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Abstract:

Generalised linear models (GLMs) overcome the &tiohs of Normal regression
models since they can accommodate any distributian is a member of the
exponential family. These models allow transforomatof the response variable
through the canonical link function. This papersamts two GLMs to analyze a
data set provided by a car insurance company. ifeerhodel is a lognormal

regression model that relates claim size to a nurabdemographic, car-related
and policy-related predictors and the second meda&lPoisson regression model
that relates the number of claims filed by a polimider to these explanatory
variables. An appropriate model that describesatigregate claim amount in a
portfolio of insurance contracts during a fixed ipgrcombines both claim size
and number of claims through a compound Poissdrildision.
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Introduction

One of the most far-reaching contributions in statal modelling is the concept
of generalized linear models introduced by JohrdBlend Robert Wedderburn
(1972). These models relate the response vartablke linear predictor (non-

random component) through any invertible link fumctand accommodate any
error distribution that is in the exponential famifnalyzing car claim data using
traditional ordinary least squares regression nsdet! ANOVA methods can be
problematic. Firstly the distribution of car clasize is very often right skewed
and do not follow a Normal distribution; secondie thumber of claims made by
a policyholder is a discrete variable and wouldbe¢ter accommodated by a
discrete distribution. GLMs, on the other hand,vate an integrated conceptual
and theoretical framework that can be used to aealyth continuous and

categorical response data. Logistic and Probitessgon models are appropriate
to analyze Binomial response data; whereas Loglimeadels are suitable to



analyze Multinomial and Poisson response data.ifEnatively re-weighted least
squares algorithm that maximizes the log-likelihofuhction in Generalized

Linear models makes use of Fisher scoring. AltlhoG§Ms accommodate most
of the assumptions of Regression models theyrstillon the assumption that the
responses are independent.

Estimation

The unity of several statistical methods to anakgsponse data that departs from
the normality assumption was demonstrated by (Medael Wedderburn 1972)
using the idea of a generalized linear model. Beistion provides an outline of
the properties of GLMs as a comprehensive structure

Consider a random variablé whose probability mass function, if it is discrete

or probability density function, if it is continusiis assumed to follow the form of
the exponential family of distributions.
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It is assumed that the respon&ésare independent and identically distributed and
the distribution of eacly, is a member of the exponential family. Moreover th

known values of the explanatory variables influetheedistribution ofY; through
a single linear function or linear predictgr
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It is also assumed that the mean= E(Y, ), and linear predicton, are related by
a smooth invertible link functiom([J.

i = g(ﬂi)
Considering the likelihoodl as a function off, one can find the maximum &f
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by maximizinglogL =", wherel, =logP(Y; =y, ). This is realized by solving
i=1

the maximum likelihood equation(%— =0 for j=1...,p
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The log-likelihood function is maximized by solvirtige equationsaa—I =0 for
j
j=1..,p. LetU; be the scores with respect to paramejgrsuch that

U = ol :'z al; :' (yi_:ui)xij
: 0By 0B, = °d

In general the equationg; =0 for j =1..,p are non-linear and they have to be
solved by numerical iteration. The Newton-Raphapproach to solving these
equations would be to set up an iterative schemehi® vectorp. The m"
approximation is given by
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vector U™ is also evaluated at the previous iteration. &rsescond derivatives
are often complicated to calculate. An alternapwecedure, which is sometimes
simpler than the Newton-Raphson method is calledRikher scoringechnique.
It involves replacing the matrix of second derivasi by its matrix of expected
values where
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} is the Hessian matrix evaluated fat |§(




So ‘I’:B—L%} can be expressed as'WX, whereW is a diagonal matrix

whose diagonal elements are =1/(o%d?) and g™ = i) + 3] ylma),

Multiplying throughout by®™¥ we get ¥ g™ = gy . yim1) - The
right hand side of this iterative scheme can bétevrias:
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(X'WX)B™ = x'Wz andp™ = (X' WX) ™ X'Wz

The generalized linear model maximum likelihoodneators are obtained by an
iterative weighted least squamg®cedure.

Application

To implement the theory of GLMs we utilized a da&t provided by a local
insurance car company, to relate the number ofmgdiled annually by each
policyholder and the claim size made by each clati@a number of predictors.
These explanatory variables included policy-relatadables (cover subscription,
premium paid annually by policyholder), car-relatediables (humber of owned
cars, engine size) and individual covariates (aigeoticyholder). Premium paid
annually and claim size are continuous variablasber of claims and number of
owned cars are discrete variables; whereas covwsception (Third party only,
third party fire and theft, fully comprehensivejgine size (less than 1100, 1100-
1500, more than 1500cc) and age of policy hold8r3Q, 31-50, more than 50
years) are categorical variables.
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Figure 1: Frequency distribution of car claim size



The data comprised 9107 policyholders of which #®ade at least one claim.
The frequency distribution of claim size, displayed-igure 1, was considerably
right skewed and fitting a Normal regression maddethis data was not deemed
appropriate. EasyFitXL was used to identify thetlsestender for the distribution

of claim size using the Kolmogorov Smirnov, Anderdaarling and Chi squared

criteria. Undoubtedly the Lognormal distributionigentified as the best fitting

distribution for claim size.

Kolmogorov Smirnov Anderson Darling Chi squared
Distribution Statistic Rank Statistic Rank Statistic Rank
Lognormal 0.0231 1 0.2676 1 4.1677 2
Normal 0.1701 17 26.127 17 131.54 18

Table 1: Goodness of fit using Lognormal and Normal disttiitns

Figure 2 displays that 94.5% of policyholders madecar claims throughout a
year, 5.2% made one claim and the remaining 0.3%enad least two claims.

The Poisson distribution is appropriate for the bamof claims made yearly by a
policyholder because this random variable is disgrdoes not have an obvious
maximum and making a claim is considered to beaewaent.
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Figure 2: Frequency distribution of number of car claims

Fitting a Lognormal regression model to car claim size

If the logarithm of the response varid@g(y,) has a Normal distribution with
meany; and variances* theny, has a lognormal distribution. Assume that claim
sizesy, i=1,..n are independent and follow a lognormal distributishose
density function is:
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This can be expressed as:
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The mean and variance gf are respectively
E(Y) :exp(,ui +Q 572) andVar(Y) = exp( u +02)[ exéaz)— }

If an identity link function(n; = ;) is assumedimplying that d, = d%; /0y =1,
one can compute the linear predictgr, the predicted valueg;, the iterative
weightsw, =1/¢? and the working variateg =y , at each iteration.

Predictor Wald Chi-Square df P-value

Intercept 6957.628 1 0.000
Engine size 3.875 2 0.144
Age-Group 2.205 2 0.332
Cover 0.380 2 0.827
Premium paid annually 4.988 1 0.026

Table 2: Tests of model effects

The tests of model effects displayed in table ZAcaté that the premium paid
annually (in thousands of Euro) is the best prediof car claim size. This is
followed by engine size, age of policyholder andesosubscription. This four-

predictor model explain 15.7% of the total variamecehe responses indicating
that there are other important predictors thatrdoute significantly in explaining

variation in car claim sizes.

95% Wald Confidence Interval

Term Parameter Std. Error Lower Upper

Intercept 6.898 0.113 6.676 7.120
Engine size (less than 1100cc) -0.236 0.140 -0.510 0.038
Engine size (1100-1500cc) 0.033 0.099 -0.162 0.229
Engine size (More than 1500cc) 0 . . .
Age-Group (18-30 years) 0.254 0.171 -0.081 0.589
Age-Group (31-50 years) 0.047 0.097 -0.144 0.237
Age-Group (More than 50 years) 0 . . .
Cover (Third party only) -0.064 0.110 -0.280 0.152
Cover (Third party fire and theft) 0.007 0.130 -0.247 0.262
Cover (Fully comprehensive 0 . . .
Premium 0.351 0.157 0.043 0.659
(Scale) 0.830 0.059 0.723 0.953

Table 3: Parameter estimates and corresponding 95% con&datervals

The parameter estimates, displayed in table 3atenteresting contrasts between
the levels of the main effects. Policyholders tef large premiums tend to make
bigger claims than other policyholders; young ckams tend to make bigger
claims than older ones. Moreover, policyholdersspesing small sized engine
cars tend to make smaller claims than those pasgdssge sized engine cars and



claimants who insure their cars under a third padyer tend to make smaller
claims than those who insure their cars underrd farty fire and theft or a fully
comprehensive cover. The residual plot displayedFigure 3 exhibits no
systematic patterns indicating no model misspeatibnis. Approximately 95% of
all Pearson residuals lie between th2 threshold values which conform to what
is expected.
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Figure 3. Residual plot

Fitting a Poisson regression model to number of claims

Suppose that the response variages =1,...n are independent and Poisson
distributedy, ~ Poi(x) whose mass function is:

y;!

gt Yi
P(Y =y)=—1

The log link is the canonical link function for andom variable having a Poisson
distribution , =logy, , implying thatd, =9y, /0u; =1/ . Given the fact that the

mean and variance of are bothz;, one can compute the linear predictpr the
predicted valuesy , the working variatez, =7, +(y, -4 )/ ¢4 and the iterative
weightsw, = 4 at each iteration.

Predictor Wald Chi-Square df P-value

Intercept 2.050 1 0.152
Age-Group 3.094 2 0.213
Cover 47.627 2 0.000
Number of cars owned 15.198 1 0.000
Premium paid annually 6.558 1 0.010

Table4: Tests of model effects



The tests of model effects displayed in table 4ceug that cover subscription is
the best predictor of number of car claims. Thi®i®wed by the number of cars
owned by policyholder, the premium paid annualtytfiousands of Euro) and the
age of policyholder. This four-predictor model eaipl29.6% of the total variance
in the responses indicating that there are othpoitant predictors that contribute
significantly in explaining variation in the numbefrcar claims made annually by
a policyholder.

95% Wald Confidence Interval

Term Parameter Std. Error Lower Upper
Intercept -0.486 0.5841 -1.631 0.659
Age-Group (18-30 years) 0.131 0.1657 -0.193 0.456
Age-Group (31-50 years) 0.169 0.0967 -0.020 0.358
Age-Group (More than 50 years) 0 . . .
Cover (Third party only) -0.667 0.1321 -0.926 -0.408
Cover (Third party fire and theft) -0.675 0.1129 -0.896 -0.454
Cover (Fully comprehensive 0 . . .
Number of cars owned 2.228 0.5716 1.108 3.349
Premium paid annually 0.001 0.0002 0.000 0.001
(Scale) 1

Table5: Parameter estimates and corresponding 95% con&datervals

The parameter estimates, displayed in table 5atenteresting contrasts between
the categories of the predictors. Policyholders gey larger premiums tend to
make bigger claims than other policyholders; olaimhnts tend to make fewer
claims than younger ones. Moreover, policyholdens wisure their cars under a
Fully Comprehensive cover have a tendency to make rriaims than others and
the number of claims made annually increases wghnumber of cars owned by
the policyholders. Approximately 95% of all Pearsesiduals lie between the
+2 threshold values which conform to what is expected

The compound Poisson distribution

The decomposition of the aggregate claim am@&ypdid annually by the insurer
allows consideration of the number of claims andesponding claim amounts
separately. A practical advantage of this is thetofs affecting claim numbers
and claim amounts may well be different. For ins&ara prolonged spell of bad
weather may have a significant effect on claim nersltbut little or no effect on

the distribution of individual claim amounts. Oretlother hand, inflation may
have a significant effect on the cost of repairiogrs, and hence on the
distribution of individual claim amounts, but lgétbr no effect on claim numbers.

If the random variablé\, representing number of claims made by policyhmside
has a Poisson distribution with parameteand X, X,,...,X,, are corresponding

claim amounts which are assumed independent amdiged#y distributed, then
the total claim amoun$ = ZiN:lXi has a compound Poisson distribution. This is



obtained by marginalizing the joint distribution @, N) overN, which in turn is
attained by joining the marginal distributionfwith the conditional distribution
S|N. If the number of claimdl has a Poisson distribution with meanand the

total claim amoun$ has a compound Poisson distribution with paramétéren,

E[N] =VaiN]| =1

N
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The expectation dbis obtained by applying the identig{ S =H H § N]]
E[S|N = n]= il E[X,] — nm, and E[S| N]= Nm
E[S=HNm] =B Nm=/.m
The variance o8is obtained by usinar[§ =HVai{ § N]] +Vaf & § N]
VarSIN - n]:_zn;Var[xi] — r(m, —p) andVar{S| N = N(m, —n?)
Var[S] = 6 N(m, — 9] +Vai Nim| ( m,—m) & -+ mVaf § =m,

The moment generating function 8fis the moment generating function Mdf
evaluated atogM y (t).

M (t) = E\(Mx(t))'“]: E

gNlogMx (‘)w — My (logM (1)) where My (t) = €D

i[elOg My (t),l]

Ms(t)=My (logMy (t))=e _ My (D)

A very important property is that the sum of thdapendent compound Poisson
random variables is itself a compound Poisson nandariable. If S,...,S, are

independent random variables each having a compBorsson distribution with
parameters; andF, &) fori= 1,..n where F(x) is the distribution of individual

claim amounts therA:Zi":lS also has a compound Poisson distribution with
parametersA=3"" 4 F(X):%Zin:ljiﬁ(x). Table 6 displays the distribution of

claim size and the average number of car claimsagergroup and per cover.



Age Group Distribution of claim size Mean number of claimg

18 — 30 years InN(1277.5, 0.829 /, =0.05108

31 -50 years INN(1117.4, 0.963 /4, =0.06195

More than 50 years In N(1039.1, 0.967 /; =0.05334
Cover subscription Distribution of claim sizeMean number of claimg

Third party only INN(1112.9, 0.895 J, =0.03757

Third party fire and theft INN(1123.6, 0.871 J, =0.03907

Fully comprehensive INN(1117.4, 0.942 /4, =0.08201

Table 6: Distributions of claim sizes and mean number ofht$a

Conclusion

The GLMs identified one significant predictor (priem paid annually) for claim
size and three significant predictors (cover supson, number of cars owned,
premium paid annually) for number of filed clain@ne of the limitations of this
study is that the explanatory variables explainschall portion of the variation in
the response variables. Indeed other explanataigblas, for instance, speed of
car before impact and driving behaviour would hawproved predictions if they
were recorded.

An alternative approach to address the data hedaeity is by fitting Latent class
models. These models assume that the observedadaiactually composed of
several homogeneous segments that are mixed togetheknown proportions.
The segments are considered latent (unobservedusedche number of clusters
and the number of individuals they comprise arenom. The objective is to
estimate the true number of segments and derivedigtion regression model for
each segment using the expectation-maximization) @fbrithm that maximizes
the expected log-likelihood function. Indeed theimadvantage of using these
models over traditional clustering techniques &t thstimation and segmentation
are carried out simultaneously.
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