µ σ σ = + −   

If an identity link function )( i iη µ=  is assumed, implying that 1i i id η µ= =∂ ∂ , 
one can compute the linear predictor iη , the predicted values iµ , the iterative 

weights 21ii iw σ=  and the working variate i iz y= , at each iteration. 

 
 Predictor Wald Chi-Square df P-value 
Intercept 6957.628 1 0.000 
Engine size 3.875 2 0.144 
Age-Group 2.205 2 0.332 
Cover 0.380 2 0.827 
Premium paid annually 4.988 1 0.026 

Table 2: Tests of model effects 
 
The tests of model effects displayed in table 2 indicate that the premium paid 
annually (in thousands of Euro) is the best predictor of car claim size.  This is 
followed by engine size, age of policyholder and cover subscription. This four-
predictor model explain 15.7% of the total variance in the responses indicating 
that there are other important predictors that contribute significantly in explaining 
variation in car claim sizes. 
 
 
Term 

 
Parameter 

 
Std. Error 

95% Wald Confidence Interval 
Lower Upper 

Intercept 6.898 0.113 6.676 7.120 
Engine size (less than 1100cc) -0.236 0.140 -0.510 0.038 
Engine size (1100-1500cc) 0.033 0.099 -0.162 0.229 
Engine size (More than 1500cc) 0 . . . 
Age-Group (18-30 years) 0.254 0.171 -0.081 0.589 
Age-Group (31-50 years) 0.047 0.097 -0.144 0.237 
Age-Group (More than 50 years) 0 . . . 
Cover (Third party only) -0.064 0.110 -0.280 0.152 
Cover (Third party fire and theft) 0.007 0.130 -0.247 0.262 
Cover (Fully comprehensive 0 . . . 
Premium 0.351 0.157 0.043 0.659 
(Scale) 0.830 0.059 0.723 0.953 

Table 3: Parameter estimates and corresponding 95% confidence intervals 
 

The parameter estimates, displayed in table 3, reveal interesting contrasts between 
the levels of the main effects. Policyholders that pay large premiums tend to make 
bigger claims than other policyholders; young claimants tend to make bigger 
claims than older ones. Moreover, policyholders possessing small sized engine 
cars tend to make smaller claims than those possessing large sized engine cars and 



claimants who insure their cars under a third party cover tend to make smaller 
claims than those who insure their cars under a third party fire and theft or a fully 
comprehensive cover. The residual plot displayed in Figure 3 exhibits no 
systematic patterns indicating no model misspecifications. Approximately 95% of 
all Pearson residuals lie between the 2±  threshold values which conform to what 
is expected. 
 

 
Figure 3: Residual plot 
 

 
Fitting a Poisson regression model to number of claims 

 
Suppose that the response variates ,  1,...,iy i n=  are independent and Poisson 

distributed ( )i iy Poi µ∼  whose mass function is: 
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The log link is the canonical link function for a random variable having a Poisson 
distribution logi iη µ= , implying that 1i i i id η µ µ= =∂ ∂ . Given the fact that the 

mean and variance of iy  are both iµ , one can compute the linear predictor iη , the 

predicted values iµ , the working variate ( ) /i i i i iz yη µ µ= + −  and the iterative 

weights ii iw µ=  at each  iteration. 

 
 Predictor Wald Chi-Square df P-value 
Intercept 2.050 1 0.152 
Age-Group 3.094 2 0.213 
Cover 47.627 2 0.000 
Number of cars owned 15.198 1 0.000 
Premium paid annually 6.558 1 0.010 

Table 4: Tests of model effects 



The tests of model effects displayed in table 4 indicate that cover subscription is 
the best predictor of number of car claims. This is followed by the number of cars 
owned by policyholder, the premium paid annually (in thousands of Euro) and the 
age of policyholder. This four-predictor model explain 29.6% of the total variance 
in the responses indicating that there are other important predictors that contribute 
significantly in explaining variation in the number of car claims made annually by 
a policyholder. 
 
 
Term 

 
Parameter 

 
Std. Error 

95% Wald Confidence Interval 
Lower Upper 

Intercept -0.486 0.5841 -1.631 0.659 
Age-Group (18-30 years) 0.131 0.1657 -0.193 0.456 
Age-Group (31-50 years) 0.169 0.0967 -0.020 0.358 
Age-Group (More than 50 years) 0 . . . 
Cover (Third party only) -0.667 0.1321 -0.926 -0.408 
Cover (Third party fire and theft) -0.675 0.1129 -0.896 -0.454 
Cover (Fully comprehensive 0 . . . 
Number of cars owned 2.228 0.5716 1.108 3.349 
Premium paid annually 0.001 0.0002 0.000 0.001 
(Scale) 1    

Table 5: Parameter estimates and corresponding 95% confidence intervals 
 
The parameter estimates, displayed in table 5, reveal interesting contrasts between 
the categories of the predictors. Policyholders that pay larger premiums tend to 
make bigger claims than other policyholders; old claimants tend to make fewer 
claims than younger ones. Moreover, policyholders who insure their cars under a 
Fully Comprehensive cover have a tendency to make more claims than others and 
the number of claims made annually increases with the number of cars owned by 
the policyholders. Approximately 95% of all Pearson residuals lie between the 

2±  threshold values which conform to what is expected. 
 
 

The compound Poisson distribution 
 
The decomposition of the aggregate claim amount S paid annually by the insurer 
allows consideration of the number of claims and corresponding claim amounts 
separately. A practical advantage of this is the factors affecting claim numbers 
and claim amounts may well be different. For instance, a prolonged spell of bad 
weather may have a significant effect on claim numbers but little or no effect on 
the distribution of individual claim amounts. On the other hand, inflation may 
have a significant effect on the cost of repairing cars, and hence on the 
distribution of individual claim amounts, but little or no effect on claim numbers. 
 
If the random variable N, representing number of claims made by policyholders 
has a Poisson distribution with parameter λ  and 1 2, ,..., NX X X  are corresponding 

claim amounts which are assumed independent and identically distributed, then 

the total claim amount 
1

N
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=
=∑  has a compound Poisson distribution. This is 



obtained by marginalizing the joint distribution of ( , )S N  over N, which in turn is 
attained by joining the marginal distribution of N with the conditional distribution 
S N . If the number of claims N has a Poisson distribution with mean λ  and the 

total claim amount S has a compound Poisson distribution with parameter λ  then, 
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The expectation of S is obtained by applying the identity [ ] [ [ | ]]E S E E S N=  
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The variance of S is obtained by using [ ] [ [ | ]] [ [ | ]]Var S E Var S N Var E S N= +  
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The moment generating function of S is the moment generating function of N 
evaluated at log ( )XM t . 
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A very important property is that the sum of the independent compound Poisson 
random variables is itself a compound Poisson random variable. If 1,...,  nS S are 

independent random variables each having a compound Poisson distribution with 
parameters  and ( ) for 1,...,i iλ F x i n=  where ( )iF x  is the distribution of individual 

claim amounts then 
1

n
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=∑  also has a compound Poisson distribution with 
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= ∑ . Table 6 displays the distribution of 

claim size and the average number of car claims per age group and per cover. 



Age Group Distribution of claim size Mean number of claims 

18 – 30 years ln (1277.5,  0.829)N  1λ  = 0.05108 

31 – 50 years ln (1117.4,  0.963)N  2λ  = 0.06195 

More than 50 years ln (1039.1,  0.967)N  3λ  = 0.05334 
3 
 

Cover subscription Distribution of claim size Mean number of claims 

Third party only ln (1112.9,  0.895)N  1λ  = 0.03757 

Third party fire and theft ln (1123.6,  0.871)N  2λ  = 0.03907 

Fully comprehensive ln (1117.4,  0.942)N  3λ  = 0.08201 

Table 6: Distributions of claim sizes and mean number of claims 
 
 

Conclusion 
 

The GLMs identified one significant predictor (premium paid annually) for claim 
size and three significant predictors (cover subscription, number of cars owned, 
premium paid annually) for number of filed claims. One of the limitations of this 
study is that the explanatory variables explained a small portion of the variation in 
the response variables. Indeed other explanatory variables, for instance, speed of 
car before impact and driving behaviour would have improved predictions if they 
were recorded.   
 
An alternative approach to address the data heterogeneity is by fitting Latent class 
models. These models assume that the observed data are actually composed of 
several homogeneous segments that are mixed together in unknown proportions.  
The segments are considered latent (unobserved) because the number of clusters 
and the number of individuals they comprise are unknown. The objective is to 
estimate the true number of segments and derive a prediction regression model for 
each segment using the expectation-maximization (EM) algorithm that maximizes 
the expected log-likelihood function. Indeed the main advantage of using these 
models over traditional clustering techniques is that estimation and segmentation 
are carried out simultaneously.   
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