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Abstract
Background: The aim of electroencephalogram (EEG) source localization is to find the brain areas responsible for EEG waves
of interest. It consists of solving forward and inverse problems. The forward problem is solved by starting from a given electrical
source and calculating the potentials at the electrodes. These evaluations are necessary to solve the inverse problem which is
defined as finding brain sources which are responsible for the measured potentials at the EEG electrodes.

Methods: While other reviews give an extensive summary of the both forward and inverse problem, this review article focuses
on different aspects of solving the forward problem and it is intended for newcomers in this research field.

Results: It starts with focusing on the generators of the EEG: the post-synaptic potentials in the apical dendrites of pyramidal
neurons. These cells generate an extracellular current which can be modeled by Poisson's differential equation, and Neumann
and Dirichlet boundary conditions. The compartments in which these currents flow can be anisotropic (e.g. skull and white
matter). In a three-shell spherical head model an analytical expression exists to solve the forward problem. During the last two
decades researchers have tried to solve Poisson's equation in a realistically shaped head model obtained from 3D medical images,
which requires numerical methods. The following methods are compared with each other: the boundary element method
(BEM), the finite element method (FEM) and the finite difference method (FDM). In the last two methods anisotropic conducting
compartments can conveniently be introduced. Then the focus will be set on the use of reciprocity in EEG source localization.
It is introduced to speed up the forward calculations which are here performed for each electrode position rather than for each
dipole position. Solving Poisson's equation utilizing FEM and FDM corresponds to solving a large sparse linear system. Iterative
methods are required to solve these sparse linear systems. The following iterative methods are discussed: successive over-
relaxation, conjugate gradients method and algebraic multigrid method.

Conclusion: Solving the forward problem has been well documented in the past decades. In the past simplified spherical head
models are used, whereas nowadays a combination of imaging modalities are used to accurately describe the geometry of the
head model. Efforts have been done on realistically describing the shape of the head model, as well as the heterogenity of the
tissue types and realistically determining the conductivity. However, the determination and validation of the in vivo conductivity
values is still an important topic in this field. In addition, more studies have to be done on the influence of all the parameters of
the head model and of the numerical techniques on the solution of the forward problem.
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Introduction
Since the 1930s electrical activity of the brain has been
measured by surface electrodes connected to the scalp [1].
Potential differences between these electrodes were then
plotted as a function of time in a so-called electroencepha-
logram (EEG). The information extracted from these brain
waves was, and still is instrumental in the diagnoses of
neurological diseases [2], mainly epilepsy. Since the
1960s the EEG was also used to measure event-related
potentials (ERPs). Here brain waves were triggered by a
stimulus. These stimuli could be of visual, auditory and
somatosensory nature. Different ERP protocols are now
routinely used in a clinical neurophysiology lab.
Researchers nowadays are still searching for new ERP pro-
tocols which may be able to distinguish between ERPs of
patients with a certain condition and ERPs of normal sub-
jects. This could be instrumental in disorders, such as psy-
chiatric and developmental disorders, where there is often
a lack of biological objective measures.

During the last two decades, increasing computational
power has given researchers the tools to go a step further
and try to find the underlying sources which generate the
EEG. This activity is called EEG source localization. It con-
sists of solving a forward and inverse problem. Solving the
forward problem starts from a given electrical source con-
figuration representing active neurons in the head. Then
the potentials at the electrodes are calculated for this con-
figuration. The inverse problem attempts to find the elec-
trical source which generates a measured EEG. By solving
the inverse problem, repeated solutions of the forward
problem for different source configurations are needed. A
review on solving the inverse problem is given in [3].

In this review article several aspects of solving the forward
problem in EEG source localization will be discussed. It is
intended for researchers new in the field to get insight in
the state-of-the-art techniques to solve the forward prob-
lem in EEG source analysis. It also provides an extensive
list of references to the work of other researchers.

First, the physical context of EEG source localization will
be elaborated on and then the derivation of Poisson's
equation with its boundary conditions. An analytical
expression is then given for a three-shell spherical head
model. Along with realistic head models, obtained from
medical images, numerical methods are then introduced
that are necessary to solve the forward problem. Several
numerical techniques, the Boundary Element Method
(BEM), the Finite Element Method (FEM) and the Finite
Difference Method (FDM), will be discussed. Also aniso-
tropic conductivities which can be found in the white
matter compartment and skull, will be handled.

The reciprocity theorem used to speed up the calculations,
is discussed. The electric field that results at the dipole
location within the brain due to current injection and
withdrawal at the surface electrode sites is first calculated.
The forward transfer-coefficients are obtained from the
scalar product of this electric field and the dipole
moment. Calculations are thus performed for each elec-
trode position rather than for each dipole position. This
speeds up the time necessary to do the forward calcula-
tions since the number of electrodes is much smaller than
the number of dipoles that need to be calculated.

The number of unknowns in the FEM and FDM can easily
exceed the million and thus lead to large but sparse linear
systems. As the number of unknowns is too large to solve
the system in a direct manner, iterative solvers need to be
used. Some popular iterative solvers are discussed such as
successive over-relaxation (SOR), conjugate gradient
method (CGM) and algebraic multigrid methods (AMG).

The physics of EEG
In this section the physiology of the EEG will be shortly
described. In our opinion, it is important to know the
underlying mechanisms of the EEG. Moreover, forward
modeling also involves a good model for the generators of
the EEG. The mechanisms of the neuronal actionpoten-
tials, excitatory post-synaptic potentials and inhibitory
post-synaptic potentials are very complex. In this section
we want to give a very comprehensive overview of the
underlying neurophysiology.

Neurophysiology
The brain consists of about 1010 nerve cells or neurons.
The shape and size of the neurons vary but they all possess
the same anatomical subdivision. The soma or cell body
contains the nucleus of the cell. The dendrites, arising
from the soma and repeatedly branching, are specialized
in receiving inputs from other nerve cells. Via the axon,
impulses are sent to other neurons. The axon's end is
divided into branches which form synapses with other
neurons. The synapse is a specialized interface between
two nerve cells. The synapse consists of a cleft between a
presynaptic and postsynaptic neuron. At the end of the
branches originating from the axon, the presynaptic neu-
ron contains small rounded swellings which contain the
neurotransmitter substance. Further readings on the anat-
omy of the brain can be found in [4] and [5].

One neuron generates a small amount of electrical activ-
ity. This small amount cannot be picked up by surface
electrodes, as it is overwhelmed by other electrical activity
from neighbouring neuron groups. When a large group of
neurons is simultaneously active, the electrical activity is
large enough to be picked up by the electrodes at the sur-
face and thus generating the EEG. The electrical activity
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can be modeled as a current dipole. The current flow
causes an electric field and also a potential field inside the
human head. The electric field and potential field spreads
to the surface of the head and an electrode at a certain
point can measure the potential [2].

At rest the intracellular environment of a neuron is nega-
tively polarized at approximately -70 mV compared with
the extracellular environment. The potential difference is
due to an unequal distribution of Na+, K+ and Cl- ions
across the cell membrane. This unequal distribution is
maintained by the Na+ and K+ ion pumps located in the
cell membrane. The Goldman-Hodgkin-Katz equation
describes this resting potential and this potential has been
verified by experimental results [2,6,7].

The neuron's task is to process and transmit signals. This
is done by an alternating chain of electrical and chemical
signals. Active neurons secrete a neurotransmitter, which
is a chemical substance, at the synaptical side. The syn-
apses are mainly localized at the dendrites and the cell
body of the postsynaptic cell. A postsynaptic neuron has a
large number of receptors on its membrane that are sensi-
tive for this neurotrans-mitter. The neurotransmitter in
contact with the receptors changes the permeability of the
membrane for charged ions. Two kinds of neurotransmit-

ters exist. On the one hand there is a neurotransmitter
which lets signals proliferate. These molecules cause an
influx of positive ions. Hence depolarization of the intra-
cellular space takes place. A depolarization means that the
potential difference between the intra- and extracellular
environment decreases. Instead of -70 mV the potential
difference becomes -40 mV. This depolarization is also
called an excitatory postsynaptic potential (EPSP). On the
other hand there are neurotransmitters that stop the pro-
liferation of signals. These molecules will cause an out-
flow of positive ions. Hence a hyperpolarization can be
detected in the intracellular volume. A hyperpolarization
means that the potential difference between the intra- and
extracellular environment increases. This potential change
is also called an inhibitory postsynaptic potential (IPSP).
There are a large number of synapses from different pres-
ynaptic neurons in contact with one postsynaptic neuron.
At the cell body all the EPSP and IPSP signals are inte-
grated. When a net depolarization of the intracellular
compartment at the cell body reaches a certain threshold,
an action potential is generated. An action potential then
propagates along the axon to other neurons [2,6,7].

Figure 1 illustrates the excitatory and inhibitory postsyn-
aptic potentials. It also shows the generation of an action

Excitatory and inhibitory post synaptic potentialsFigure 1
Excitatory and inhibitory post synaptic potentials. An illustration of the action potentials and post synaptic potentials 
measured at different locations at the neuron. On the left a neuron is displayed and three probes are drawn at the location 
where the potential is measured. The above picture on the right shows the incoming exitatory action potentials measured at 
the probe at the top, at the probe in the middle the incoming inhibitory action potential is measured and shown. The neuron 
processes the incoming potentials: the excitatory action potentials are transformed into excitatory post synaptic potentials, the 
inhibitory action potentials are transformed into inhibitory post synaptic potentials. When two excitatory post synaptic poten-
tials occur in a small time frame, the neuron fires. This is shown at the bottom figure. The dotted line shows the EPSP, in case 
there was no second excitatory action potential following. From [2].
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potential. Further readings on the electrophysiology of
neurons can be found in [2,6].

The generators of the EEG
The electrodes used in scalp EEG are large and remote.
They only detect summed activities of a large number of
neurons which are synchronously electrically active. The
action potentials can be large in amplitude (70–110 mV)
but they have a small time course (0.3 ms). A synchronous
firing of action potentials of neighboring neurons is
unlikely. The postsynaptic potentials are the generators of
the extracellular potential field which can be recorded
with an EEG. Their time course is larger (10–20 ms). This
enables summed activity of neighboring neurons. How-
ever their amplitude is smaller (0.1–10 mV) [3,8].

Apart from having more or less synchronous activity, the
neurons need to be regularly arranged to have a measura-
ble scalp EEG signal. The spatial properties of the neurons
must be so that they amplify each other's extracellular
potential fields. The neighboring pyramidal cells are
organized so that the axes of their dendrite tree are parallel
with each other and normal to the cortical surface. Hence,
these cells are suggested to be the generators of the EEG.

The following is focused on excitatory synapses and EPSP,
located at the apical dendrites of a pyramidal cell. The
neurotransmitter in the excitatory synapses causes an
influx of positive ions at the postsynaptic membrane as
illustrated in figure 2(a) and depolarizes the local cell
membrane. This causes a lack of extracellular positive ions
at the apical dendrites of the postsynaptic neuron. A redis-

tribution of positively charged ions also takes place at the
intracellular side. These ions flow from the apical dendrite
to the cell body and depolarize the membrane potentials
at the cell body. Subsequently positive charged ions
become available at the extracellular side at the cell body
and basal dendrites.

A migration of positively charged ions from the cell body
and the basal dendrites to the apical dendrite occurs,
which is illustrated in figure 2(a) with current lines. This
configuration generates extracellular potentials. Other
membrane activities start to compensate for the massive
intrusion of the positively charged ions at the apical den-
drite, however these mechanisms are beyond the scope of
this work and can be found elsewhere [2,9,10].

A simplified equivalent electric circuit is presented in fig-
ure 2(b) to illustrate the initial activity of an EPSP. At rest,
the potential difference between the intra- and extracellu-
lar compartments can be represented by charged capaci-
tors. One capacitor models the potential difference at the
apical dendrites side while a second capacitor models the
potential difference at the cell body and basal dendrite
side. The potential difference over the capacitors is 60 mV.
The neurotransmitter causes a massive intrusion of posi-
tively charged ions at the postsynaptic membrane at the
apical dendrite side. In the equivalent circuit, this is mod-
eled by a switch that is closed. The capacitor at the cell
body side discharges causing a current flow over the extra-
cellular resistor Re and the intracellular resistor Ri. The
repolarization of the cell membrane at the apical side or
the initiation of the action potential are not modeled with
this simple equivalent electrical circuit.

The capacitors and the switch, in figure 2(b), represent a
model of the electrical source at the initial phase of the
depolarization of the neuron. They could also be replaced
by a time dependent current source, however this repre-
sentation is not ideal. The capacitor representation, for the
initial phase of depolarization, fits closer the occurring
physical phenomena. The impedance of the tissue in the
human head has, for the frequencies contained in the
EEG, no capacitive nor inductive component and is hence
pure resistive. More advanced equivalent electrical circuits
can be found elsewhere [10]. The fact that a current flows
through the extracellular resistor indicates that potential
differences in the extracellular space can be measured.

A simplified electrical model for this active cell consists of
two current monopoles: a current sink at the apical den-
drite side which removes positively charged ions from the
extracellular environment, and a current source at the cell
body side which injects positively charged ions in the
extracellular environment. The extracellular resistance Re
can be decomposed in the volume conductor model in

equivalent circuit for a neuronFigure 2
equivalent circuit for a neuron. An excitatory post syn-
aptic potential, an simplified equivalent circuit for a neuron, 
and a resistive network for the extracellular environment. A 
neuron with an excitatory synapse at the apical dendrite is 
presented in (a). From [2]. A simplified equivalent circuit is 
depicted in (b). The extracellular environment can be repre-
sented with a resistive network as illustrated in (c).
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which the active neuron is embedded, as illustrated in fig-
ure 2(c). For further reading on the generation of the EEG
one can refer to [11] and [9].

Poisson's equation, boundary conditions and 
dipoles
In the previous sections we saw that the generators of the
EEG are the synaptic potentials along the apical dendrites
of the pyramidal cells of the grey matter cortex. It is impor-
tant to notice that the EEG reflects the electrical activity of
a subgroup of neurons, especially pyramidal neuron cells,
where the apical dendrite is systematically oriented
orthogonal to the brain surface. Certain types of neurons
are not systematically oriented orthogonal to the brain
surface. Therefore, the potential fields of the synaptic cur-
rents at different dendrites of neurons van cancel each
other out. In that case the neuronal activity is not visible
at the surface. Moreover, that actionpotentials, propagat-
ing along the axons, have no influence on the EEG. Their
short timespan (2 ms) make the chance of generating
simultaneous actionpotentials very small [6,12]. In this
section, a mathematical approach on the generation of the
forward problem is given.

Quasi-static conditions
It is shown in [13] that no charge can be piled up in the
conducting extracellular volume for the frequency range
of the signals measured in the EEG. At one moment in
time all the fields are triggered by the active electric source.
Hence, no time delay effects are introduced. All fields and
currents behave as if they were stationary at each instance.
These conditions are also called quasi-static conditions.
They are not static because the neural activity changes
with time. But the changes are slow compared to the prop-
agation effects.

Applying the divergence operator to the current density
Poisson's equation gives a relationship between the
potentials at any position in a volume conductor and the
applied current sources. The mathematical derivation of
Poisson's equation via Maxwell's equations, can be found
in various textbooks on electromagnetism [6,10,14]. Pois-
son's equation is derived with the divergence operator. In
this way the emphasis is, in our opinion, more on the
physical aspect of the problem. Furthermore, the concepts
introduced in [10,14], such as current source and current
sink, are used when applying the divergence operator.

Definition
The current density is a vector field and can be represented
by J(x, y, z). The unit of the current density is A/m2. The
divergence of a vector field J is defined as follows:

The integral over a closed surface ∂G represents a flux or a
current. This integral is positive when a net current leaves
the volume G and is negative when a net current enters the
volume G. The vector dS for a surface element of ∂G with
area dS and outward normal en, can also be written as
endS. The unit of ∇·J is A/m3 and is often called the current
source density which in [15] is symbolized with Im. Gen-
erally one can write:

∇·J = Im. (2)

Applying the divergence operator to the extracellular current density
First a small volume in the extracellular space, which
encloses a current source and current sink, is investigated.
The current flowing into the infinitely small volume, must
be equal to the current leaving that volume. This is due to
the fact that no charge can be piled up in the extracellular
space. The surface integral of equation (1) is then zero,
hence ∇·J = 0.

In the second case a volume enclosed by the current sink
with position parameters r1(x1, y1, z1) is assumed. The cur-
rent sink represents the removal of positively charged ions
at the apical dendrite of the pyramidal cell. The integral of
equation (1) remains equal to -I while the volume G in
the denominator becomes infinitesimally small. This
gives a singularity for the current source density. This sin-
gularity can be written as a delta function: -Iδ(r - r1). The
negative sign indicates that current is removed from the
extracellular volume. The delta function indicates that
current is removed at one point in space.

For the third case a small volume around the current
source at position r2(x2, y2, z2) is constructed. The current
source represents the injection of positively charged ions
at the cell body of the pyramidal cell. The current source
density equals Iδ(r - r2). Figure 3 represents the current
density vectors for a current source and current sink con-
figuration. Furthermore, three boxes are presented corre-
sponding with the three cases discussed above.

Uniting the three cases given above, one obtains:

∇·J = Iδ(r - r2) - Iδ(r - r1). (3)

Ohm's law, the potential field and anisotropic/isotropic 
conductivities
The relationship between the current density J in A/m2 and
the electric field E in V/m is given by Ohm's law:

J = σE, (4)

with σ(r) ∈ �3×3 being the position dependent conductiv-
ity tensor given by:∇ ⋅ =

→ ∂∫J J Slim
G GG

d
0

1 (1)
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and with units A/(Vm) = S/m. There are tissues in the
human head that have an anisotropic conductivity. This
means that the conductivity is not equal in every direction
and that the electric field can induce a current density
component perpendicular to it with the appropriate σ in
equation (4).

At the skull, for example, the conductivity tangential to
the surface is 10 times [16] the conductivity perpendicular
to the surface (see figure 4(a)). The rationale for this is
that the skull consists of 3 layers: a spongiform layer
between two hard layers. Water, and also ionized parti-
cles, can move easily through the spongiform layer, but
not through the hard layers [17]. Wolters et al. state that
skull anisotropy has a smearing effect on the forward
potential computation. The deeper a source lies, the more
it is surrounded by anisotropic tissue, the larger the influ-
ence of the anisotropy on the resulting electric field.
Therefore, the presence of anisotropic conducting tissues
compromises the forward potential computation and as a
consequence, the inverse problem [18].

White matter consists of different nerve bundles (groups
of axons) connecting cortical grey matter (mainly den-
drites and cell bodies). The nerve bundles consist of nerve

fibres or axons (see figure 4(b)). Water and ionized parti-
cles can move more easily along the nerve bundle than
perpendicular to the nerve bundle. Therefore, the conduc-
tivity along the nerve bundle is measured to be 9 times
higher than perpendicular to it [19,20]. The nerve bundle
direction can be estimated by a recent magnetic resonance
technique: diffusion tensor magnetic resonance imaging
(DT-MRI) [21]. This technique provides directional infor-
mation on the diffusion of water. It is assumed that the
conductivity is the highest in the direction in which the
water diffuses most easily [22]. Authors [23-25] have
showed that anisotropic conducting compartments
should be incorporated in volume conductor models of
the head whenever possible.

In the grey matter, scalp and cerebro-spinal fluid (CSF)
the conductivity is equal in all directions. Thus the place
dependent conductivity tensor becomes a place depend-
ent scalar σ, a so-called isotropic conducting tissue. The
conductivity of CSF is quite accurately known to be 1.79
S/m [26]. In the following we will focus on the conductiv-
ity of the skull and soft tissues. Some typical values of con-
ductivities can be found in table 1.

The skull conductivity has been subject to debate among
researchers. In vivo measurements are very different from
in vitro measurements. On top of that, the measurements
are very patient specific. In [27], it was stated that the skull
conductivity has a large influence on the forward prob-
lem.

It was believed that the conductivity ratio between skull
and soft tissue (scalp and brain) was on average 80 [20].
Oostendorp et al. used a technique with realistic head
models by which they passed a small current by means of
2 electrodes placed on the scalp. A potential distribution
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Anisotropic conductivity of the brain tissuesFigure 4
Anisotropic conductivity of the brain tissues. The ani-
sotropic properties of the conductivity of skull and white 
matter tissues. The anisotropic properties of the conductiv-
ity of skull and white matter tissues. (a) The skull consists of 
3 layers: a spongiform layer between two hard layers. The 
conductivity tangentially to the skull surface is 10 times larger 
than the radial conductivity. (b) White matter consist of 
axons, grouped in bundles. The conductivity along the nerve 
bundle is 9 times larger than perpendicular to the nerve bun-
dle.

The current density and equipotential lines in the vicinity of a dipoleFigure 3
The current density and equipotential lines in the 
vicinity of a dipole. The current density and equipotential 
lines in the vicinity of a current source and current sink is 
depicted. Equipotential lines are also given. Boxes are illus-
trated which represent the volumes G.
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is then generated on the scalp. Because the potential val-
ues and the current source and sink are known, only the
conductivities are unknown in the head model and equa-
tion (4) can be solved toward σ. Using this technique they
could estimate the skull-to-soft tissue conductivity ratio to
be 15 instead of 80 [28]. At the same time, Ferree et al. did
a similar study using spherical head models. Here, skull-
to-soft tissue conductivity was calculated as 25. It was
shown in [29] that using a ratio of 80 instead of 16, could
yield EEG source localization errors of an average of 3 cm
up to 5 cm.

One can repeat the previous experiment for a lot of differ-
ent electrode pairs and an image of the conductivity can
be obtained. This technique is called electromagnetic
impedance tomography or EIT. In short, EIT is an inverse
problem, by which the conductivities are estimated. Using
this technique, the skull-to-soft tissue conductivity ratio
was estimated to be around 20–25 [30,31]. However in
[30], it was shown that the skull-to-soft tissue ratio could
differ from patient to patient with a factor 2.4. In [32],
maximum likelihood and maximum a posteriori tech-
niques are used to simultaneously estimate the different
conductivities. There they estimated the skull-to-soft tis-
sue ratio to be 26.

Another study came to similar results using a different
technique. In Lai et al., the authors used intracranial and
scalp electrodes to get an estimation of the skull-to-soft
tissue ratio conductivity. From the scalp measures they
estimated the cortical activity by means of a cortical imag-
ing technique. The conductivity ratio was adjusted so that
the intracranial measurements were consistent with the
result of the imaging from the scalp technique. They
resulted in a ratio of 25 with a standard deviation of 7.
One has to note however that the study was performed on
pediatric patients which had the age of between 8 and 12.
Their skull tissue normally contains a larger amount of
ions and water and so may have a higher conductivity
than the adults calcified cranial bones [33]. In a more
experimental setting, the authors of [34] performed con-
ductivity measures on the skull itself in patients undergo-
ing epilepsy surgery. Here the authors estimated the skull
conductivity to be between 0.032 and 0.080 S/m, which

comes down to a soft-tissue to skull conductivity of 10 to
40.

Poisson's equation
The scalar potential field V, having volt as unit, is now
introduced. This is possible due to Faraday's law being
zero under quasi-static conditions (∇ × E = 0) [35]. The
link between the potential field and the electric field is
given utilizing the gradient operator,

E = -∇V. (6)

The vector ∇V at a point gives the direction in which the
scalar field V, having volt as its unit, most rapidly
increases. The minus sign in equation (6) indicates that
the electric field is oriented from an area with a high
potential to an area with a low potential. Figure 3 also
illustrates some equipotential lines generated by a current
source and current a sink.

When equation (2), equation (4) and equation (6) are
combined, Poisson's differential equation is obtained in
general form:

∇·(σ∇(V)) = -Im. (7)

For the problem at hand, equation (3), equation (4) and
equation (6) are combined yielding:

∇·(σ∇(V)) = -Iδ(r - r2) + Iδ(r - r1). (8)

In the Cartesian coordinate system equation (8) becomes
for isotropic conductivities:

and for anisotropic conductivities:
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(9)

Table 1: The reference values of the absolute and relative conductivity of the compartments incorporated in the human head.

compartments Geddes & Baker (1967) Oostendorp (2000) Gonçalves (2003) Guttierrez (2004) Lai (2005)

scalp 0.43 0.22 0.33 0.749 0.33
skull 0.006 – 0.015 0.015 0.0081 0.012 0.0132

cerebro-spinal fluid - - - 1.79 -
brain 0.12 – 0.48 0.22 0.33 0.313 0.33

σscalp/σskull 80 15 20–50 26 25
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The potentials V are calculated with equations (8), (9) or
(10) for a given current source density Im, in a volume
conductor model, e.g. in our application, the human
head. Compartments in which all conductivities are
equal, are called homogeneous conducting compart-
ments.

Boundary conditions
At the interface between two compartments, two bound-
ary conditions are found. Figure 5 illustrates such an inter-
face. A first condition is based on the inability to pile up
charge at the interface. All charge leaving one compart-
ment through the interface must enter the other compart-
ment. In other words, all current (charge per second)
leaving a compartment with conductivity σ1 through the
interface enters the neighboring compartment with con-
ductivity σ2:

where en is the normal component on the interface.

In particular no current can be injected into the air outside
the human head due to the very low conductivity of the
air. Therefore the current density at the surface of the head
reads:

Equations (11) and (12) are called the Neumann bound-
ary condition and the homogeneous Neumann boundary
condition, respectively.

The second boundary condition only holds for interfaces
not connected with air. By crossing the interface the
potential cannot have discontinuities,

V1 = V2. (13)

This equation represents the Dirichlet boundary condi-
tion.

The current dipole
Current source and current sink inject and remove the
same amount of current I and they represent an active
pyramidal cell at microscopic level. They can be modeled
as a current dipole as illustrated in figure 6(a). The posi-
tion parameter rdip of the dipole is typically chosen half
way between the two monopoles.

The dipole moment d is defined by a unit vector ed (which
is directed from the current sink to the current source) and
a magnitude given by d = ||d|| = I·p, with p the distance
between the two monopoles. Hence one can write:

d = I·ped. (14)

It is often so that a dipole is decomposed in three dipoles
located at the same position of the original dipole and
each oriented along one of the Cartesian axes. The magni-
tude of each of these dipoles is equal to the orthogonal
projection on the respective axis as illustrated in figure
6(b). one can write:

d = dxex + dyey + dzez, (15)

with ex, ey and ez being the unit vectors along the three
axes. Furthermore, dx, dy and dz are often called the dipole
components. Notice that Poisson's equation (8) is linear.
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The boundary between two compartmentsFigure 5
The boundary between two compartments. The 
boundary between two compartments. The boundary 
between two compartments, with conductivity σ1 and σ2. 
The normal vector en to the interface is also shown.
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Due to a dipole at a position rdip and dipole moment d, a
potential V at an arbitrary scalp measurement point r can
be decomposed in:

V(r, rdip, d) = dxV(r, rdip, ex) + dyV(r, rdip, ey) + dzV(r, rdip, ez).
(16)

A large group of pyramidal cells need to be more or less
synchronously active in a cortical patch to have a measur-
able EEG signal. All these cells are furthermore oriented
with their longitudinal axis orthogonal to the cortical sur-
face. Due to this arrangement the superposition of the
individual electrical activity of the neurons results in an
amplification of the potential distribution. A large group
of electrically active pyramidal cells in a small patch of
cortex can be represented as one equivalent dipole on
macroscopic level [36,37]. It is very difficult to estimate
the extent of the active area of the cortex as the potential
distribution on the scalp is almost identical to that of an
equivalent dipole [38].

General algebraic formulation of the forward problem

In symbolic terms, the EEG forward problem is that of
finding, in a reasonable time, the scalp potential g(r, rdip,

d) at an electrode positioned on the scalp at r due to a sin-
gle dipole with dipole moment d = ded (with magnitude d

and orientation ed), positioned at rdip. This amounts to

solving Poisson's equation to find the potentials V(r) on

the scalp for different configurations of rdip and d. For

multiple dipole sources, the electrode potential would be

. In practice,

one calculates a potential between an electrode and a ref-
erence (which can be another electrode or an average ref-
erence).

For N electrodes and p dipoles:

where i = 1,...,p and j = 1,...,N. Here V is a column vector.

For N electrodes, p dipoles and T discrete time samples:

where V is now the matrix of data measurements, G is the
gain matrix and D is the matrix of dipole magnitudes at
different time instants.

More generally, a noise or perturbation matrix n is added,

V = GD + n.

In general for simulations and to measure noise sensitiv-
ity, noise distribution is a gaussian distribution with zero
mean and variable standard deviation. However in reality,
the noise is coloured and the distribution of the frequency
depends on a lot of factors: patient, measurement setup,
pathology,....

A general multipole expansion of the source model
Solving the inverse problem using multiple dipole model
requires the estimation of a large number of parameters, 6
for each dipole. Given the use of a limited number of EEG
electrodes, the problem becomes underdetermined. In
this case, regularization techniques have to be applied,
but this leads to oversmoothed source estimations. On
the other hand, the use of a limited number of dipoles
(one, two or three) leads to very simplified sources, which
are very often ambiguous and cause errors due to simpli-
fied modelling. The dipole model as a source is a good
model for focal brain activity.
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The dipole parametersFigure 6
The dipole parameters. (a) The dipole parameters for a 
given current source and current sink configuration. (b) The 
dipole as a vector consisting of 6 parameters. 3 parameters 
are needed for the location of the dipole. 3 other parameters 
are needed for the vector components of the dipole. These 
vector components can also be transformed into spherical 
components: an azimuth, elevation and magnitude of the 
dipole.
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A multipole expansion is an alternative (first introduced
by [39]), which is based on a spherical harmonic expan-
sion of the volume source, which is not necessarily focal.
It provides the added model flexibility needed to account
for a wide range of physiologically plausible sources,
while at the same time keeping the number of estimation
parameters sufficiently low. In fact, The zeroth-order and
first-order terms in the expansion are called the monopole
and dipole moment, respectively. A quadrupole is a
higher order term and is generated by two equal and
oppositely oriented dipoles whose moments tend to
infinity as they are brought infinitesimally close to each
other. An octapole consists of two quadrupoles brought
infinitesimally close to each other and so on. It can be
shown that if the volume G containing the active sources
Isv(r') is limited in extent, the solution to Poisson's equa-
tion for the potential V may be expanded in terms of a
multipole series:

V = Vmonopole + Vdipole + Vquadrupole + Voctapole + Vhexadecpole + ...
(18)

where Vquadrupole is the potential field caused by the quad-
rupole. In practice, a truncated multipole series is used up
to a quadrupole, because the contribution to the electrode
potentials by a octapole or higher order sources rapidly
decreases when the distance between electrode and source
is increasing. The use of quadrupoles can sound plausible
in the following case: A traveling action potential causes a
depolarization wave through the axon, followed by a
repolarization wave. These two phenomenon produce
two opposite oriented dipoles very close to each other
[40]. In sulci, pyramidal cells are oriented toward each
other, which makes the use of quadrupole also reasona-
ble. However, the skull causes a strong attenuation of the
electrical field created by the source. Therefore, even a
quadrupole has low contribution to the electrode poten-
tials of the EEG, created by the volume current in the
extracellular region. In EEG and ECG multiple dipoles of
dipole layers are preferred over a multipole. Multipoles
are popular in magnetoencephalographic (MEG) source
localization, because of its low sensitivity to the skull con-
ductivity [6,10,41,42].

Solving the forward problem
Dipole field in an infinite homogeneous isotropic 
conductor
The potential field generated by a current dipole with
dipole moment d = ded at a position rdip in an infinite con-
ductor with conductivity σ, is introduced. The potential
field is given by:

with r being the position where the potential is calculated.
Assume that the dipole is located in the origin of the Car-
tesian coordinate system and oriented along the z-axis.
Then it can be written:

where θ represents the angle between the z-axis and r and
r = ||r||. An illustration of the electrical potential field
caused by dipole is shown in figure 7.

Equation (20) shows that a dipole field attenuates with 1/
r2. It is significant to remark that V, from equation (19),
added with an arbitrary constant, is also a solution of
Poisson's equation. A reference potential must be chosen.
One can choose to set one electrode to zero or one can opt
for average referenced potentials. The latter result in elec-
trode potentials that have a zero mean.

The spherical head model
The first volume conductor models of the human head
consisted of a homogeneous sphere [43]. However it was
soon noticed that the skull tissue had a conductivity
which was significantly lower than the conductivity of
scalp and brain tissue. Therefore the volume conductor
model of the head needed further refinement and a three-
shell concentric spherical head model was introduced. In
this model, the inner sphere represents the brain, the
intermediate layer represents the skull and the outer layer
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The equipotential lines of a dipoleFigure 7
The equipotential lines of a dipole. The equipotential 
lines of a dipole oriented along the z-axis. The numbers cor-
respond to the level of intensity of the potential field gener-
ated of the dipole. The zero line divides the dipole field into 
two parts: a positive one and a negative one.
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represents the scalp. For this geometry a semi-analytical
solution of Poisson's equation exists. The derivation is
based on [44,45]. Consider a dipole located on the z-axis
and a scalp point P, located in the xz-plane, as illustrated
in figure 8. The dipole components located in the xz-plane
i.e. dr the radial component and dt the tangential compo-
nent, are also shown in figure 8. The component orthogo-
nal to the xz-plane, does not contribute to the potential at
scalp point P due to the fact that the zero potential plane
of this component traverses P. The potential V at scalp
point P for the proposed dipole is given by:

with gi given by:

Where:

dr is the radial component (3 × 1-vector in meters),

dt is the tangential component (3 × 1-vector in meters),

R is the radius of the outer shell (meters),

S is the conductivity of scalp and brain tissue (Siemens/
meter),

X is the ratio between the skull and soft tissue conductivity
(unitless),

b is the relative distance of the dipole from the centre
(unitless),

θ is the polar angle of the surface point see figure 8 (radi-
ans),

Pi(·) is the Legendre polynomial,

 is the associated Legendre polynomial,

i is an index,

i1 equals 2i + 1,

r1 is the radius of the inner shell (in meters),

r2 is the radius of the middle shell (in meters),

f1 equals r1/R (unitless) and

f2 equals r2/R (unitless).

Equation (21) gives the scalp potentials generated by a
dipole located on the z-axis, with zero dipole moment in
the y direction. To find the scalp potentials generated by
an arbitrary dipole, the coordinate system has to be
rotated accordingly. Typical radii of the outer boundaries
of the brain, skull and scalp compartments are equal to 8
cm, 8.5 cm and 9.2 cm, respectively [46]. An illustration
of a typical spherical head model is shown in figure 8.
These radii can be altered to fit a sphere more to the
human head. The infinite series of equation (21) is often
truncated. If the first 40 terms are used, the maximum
scalp potential obtained with the truncated series, devi-
ates less than 0.1% from the case where 100 terms are
applied, for dipoles with a radial position smaller than
95% of the maximum brain radius.

There are also semi-analytical solutions available for lay-
ered spheroidal anisotropic volume conductors [47-49].
Here the conductivity in the tangential direction can be
chosen differently than in the radial direction of the
sphere. Analytic solutions also exist for prolate and oblate
spheroids or eccentric spheres [50-52].
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The three-shell concentric spherical head modelFigure 8
The three-shell concentric spherical head model. The 
dipole is located on the z-axis and the potential is measured 
at scalp point P located in the xz-plane.
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Variants of the three-shell spherical head model, such as
the Berg approximation [53], in which a single-sphere
model is used to approximate a three- (or four-) layer
sphere, have also been used to improve further the com-
putational efficiency of multi-layer spherical models.

Recently however, it is becoming more apparent that the
actual geometry of the head [54-56] together with the var-
ying thickness and curvatures of the skull [57,58], affects
the solutions appreciably. So-called real head models are
becoming much more common in the literature, in con-
junction with either boundary-element, finite-element, or
finite-difference methods. However, the computational
requirements for a realistic head model are higher than
that for a multi-layer sphere.

An approach which is situated between the spherical head
model approaches and realistic ones is the sensor-fitted
sphere approach [59]. Here a multilayer sphere is fitted to
each sensor located on the surface of a realistic head
model.

The boundary element method
The boundary element method (BEM) is a numerical tech-
nique for calculating the surface potentials generated by
current sources located in a piecewise homogeneous vol-
ume conductor. Although it restricts us to use only iso-
tropic conductivities, it is still widely used because of its
low computational needs. The method originated in the
field of electrocardiography in the late sixties and made its
entrance in the field of EEG source localization in the late
eighties [60]. As the name implies, this method is capable
of providing a solution to a volume problem by calculat-
ing the potential values at the interfaces and boundary of
the volume induced by a given current source (e.g. a
dipole). The interfaces separate regions of differing con-
ductivity within the volume, while the boundary is the
outer surface seperating the non-conducting air with the
conducting volume.

In practice, a head model is built from surfaces, each
encapsulating a particular tissue. Typically, head models
consist of 3 surfaces: brain-skull interface, skull-scalp
interface and the outer surface. The regions between the
interfaces are assumed to be homogeneous and isotropic
conducting. To obtain a solution in such a piecewise
homogenous volume, each interface is tesselated with
small boundary elements.

The integral equations describing the potential V(r) at any
point r in a piecewise volume conductor V were described
in [61-63]:

where σ0 corresponds to the medium in which the dipole

source is located (the brain compartment) and V0(r) is the

potential at r for an infinite medium with conductivity σ0

as in equation (19).  and  are the conductivities of

the, respectively, inner and outer compartments divided
by the interface Sj. dS is a vector oriented orthogonal to a

surface element and ||dS|| the area of that surface element.

Each interface Sj is digitized in  triangles, (see figure

9) and in each triangle centre the potentials are calculated
using equation (23). The integral over the surface Sj is

transformed into a summation of integrals over traingles
on that surface. The potential values on surface Sj can be

written as

where the integral is over , the j-th triangle on the 

surface Sj, R is the number of interfaces in the volume. An 

exact solution of the integral is generally not possible, 

therefore an approximated solution  on surface Sk 

may be defined as a linear combination of  simpleba-

sis functions
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Example mesh of the human head used in BEMFigure 9
Example mesh of the human head used in BEM. Trian-
gulated surfaces of the brain, skull and scalp compartment 
used in BEM. The surfaces indicate the different interfaces of 
the human head: air-scalp, scalp-skull and skull-brain.
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The coefficients  represent unknowns on surface Sk

whose values are determined by constraining  to sat-

isfy (24) at discrete points, also known as collocation
points. Moreover, equation (24) can be rewritten as

This equation can be transformed into a set of linear equa-
tions:

V = BV + V0, (27)

where V and V0 are column vectors denoting at every node
the wanted potential value and the potential value in an
infinite homogeneous medium due to a source, respec-
tively. B is a matrix generated from the integrals, which
depends on the geometry of the surfaces and the conduc-
tivities of each region.

Determination of the elements of the matrix B is compu-
tationally intensive and there exist different approaches
for their computation. The integral in equation (23) is
also often called the solid angle [62,64,65]. The basis
functions hi(r) can be defined in several ways. The "con-
stant-potential" approach for triangular elements uses
basis functions defined by

where Δi denotes the ith planar triangle on the tesselated
surface. The collocation points are typically the centroids
of the surface elements and the unknown potentials V are
the potentials at each triangle [66]. The "linear potential"
approach uses basis functions defined by

where ri, rj, rk are the nodes of the triangle and the triple
scalar product is defined as [ri rj rk] = det(ri, rj, rk). The nota-
tion Δi(jk) is used to indicate any triangle for which one ver-
tex is defined by the vector ri, the remaining two vertices
denoted as rj and rk. The function hi(r) attains a value of
unity at the ith vertex and drops linearly to zeros at the
opposite edge of all triangles to which ri is a vertex. In this
case, the collocation points are the vertices of the elements
[66]. The approaches can be expanded into higher-order
elements [67]. Gençer and Tanzer investigated quadratic

and cubic element types and concluded that these gave
superior results to models with linear elements [68].

Barnard et al. [64] showed that the potentials in equation
(27) are only defined up to an additive constant. Hence,
equation (27) has no unique solution. This ambiguity can
be removed by deflation, which means that B must be
replaced by

where e is a vector with all its N (the total number of
unknowns) components equal to one. The deflated equa-
tion

V = CV + V0, (31)

possesses a unique solution which is also a solution to the
orignal equation (27). If I denotes the N × N identity
matrix and A represents I - C then

V = A-1V0. (32)

This equation can be solved using direct or iterative solv-
ers. Direct solvers are especially usefull when the matrix A
is relatively small because of a coarse grid. If one wants to
use a fine grid, then iterative methods should be used. The
use of multiple deflations during the iterations can signif-
icantly increase the convergence time to the solution of
equation (31) [69].

A typical head model for solving the forward problem
involves 3 layers: the brain, the skull and the scalp. The
conductivity of the skull is lower than the conductivity of
brain and scalp. If β is defined as the ratio of the skull con-
ductivity to the brain conductivity Meijs et al. showed that
an accurate solution of equation (23) is difficult to obtain
for small β (β < 0.1). The large difference between the con-
ductivities will cause an amplification of the numerical
errors in the calculation. To solve this problem, the Iso-
lated Problem Approach (IPA) can be used (also called
Isolated Skull Approach), which was introduced by
Hämäläinen and Sarvas [70]. Assume the labeling of the
compartments as Cscalp, Cskull and Cbrain and Sscalp as the
outer interface, Sskull as the interface between Cskull and
Cbrain and Sbrain as the interface between Cbrain and Cskull. The
IPA uses the following decomposition of the potential val-
ues:

V(r) = V'(r) + V''(r) (33)

where V'' is the potential on surface Sbrain when the head is
a homogeneous brain region, thus omitting the skull and
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scalp compartments. V' is the correction term. When V is
written like above, equation (32) can be written as

Because V'' is zero on the interfaces Sscalp and Sskull, V' con-

tains the potential values on the outer surface. The IPA is
based on the more accurate solution of the right-hand side

term . An accurate solution can be obtained by setting

 to the following

where ,  and  are the potentials at respectively

the brain-skull surface, the skull-scalp surface and the

outer surface. This imposes that  has to be calculated.

This can be done by solving the potentials at Sbrain with the

scalp and skull compartments omitted. The increase in
accuracy comes at a small cost of computational speed. A
weighted IPA approach was developed by Fuchs et al.
[71]. The IPA approach was extended to multi-sphere
models by Gençer and Akahn-Acar [72]. The calculation
of the forward problem involves every node on the mesh,
making it very computation intesive. Accelerated BEM
computes the node potentials on a small subset of nodes
corresponding to the electrode positions [73].

To improve the localization accuracy, one can locally
refine the mesh. Yvert et al. showed that if the dipole is at
2 cm below the surface, a mesh of 0.5 triangles/cm2 is
needed to have acceptable results. However, for shallow
dipoles (between 2 mm and 20 mm below the brain sur-
face) a mesh density of 2–6 triangles per cm2 is needed to
obtain comparable results. Of course, the area in the mesh
that has to be refined, has to be defined.

A main disadvantage using BEM in the EEG forward prob-
lem is that in all aforementioned implementations the
precision drops when the distance of the source to one of
the surfaces becomes comparable to the size of the trian-
gles in the mesh. Kybic et al. presented a new framework
based on a theorem that characterizes harmonic functions
defined on the complement of a bounded smooth surface

[74]. Using this framework, they proposed a symmetric
formulation. The main benefit of this approach is that the
error increases much less dramatically when the current
sources approach a surface where the conductivity is dis-
continuous. In another paper by the same authors, a fast
multipole acceleration was used to overcome the com-
plexity of the symmetric formulation [75]. A recent article
of the same authors demonstrates that the framework
allows the use of more realistical head models, which
don't have to be nested. In nested head models, an inner
interface is completely enveloped by an outer interface.
Non-nested compartments are compartments that are not
part of the brain, but part of the head (such as eyes,
sinuses,...) [76].

The finite element method
Another method to solve Poisson's equation in a realistic
head model is the finite element method (FEM). The
Galerkin approach [77] is used to equation (7) with
boundary conditions (11), (12), (13). First, equation (7)
is multiplied with a test function φ and then integrated
over the volume G representing the entire head. Using
Green's first identity for integration:

in combination with the boundary conditions (12), yields
the 'weak formulation' of the forward problem:

If (v, w) = ∫Gv(x, y, z)w(x, y, z)dG and a(u, v) = -(∇v, σ∇u),
this can be written as:

a(V, φ) = (Im, φ) (38)

The entire 3D volume conductor is digitized in small ele-
ments. Figure 10 illustrates a 2D volume conductor digi-
tized with triangles.

The computational points  can be identified with

the vertices of the elements (n is the number of vertices).
The unknown potential V(x, y, z) is given by

where  denotes a set of test functions also called

basis functions. They have a local support, i.e. the area in
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which they are non-zero is limited to adjacent elements.
Moreover, the basis functions span a space of piecewise
polynomial functions.

Furthermore, they have the property that they are each
equal to unity at the corresponding computational point
and equal to zero at all other computational points. Sub-
stituting (39) in equation (38) produces n equations in n
unknowns V = [V1...Vn]T ∈ �n×1:

Due to the local support of the basis function, each equa-
tion consists only of a linear combination of Vi's and its
adjacent computational points. Hence the system A ∈
�n×n, Aij = a(φi, φj) is sparse. In matrix notation one can
obtain:

A·V = I, (42)

with I ∈ �n×1 being the column vector of the source terms
obtained by the right hand side of equation (41).

An important consideration in finite-element methods is
how to represent a dipole source in the model.

• The obvious direct method is to represent a dipole using
a pair of fixed voltage conditions of opposite polarity
applied to two adjacent nodes [78].

• Another method is to embed a dipole source in the ele-
ment basis functions. When the dipole lies along the edge
of an element, this approach reduces to the simple idea of
using two concentrated sources at either end of that edge
[78].

• A third formulation is to separate the field in two parts
– one part is a standard field produced by an ideal dipole
in an infinite homogeneous domain and the other part is
a solution in the closed sourceless domain under bound-
ary conditions that correct the current movement across
boundaries between regions of different conductivity
[78].

• In the Laplace formulation, a small volume containing
the dipole is removed and fixed boundary conditions are
applied at all nodes on the surface of the removed vol-
ume. This can be interpreted as replacing current sources
by an estimate of the equivalent voltage sources [78].

• A fifth formulation is the blurred dipole model, where
source and sink monopoles are divided over the neigh-
bouring nodes. In most cases the source and sink monop-
oles do not coincide with nodes of the FEM-mesh.
Therefore a way to represent the dipole is by a summation
of monopoles placed at neighbouring nodes [79].

A comparison of the resulting surface potentials using the
first four methods with the exact analytical solution using
ideal dipoles (with an infinitesimal separation between
the two poles, an infinite total current exiting one pole
and entering the other, and a finite dipole moment, which
is the product of the current and separation) in a 4-layer
concentric sphere was made in [78]. It was found that the
third formulation gives the best performance for both
transverse and radial dipoles (followed by the Laplace for-
mulation for radial dipoles).

A recent innovation [80,81] is to consider current monop-
oles (point sources/sinks) instead of dipoles. Using the
equivalent-current inverse solution (ECS) approach for p
grid locations, only p variables need to be determined in
the inverse problem, whereas if a dipole is placed at each
of the p grid locations, the solution space consists of 3p
unknown variables because each dipole has 3 directional
components. This results in an advantage of using current
monopoles instead of current dipoles as demonstrated in
[81] where it is shown that the time required to calculate

a V Ii i j

i

n

m j( , ) ( , ),φ φ φ
=
∑ =

1

(40)

a V Ii j

i

n

i m j( , ) ( , )φ φ φ
=
∑ =

1

(41)

Example mesh in 2D used in FEMFigure 10
Example mesh in 2D used in FEM. A digitization of the 
2D coronal slice of the head. The 2D elements are the trian-
gles.
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the forward matrix in realistic finite-element head models
using the conventional approach may be reduced by one
third. It is further shown in [80] that ECS imaging is
equivalent to the equivalent-dipole inverse solution
(EDS) in that it provides source-sink distribution corre-
sponding to the dipole sources, but additional informa-
tion is needed to determine the current flows (by
combining ECS and EDS estimates).

In general the stiffness matrix is very big, making the com-
putation of the electrode potentials very computationally
intensive. To solve equation (42), iterative solvers for
large sparse systems are used as given in [82]. Some tech-
niques have been proposed to reduce the computational
burden and increase efficiency as will be illustrated in sec-
tion 5. A freely licensed software package that implements
both FEM end BEM is NEUROFEM [79,83-85].

The finite difference method
Isotropic media (iFDM)
The differential equation (9) with boundary conditions
(11), (12), (13) is transformed into a linear equation uti-
lizing the 'box integration' scheme [86] for the cell-cen-
tered iFDM. Consider a typical node P in a cubic grid with
internode spacing h. The six neighbouring nodes are Qi (i
= 1,...,6) as illustrated in figure 11.

Introducing αi and α0 as,

a finite difference approximation of (9) is obtained:

with

For volumes G, which contain a current monopole, IP
becomes I or -I. αi has the dimension of Ω-1 and corre-
sponds with the conductance between P and Qi. Further-
more, for IP = 0 Kirchoff's law holds at the node P. For each
node of a cubic grid we obtain a linear equation given by
(44). The unknown potentials at the n computational
points are represented by V ∈ �n×1. The source terms rep-
resented by I ∈ �n×n are calculated in each of the n cubes
utilizing equation (45). Notice that in the linear equation

(44) only the neighbouring computational points are
included. The system matrix A ∈ �n×n has at most six off-
diagonal elements and is a sparse matrix. In matrix nota-
tion one can write:

A·V = I (46)

To solve this large sparse set of equations iterative meth-
ods are used. A discussion of the most popular solvers will
be discussed in section. More extensive literature on this
method can be found in [29,87-92].

The finite difference method in anisotropic media (aFDM)
The differential equation (7) with Dirichlet and Neumann
boundary conditions can be transformed into a set of lin-
ear equations even in the case of anisotropic media. This
approach uses a cubic grid in which each cube (or ele-
ment) has a conductivity tensor. In anisotropic tissues the
conductivity tensor can vary between neighbouring ele-
ments. There are two ways to have anisotropy. In general,
the directions of the anisotropy can be in any direction.
Using tensor transformations, the matrix representation
of the concuctivity tensor can be deduced. In a more spe-
cific case, the directions of the anisotropy are limited
along the axes of the coordinate system of the headmodel.
In this case, the anisotropy is orthotrophic [93]. In the
next paragraphs, the general case as shown in [94] is
depicted.
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The computation stencil used in FDMFigure 11
The computation stencil used in FDM. A typical node P 
in an FDM grid with its neighbours Qi (i = 1�6). The volume 
G0 is given by the box.
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If the local coordinate system coincides with the axes rep-
resenting the principal directions of the anisotropy, then
the conductivity tensor at an element can be written as a
diagonal matrix. The diagonal elements represent the con-
ductivities in the orthogonal directions. The matrix repre-
sentation has to be transformed to the global Cartesian
system of the head, the same for all elements. A rotation
matrix is then required to transform the principal direc-
tions to a conductivity tensor in the Cartesian coordinate
system. In the local coordinate system the conductivity
tensor at an element j can be written as follows:

where  are the conductivities in the principal directions

at element j, respectively. The matrix representation has to
be transformed to a global cartesian coordinate system of
the head. Therefore a rotation matrix has to be applied.
The matrix representation of the conductivity tensor at
element j in the cartesian system of the head is then given

by , where T is a rotation transfer matrix

from the local coordinate system to the global coordinate
system [95] and T denotes the transpose of a matrix.

A finite difference method which can handle anisotropic
properties of tissues was presented by Saleheen et al. [96].
Here, the authors used a transition layer technique [97] to
derive a finite difference formulation for the Laplace's
equation that is valid everywhere in a piecewise inhomo-
geneous anisotropic medium, where the conductivity ten-
sor can have a different value in each element of the grid.
This formulation is extended to Poisson's equation by
Hallez et al. [94].

A typical node 0 in the grid represents the intersection of
eight neighbouring cubic elements, as shown in figure 12.
The finite difference formulation of equation 10 at node
0, derived from Saleheen's method. From the 26 neig-
bouring nodes at node 0, the formulation uses the 18
nearest neighbours, with rectilinear distance ≤ 2:

where Vi is the discrete potential value at node i. ai are the
coefficients depending on the conductivity tensor of the
elements and the internode distance. These coefficients
are given in [96].

For nodes at the corners of the compartments as illus-
trated in figure 12, for example node 11, the boundary
normal cannot be obviously defined. Therefore, the Neu-
mann boundary equations (12) and (11) contain singu-
larities in spatial derivatives of the conductivities. The
method presented in [94] and [96] has an advantage if
one wants to enforce such a Neumann boundary condi-
tion: the formulation allows a discrete change or disconti-
nuity in conductivity between neighbouring elements and
will automatically incorporate the boundary between two
different materials. In short, the boundary condition is
already implicitly formulated in equation (47).

For each node a linear equation can be written as in equa-
tion (47), and for all computational points a set of linear
equations is obtained: A·V = I. Due to the large size of the
system, iterative methods have to be used.

Comparing the various numerical methods
The three methods BEM, FEM and FDM can all be used to
solve the forward problem of EEG source analysis in a
realistic head model. A summary of the comparison
between the BEM, FEM and FDM is given below and in
table 2.

A first difference between BEM and FEM or FDM is the
domain in which the solutions are calculated. In the BEM
the solutions are calculated on the boundaries between
the homogeneous isotropic compartments while in the
FEM and FDM the solution of the forward problem is cal-
culated in the entire volume. Subsequently, the FEM and
FDM lead to a larger number of computational points
than the BEM. On the other hand, the potential at an arbi-
trary point can be determined with FEM and FDM by
interpolation of computational points in its vicinity,
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The computation stencil used in FDM if anistropic conductiv-ities are incorporatedFigure 12
The computation stencil used in FDM if anistropic 
conductivities are incorporated. The potential at node 0 
can be written as a linear combination of 18 neighbouring 
nodes in the FDM scheme. For each node we obtain an equa-
tion, which can be put into a linear system Ax = b.
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while for the BEM it is necessary to reapply the Barnard
formula [62] and numerical integration.

Another important aspect is the computational efficiency.
In the BEM, a full matrix (I - C), represented in equation
(31), needs to be inverted. When the scalp potentials need
to be known for another dipole, V0 in equation (31) needs
to be recalculated and multiplied with the already availa-
ble (I - C)-1. Hence once the matrix is inverted, only a
matrix multiplication is needed to obtain the scalp poten-
tials. This limited computational load is an attractive fea-
ture when solving the inverse problem, where a large
number of forward evaluations need to be performed.

For the FEM and the FDM, a direct inversion of the large
sparse matrices found in (42) and (46) is not possible due
to the dimension of the matrices. Typically at least
500,000 computational points are considered which leads
to system matrices of 500,000 equations with 500,000
unknowns which cannot be solved in a direct manner
with the computers now available. However matrices
found in FEM and FDM can be inverted for a given source
configuration or right-hand side term, utilizing iterative
solvers such as the successive over-relaxation method, the
conjugate gradient method [82], or algebraic multigrid
methods [98,99] (see next section). A disadvantage of the
iterative solvers is that for each source configuration the
solver has to be reapplied. The FEM and FDM would be
computationally inefficient when for each dipole an iter-
ative solver would need to be used. To overcome this inef-
ficiency the reciprocity theorem is used, as will be
explained in section.

When a large number of conducting compartments are
introduced, a large number of boundaries need to be sam-
pled for the BEM. This leads to a large full system matrix,
thus a lower numerical efficiency. In FEM and FDM mod-
eling, the heterogeneous nature of realistic head models
will make the stiffness matrix less sparse and badly condi-
tioned. Moreover, the incorporation of anisotropic con-

ductivities will decrease the sparseness of the stiffness
matrix. This can lead to an unstable system or very slow
convergence if iterative methods are used. To obtain a fast
convergence or a stable system, preconditioning should
be used. Preconditioning transforms the system of equa-
tions Ax = b into a preconditioned system M-1Ax = M-1b,
which has the same solution as the orignal system. M is a
preconditioning matrix or a preconditioner and its goal is
to reduce the condition number (ratio of the largest eigen-
value to the smallest eigenvalue) of the stiffness matrix
towards the optimal value 1. Basic preconditioning can be
used in the form of Jacobi, Gauss-Seidel, Successive Over-
Relaxation (SOR) and Symmetric Successive Over-Relaxa-
tion (SSOR). These are easily implemented [100]. More
advanced methods use incomplete LU factorization and
polynomial preconditioning [93,100].

For the FDM in contrast with the BEM and FEM, the com-
putational points lie fixed in the cube centers for the iso-
tropic approach and at the cube corners for the
anisotropic approach. In the FEM and BEM, the computa-
tional points, the vertices of the tetrahedrons and trian-
gles, respectively, can be chosen more freely. Therefore,
the FEM can better represent the irregular interfaces
between the different compartments than the FDM, for
the same amount of nodes. However, the segmented med-
ical images used to obtain the realistic volume conductor
model are constructed out of cubic voxels. It is straightfor-
ward to generate a structured grid used in FDM from these
segmented images. In the FEM and the BEM, additional
tessellation algorithms [101] need to be used to obtain
the tetrahedron elements and the surface triangles, respec-
tively.

Finally, it is known that the conductivities of some tissues
in the human head are anisotropic such as the skull and
the white matter tissue. Anisotropy can be introduced in
the FEM [102] and in the FDM [96], but not in the BEM.

Reciprocal approaches
In the literature one finds two approaches to solve the for-
ward problem. In the conventional approach, the transfer-
coefficients making up the matrix G in equation (17) are
obtained by calculating the surface potentials from dipole
sources via Poisson's equation. The calculations are made
for each dipole position within the head model and the
potentials at the electrode positions are recorded.

In the reciprocal approach [103], Helmholtz' principle of
reciprocity is used. The electric field that results at the
dipole location within the brain due to current injection
and withdrawal at the surface electrode sites is first calcu-
lated. The forward transfer-coefficients are obtained from
the scalar product of this electric field and the dipole
moment. Calculations are thus performed for each elec-

Table 2: A comparison of the different methods for solving 
Poisson's equation in a realistic head model is presented.

BEM FEM iFDM aFDM

Position of computational 
points

surface volume volume volume

Free choice of 
computational points

yes yes no no

System matrix full sparse sparse sparse
Solvers direct iterative iterative iterative
Number of 
compartments

small large large large

Requires tesselation yes yes no no
Handles anisotropy no yes no yes
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trode position rather than for each dipole position. This
speeds up the time necessary to do the forward calcula-
tions since the number of electrodes is much smaller than
the number of dipoles.

The general idea of reciprocity
Consider a resistor circuit, with two clamps AB and rx as
illustrated in figure 13. The clamp AB represents a pair of
scalp electrodes. The clamp rx is located in the brain
region.

First a current  at clamp rx is introduced. This source

will generate a potential UAB( ) at AB as illustrated in

figure 13(a). Next, current IAB at AB is set. This will give

rise to a potential difference (IAB) at rx illustrated in fig-

ure 13(b). The reciprocity theorem in circuit analysis
states:

Mathematical treatment
A mathematical treatment for a digitized volume conduc-
tor model is considered. Consider a digitized volume con-
ductor model with n computational points or nodes. At
each of the nodes the potential Vi with i = 1...n is calcu-
lated for given sources which are the current monopoles Ii
with i = 1...n. Poisson's equation can then be transformed
to a linear equation at each node, as illustrated for the

FEM and FDM in subsections and. This set of linear equa-
tions can be written in matrix notation. The system matrix
then becomes A ∈ �n×n and has the following properties:
it is sparse, symmetric and regular. One can write:

A·V = I,

with V = [V1...Vn]T ∈ �n×1 and I = [I1...In]T ∈ �n×1 and with
T the transpose operator. The desired potential difference
Vk - Vl between nodes k and l can be obtained for a current
source If at node f and a current sink Ig at node g with If =
-Ig. All other sources are zero. Cramer's solution for a lin-
ear system then becomes:

with A*� the minor for row * and column �.

On the other hand the potential Vf and Vg for a current
source Ik and current sink Il with Ik = -Il, are:

Furthermore, A*� is equal to A�* due to the fact that A is
symmetric. Hence, (eqn.(49) - eqn.(50))/If equals
(eqn.(51) - eqn.(52))/Ik. Subsequently the reciprocity the-
orem is deduced:

Ik(Vk - Vl) = If(Vf - Vg).

Reciprocity for a dipole source with random orientation

Considering equation (48), a dipole can be represented as
two current monopoles, a current source and sink, provid-

ing  and - , separated by a distance 2h. The dipole is

oriented from the negative to the positive current monop-
ole and is assumed to be along the x-axis of the resistor
network with node spacing h. The magnitude of the

dipole moment is then 2h . The centre r of the two

monopoles can then be seen as the dipole position. The
scalp electrodes are located sufficiently far from the
sources compared with the distance 2h between the
sources so that we can assume a dipole field. Equation
(48) can be rewritten as:

Irx

Irx

Vrx

U I V IAB AB r rx x
= . (48)

V
I f

k f A fk
k g Agk

k =
− + + − − + +[( ) ( ) ]
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V
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f k Akf
f l Alf
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ReciprocityFigure 13
Reciprocity. A resistor network where a current source is 
introduced in the brain and the a potential difference is meas-
ured at an electrode pair, and visa versa: (a) a current source 

 is introduced and the potential UAB is measured, and (b) a 

current source IAB is introduced and a potential  is meas-

ured.

BA

rx

h

ABI

Vrx

BA

rx

h

ABU

I
r x

(a) (b)

Irx

Vrx
Page 19 of 29
(page number not for citation purposes)



Journal of NeuroEngineering and Rehabilitation 2007, 4:46 http://www.jneuroengrehab.com/content/4/1/46
The forward problem in EEG source analysis gives the
potential UAB for a current dipole located at r and oriented

along the x-axis. Rewriting equation(53) with dx = 2h

and

gives:

In a similar way, UAB can be calculated for a dipole located
at r oriented along the y-axis and the z-axis.

Consider a dipole at position r and with dipole compo-
nents d = (dx, dy, dz)T ∈ �3×1. The potential UAB reads:

with ∇V(r) = (∂V(r)/∂x, ∂V(r)/∂y, ∂V(r)/∂z)T ∈ �3×1.

The flowchart in figure 14 shows the consecutive steps
that are necessary in the reciprocity approach in conjunc-
tion with FDM.

• A fictive current IAB of arbitrary value is introduced
which enters the head at electrode A and leaves the head
at electrode B.

• Utilizing the FDM the potentials V(hi, hj, hk) can be cal-
culated with h the internode spacing and i, j, k the node
numbers along the Cartesian axes. Figure 15 illustrates the
equipotential lines and current density vectors J = -σ∇V in
the brain region, with ∇V = (∂V/∂x, ∂V/∂y, ∂V/∂z)T. The
partial derivative ∂V/∂x is approximated by [V(h(i + 1), hj,
hk) - V(h(i - 1), hj, hk)]/2h. The partial derivatives ∂V/∂y,
∂V/∂z are obtained in a similar way.

• UAB the potential difference between the scalp electrodes
A and B generated by the dipole at position r and dipole
moment d is obtained by applying eqn. (55). When r does
not coincide with a node, then ∇V(r) is obtained with tri-
linear interpolation [104].

By solving only one forward calculation numerically, by
introducing current monopoles at electrodes A and B, and

storing the obtained node potentials in a data structure,
UAB is obtained for every dipole position and orientation.

If N scalp electrodes are used to measure the EEG, N - 1
electrode pairs can be found with linear independent
potential differences. Therefore N - 1 numerical forward
calculations are performed and stored in data structures.
In addition, the N - 1 potential differences at the N - 1

U
Vrx Irx

IAB
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∂
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Lead field between two electrodesFigure 15
Lead field between two electrodes. The current density 
J = σ∇V and the equipotential lines are illustrated when 
introducing a current IAB at electrode A and removing the 
same amount at electrode B.

A 

B 

The consecutive steps when applying reciprocity in conjunc-tion with FDMFigure 14
The consecutive steps when applying reciprocity in 
conjunction with FDM. A scheme showing the consecu-
tive steps that have to be followed when applying reciprocity 
in conjunction with FDM. First a current dipole IAB is set on 
the electrode pair AB. Using FDM the potential field is calcu-
lated in each point V(ih, jh, kh). With the dipole parameters 
and the potential field, the reciprocity theorem can be 
applied. This results in a potential difference at the electrode 
pair AB.

IAB V(hi,hj,hk) UAB

FDM Reciprocity

r d
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electrode pairs are transformed in N average referenced
potentials at the N electrodes.

Reciprocity has been applied in the literature in conjunc-
tion with BEM [105], FEM [106] and FDM
[29,89,91,94,107].

Solving large sparse linear systems applied in 
FEM and FDM
Properties of the system matrix
If the linear system resulting is rewritten from equations
(41), (44) and (47) in algebraic form as Ax = b, the system
matrix A = {aij} has the following properties.

From the coefficients in the linear equations one can see
that the coefficient connecting a computational point Vl to
a neighbouring point Vk is identical to the coefficient con-
necting Vk to Vl, thus A is symmetric. Moreover for FEM, it
can be shown that the stiffness matrix A is a symmetric
positive definite matrix [100].

For FDM in isotropic or anisotropic media, it can be
shown from equation (44) that the sum of all entries in a
row/column of A equals zero (see equations 44 and 47).
Therefore, the vector e = [1,...,1]T is an eigenvector with
associated eigenvalue 0. The matrix (A) of the FDM in
both isotropic and anisotropic media has rank n - 1, with
n the number of unknowns, and the eigenspace of the
eigenvalue 0 is of dimension one. Note that for a singular
problem to have a solution at all, the right-hand side b
must be consistent, i.e. b ∈ Range(A), Range(A) being the
range of A and defined as the number of independent vec-
tors in A. The kernel of A, Kernel(A), is the set of vectors a
that if multiplied by A returns zero. In this case the prob-
lem Ax = b possesses an infinite set of solutions. An itera-
tive method that converges from each initial guess
towards an element of this solution set is said to be semi-
convergent [100]. In our case, A is symmetric, thus
Range(A) = Kernel(A)⊥ where ⊥ stands for the orthogonal
complement. Since Kernel(A) is spanned by the vector e =
(1,...,1)T containing only ones as entries, a vector v lies in
Range(A) if and only if

From equations (44) and (47) it is easy to see that the
right-hand side of our problem satisfies this condition.
The vector, b, represent a dipole or a multipole, hence the
sum of the elements are zero. Thus the problem Ax = b
possesses infinitely many solutions differing only in an
additive constant.

Instead of solving the singular linear system, another pos-
sibility is to transform it into a regular one and solve this

instead. The regular problem is chosen such that its
unique solution belongs to the set of solutions of the orig-
inal singular system. The easiest approach is to fix the
value of a computational point to 0. The special structure
of the matrix then allows us to cancel the corresponding
row and column in A and also the respective entry in the
right-hand side vector b. This leads to a problem with a
regular matrix and its solution obviously solves the initial
problem with the particular computational point set zero.

Another important aspect of the matrix A is its sparseness.
Every matrix row contains a few non-zero off-diagonal
elements. This leads to a very small ratio of non-zero to
overall entries resulting in a very sparse matrix.

Iterative solvers
The following methods will be discussed:

• Successive over-relaxation (SOR)

• Conjugate gradients (CG)

• Preconditioned conjugate gradient method (PCG)

• Algebraic multigrid (AMG)

While these methods have been developed for regular lin-
ear systems, they can also be applied in our semi-definite
case. In the case of a consistent right-hand side, semi-con-
vergence can be guaranteed for SOR and (P)CG, while for
AMG theoretical results are more complicated [108]. A
summary of each method is given based on [104] for the
first three and [109,110] for the last method.

Successive over-relaxation
The SOR method is a representative of classical stationary
methods. It is known to be a non-optimal choice as far as
convergence is concerned, but has a very simple structure.
Thus it is a good candidate for an optimised implementa-
tion.

A linear system of equations Ax = b,

ai1x1 + � + aiixi + � + ainxn = bi, i = 1,...,n,

can be rewritten as

Let x(k) be an approximation to the solution after k itera-
tions. The SOR method updates the unknowns in the fol-
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lowing fashion. To compute  first an intermediate

value

is determined. Here new values of x(k+1) are used as soon
as they are available. The new approximation then
becomes

The over-relaxation parameter ω is a weighting parameter
used to put more weight onto the correction in order to
improve convergence. According to the Young theorem,
the optimal value for ω can be computed and can be
shown to be equal to:

where ρ(B) is the spectral radius or the maximum of the
absolute eigenvalues of the Jacobi iteration matrix. During
the SOR procedure, the ω can be altered using this for-
mula to obtain a faster convergence [100].

The pseudocode for the SOR algorithm is given in figure
16.

Conjugate gradients
The CG method is the typical algorithm and is especially
suited for symmetric positive definite matrices, for which
it was originally devised. CG is a descendant of the
method of steepest descent, that avoids repeated search in

the same directions by making search directions orthogo-
nal to each other in the energy (L2) norm associated with
the matrix.

In the CG method the iterate x(k+1) is computed via

x(k+1) = x(k) + α(k)d(k),

where d(k) ∈ �n is a search direction and α(k) is a scalar
given by

The first search direction is just the residual of the initial
guess d(0) = r(0), where the residual is defined by r(k) = b -
Ax(k). The k-th search direction is computed from the pre-
vious one via

d(k) = r(k) + β(k)d(k-1),

with

The pseudocode of the CG method is given in figure 17
with M equal to the unit matrix. Let us turn our attention
now to the use of symmetric successive over-relaxation
(SSOR) as a preconditioner for the CG method.

Preconditioned conjugate gradients

The convergence of the CG method depends on the con-
dition of the problem matrix. More precisely it is the dis-
tribution of the eigenvalues of the matrix that determines
the convergence. The distribution of the eigenvalues is
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The (P)CG methodFigure 17
The (P)CG method. Pseudo-code for the preconditioned 
conjugate gradient method. The instructions to be processed 
in a for-loop are indicated between the do and od.

The SOR methodFigure 16
The SOR method. Pseudo-code for the successive over-
relaxation method. The instructions to be processed in a for-
loop are indicated between the do and od.
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also known as the spectrum of a matrix. Loosely speaking,
the more eigenvalues lie close together in clusters, the
faster the convergence. If the eigenvalues are widely scat-
tered, a situation one can often find for problems with a
large number of unknowns, the convergence will be slow.
CG is therefore seldom used without preconditioning. By
preconditioning, the spectral properties of the linear sys-
tem should be improved. Instead of solving Ax = b, one

solves the modified system  with  = E-1A(E-1)T,

 = ETx and  = E-1b. In practice, the matrix  is never
explicitly formed. Instead in each step of the PCG algo-
rithm a linear system of the form Mz = r must be solved
with the matrix M = EET and with r the residual. Compare
the pseudocode of the preconditioned CG in figure 17.

Algebraic multigrid

The last contestant is an algebraic multigrid method. Alge-
braic multigrid methods are known to be, in general, very
efficient solvers for elliptic boundary value problems. The
basic idea is the recursive application of a two-grid
method. Here one splits the error into two components.
These are typically referred to as rough and smooth,
because in traditional applications they represent high-
and low-frequency Fourier modes. The rough compo-
nents are reduced in size on the original (fine) grid by
applying a limited number of steps of some iteration
scheme, such as Gauß-Seidel or SOR. This process is called
smoothing, because in the remaining error the smooth
components are dominant. For these a correction is com-
puted on a coarser grid with a larger mesh size. The equa-
tion for this correction is then again solved by a two-grid
approach, so that a hierarchy of grid levels is obtained.
Figure 18 illustrates the pseudocode of one iteration of the

algebraic multigrid method. Here  represents the trans-

fer function from a fine grid (h) to the next coarser grid

(H) and  from a coarse grid to the next finer grid. Fur-

thermore c* represents the correction on grid '*' applied
to update the solution on the next finer grid.

The difficulty in algebraic multigrid is finding the proper
components, that is coarsening strategies to derive a suit-
able grid hierarchy, operators for transferring functions
between different grid levels, and smoothing iterations for
the rough components. In the case of complex geometries
and/or jumping coefficients this can be quite tedious.
Therefore the idea of algebraic multigrid methods, as
illustrated in [109,110] is again attracting increased atten-
tion. Here a "grid hierarchy" and inter-grid transfer func-

tions are derived automatically from the problem matrix.
The pseudocode of the AMG method is given in figure 19.

Comparing the iterative solvers
For the iFDM, the following conclusions by [111] were
drawn from comparing the iterative solvers: (a) the alge-
braic multigrid-based solver performed the task 1.8–3.5
times faster, platform depending, than the second-best
contender, (b) there is no need to introduce a reference
potential which forces a unique solution and (c) neither
the grid- nor matrix-based implementation of the solvers
consistently gives a smaller run time.

Wolters et al. [79] investigated the parallel implementa-
tion of iterative solvers. If the Jacobi-CG (Jacobi Precondi-
tioned Conjugate Gradient) solver on a single processor is
taken as a reference, a speedup of 75 for a realistically
shaped high resolution head model is achieved with the
parallel AMG-CG (Algebraic multiGrid preconditioned
congjugate gradient) solver on 12 processors. This spee-
dup can be attributed to the algebraic multigrid precondi-

Ax b= A

x b A

Ih
H

IH
h

The AMG methodFigure 19
The AMG method. Pseudo-code of the algebraic multigrid 
method. The instructions to be processed in a for-loop are 
indicated between the do and od.

The Multigrid V-cycleFigure 18
The Multigrid V-cycle. Pseudo-code of the Multigrid V-
cylce. The instructions to be processed in a for-loop are indi-
cated between the do and od.
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tioning (speedup of 7.5), and to the parallelization on 12
processors (speedup of 10). The required relative solution
accuracy was 10-8.

Summary
The aim of this work was to give newcomers in the field of
EEG source localization an overview of the state-of-the-art
methods applied to solve the forward problem. Multiple
references to the work of authors active in this area were
provided.

The post-synaptic potentials at apical dendrites of pyram-
idal cells are suggested to be the generators of the EEG.
The extracellular electric currents generated by these cells
obey the quasi-static conditions, i.e. all currents behave as
if they were stationary at each instance in time. The elec-
trical conductivity of a tissue can be isotropic, identical in
all directions (e.g. fat, cerebrospinal fluid), or, aniso-
tropic, not identical in all directions (e.g. white matter and
skull). For both cases Poisson's equation with the Neu-
mann and Dirichlet boundary conditions was derived.
The active cluster of pyramidal cells was modelled with a
current dipole.

Finding the electrode potentials for a given dipole source
configuration is solving the so-called forward problem.
The first models used were three-shell spherical head
models. Analytical solutions exist here to solve the for-
ward problem. To have a more accurate resolution, realis-
tically shaped head models need to be constructed. These
models can be obtained by segmenting MR/CT images to
extract different conducting compartments associated
with certain tissues. White matter anisotropy can be
obtained from MR diffusion tensor images.

Various numerical methods can be used to solve the for-
ward problem in a realistically shaped head model. BEM,
FEM, iFDM and aFDM were discussed. For BEM the com-
putational points are located on the surfaces between iso-
tropic conducting compartments while for the other
methods the computational points are located in the
entire volume. Furthermore for BEM and FEM the compu-
tational points can be chosen freely. One could, for exam-
ple, place more points in areas where more irregular
shapes occur. An additional tessellation algorithm to posi-
tion the computational points is then required. For FDM
the cubic grid is rigid. This gives the user the opportunity
to import directly from 3D medical images where cubical
voxels are also used. Note also that for both FEM and
aFDM anisotropic compartments can be used.

The reciprocity theorem was introduced to speed up the
time necessary to solve the forward problem. The electric
field that results at the dipole location within the brain
due to current injection and withdrawal at the surface

electrode sites is first calculated. The forward transfer-coef-
ficients are obtained from the scalar product of this elec-
tric field and the dipole moment. Calculations are thus
performed for each electrode position rather than for each
dipole position. This speeds up the time necessary to per-
form the forward calculations since the number of elec-
trodes is much smaller than the number of dipoles.

For FEM and FDM a large linear system is generated with
a sparse system matrix and a right-hand side representing
the electrical sources. Solving the forward problem is solv-
ing this linear system. Direct solvers cannot be used as the
number of unknowns, the potentials at the computa-
tional points, is too large. Here iterative solvers for large
sparse linear systems were utilized. The unknowns are
only calculated for a given right-hand side. The successive
over-relaxation method, the conjugate gradient method,
the preconditioned conjugate gradient method, and the
multigrid method were discussed. The last method was
the most promising computation-time wise.

Discussion and new trends
In this section interesting/necessary evolutions with
respect to the forward problem in EEG source localization
will be discussed. The following topics are raised: (a) a
promising way to obtain tissue conductivity by magnetic
resonance electromagnetic impedance tomography
(MREIT); (b) combined EEG/MEG source localization; (c)
incorporating invasive electrodes to overcome the disad-
vantages of the skull; (d) dipole localization benefits of
improving the SNR of the EEG by blind source separation
techniques; (e) combining EEG with functional magnetic
resonance imaging (fMRI) to yield more accurate localiza-
tion; (f) the necessity for a grand benchmark study to
compare the performance of the different numerical
methods on the same dataset; (g) use of advanced numer-
ical approaches of the FEM and/or FDM; (h) numerical
approaches for dipole modelling in the forward problem.

(a) One of the main problems in EEG source localization
is the uncertainty of the tissue conductivity. Although
there are a lot of studies concerning this topic, the actual
conductivity is not well established (and may change
from person to person with age). In section 3, a distinct set
of brain tissues and assigned bulk-conductivity to each of
them was explained, thus obtaining a piecewise homoge-
neous head model. In reality the conductivity within
brain tissue is place dependent and, thus, variable. The
boundaries of brain tissues are in reality not discrete but a
continuum. The technique to measure conductivity at a
specific place in the brain is impedance tomography. A
recent promising technique, MREIT, utilizes the informa-
tion in both magnetic as well as electric fields (induced by
injection current at the surface electrodes) to build a con-
ductivity profile of the human head in 3D. While EIT is
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limited by the boundary measurements of current-voltage
data, MREIT utilizes the internal magnetic flux density
data obtained using a Magnetic Resonance Imaging (MRI)
scanner. When a current I is injected into an electrically
conducting body through a pair of surface electrodes, an
electric current density J and a magnetic field density B are
formed insed the conducting body. The magnetic field
density B can be measured inside a MR scanner, J can be
calclulated by J = ∇ × B/μ0, μ0 is the magnetic permeability
in the free space. The conductivity image reconstruction
problem in MREIT means to find a conductivity map σ
from the data set [I, Jm, Vm] → σ, where Jm is the measured
current density inside the subject, Vm is the measured volt-
age between the electrodes, and σ is the conductivity
image to be reconstructed [112]. However, the technique
is highly sensitive to noise and there is an open problem
on the uniqueness of the reconstructed conductivity
image. To incorporate anisotropic conductivity recon-
struction one should use in addition diffusion tensor
images [113]. This way the conductivity can be measured
very locally [114,115]. This could not only help us estab-
lish an accurate volume conductor model but could also
give us the reciprocal current sources by measurment
rather than numerical calculation.

(b) Magnetoencephalography or MEG measures the
induction outside the head, generated by neuronal activ-
ity. Unlike EEG, MEG is less sensitive for the conductivity
of the skull. However, MEG are unable to measure radially
oriented dipoles. The MEG equipment consists of super-
conducting quantum interference devices (SQUIDs) that
can measure very low variations of magnetic field differ-
ences. A major drawback of MEG is the huge sensitivity to
instrumental and environment noise. The use of super-
conduting elements can minimize the instrumental noise.
Noise from high-frequent electromagnetic waves, like
radiowaves, can be eleminated using a shielded room.
Slow electromagnetic waves, like passing cars, can be min-
imized by the use of gradiometers. These effort to mini-
mize the noise sources, limit the possibility to conduct a
long-term monitoring. Nevertheless, the combined use of
EEG and MEG has shown to be beneficial for stimulus-
locked brain activations. More recently, EEG and MEG
have come to be viewed as complementary rather than
competing modalities. The combine EEG/MEG measure-
ment can compensate each one's limitations and can be a
very succesful modality. An accurate modelling of the
human head can improve the solution of both EEG and
MEG [116,117].

(c) Due to the lower conductivity of the skull compared to
the surrounding tissue, the potentials generated by a
source in the brain are smeared out over the scalp surface,
the skull is acting as a spatially low-pass filter. In some
epilepsy patients, depth- and grid electrodes are

implanted in their brain. While grid electrodes are
arranged in an array of 8, 16 or 32 electrodes and measure
the electrical activity at the cortical surface of the brain,
depth electrodes are implanted in the brain near the pre-
sumably active brain structures. These electrodes measure
the electrical activity without the shielding effect of the
skull. Initial studies have shown that including this infor-
mation in source localization may improve the accuracy
[118]. Although, the brain cannot fully be surrounded by
grid electrodes, as the surgery of the patient would be to
intensive. As the signal-to-noise ratio of the grid elec-
trodes is larger than scalp electrodes, it is difficult to use
both grid electrodes and scalp electrodes at the same time
in the dipole estimation problem. One way to circumvent
this is to create an a priori distribution of the brain activity
using the grid electrodes and then use the scalp electrodes
to do a more precise estimation. In the same aspect, a
multipole model as a source model for intracranial EEG
can become important as two dipoles with opposite ori-
entation travel along the axon very close to each other.

(d) Noise coming from EEG background activity (i.e.
other brainwaves than the ones you are interested in),
artefacts from extra-cerebral sources (such as eye move-
ments and muscle activation) and instrument quantiza-
tion noise are inherent to the EEG and limit the accuracy
of source localization. Removing the noise from the EEG
signal is important and should be investigated. It is not
necessary to incorporate anisotropic compartments when
knowing that the dipole error due to noise in the EEG is
of a higher magnitude. New algorithms to filter noise and
artefacts from the EEG are Blind Source Separation (BSS)
techniques like Independent Component Analysis (ICA)
and Canonical Correlation Analysis (CCA). For more
detail on these issues we refer to the literature [119-121].

(e) While the spatial resolution of the EEG is low because
of the noise of the EEG signals, other modalities have a
high spatial resolution. Functional magnetic resonance
imaging measures locally the blood oxygen level in the
brain. The fMRI scan highlights the activity present at a
specific brain area. This technique has a high spatial reso-
lution, but (unlike the EEG) has a low temporal resolu-
tion. Using both modalities, EEG and fMRI, in source
localization should improve the accuracy [116,122-124].

(f) The field of forward modelling has grown extensively
in the last years. Now more than ever there is need for
benchmark studies to compare different numerical tech-
niques. A conceptual benchmarking study has been done
by Pruis et al. [125], but lacks a quantitative assessment of
the pros and cons of the numerical methods. A bench-
marking study can investigate which numerical method is
preferable to others, in a specific situation. This needs an
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extensive and diverse database of head models accessible
for researchers.

(g) Making FEM or FDM more accurate can be done in 2
ways: (i) increasing the number of nodes and (ii) increas-
ing the order of an element. Increasing de number of
nodes is equivalent to reducing element size and is know
as classical (or the h-version) FEM, while increasing the
order of an element is known as the p-version of FEM. The
generalisation of both variants is the hp-version of FEM
(hp-FEM) and is a spectral method where the convergence
is achieved by simultaneously refining the mesh and
increasing the approximation order. It originated in the
late 1980s and is becoming very important due to its
potential of unconditional exponential convergence
[126,127]. The main idea is to place large high order ele-
ments in regions where the potential is smooth, and small
elements with low order in regions close to singularities.
One could obtain the accuracy of the system but decrease
significantly the number of elements (degrees of freedom)
and also the computation time [128]. However, the use-
fullness of hp-FEM in modeling the forward problem in
EEG source localization is yet to be established.

(h) In the forward problem, the mathematical dipole is a
current source and sink infinitesimally close to each other.
This introduces a singularity on the right-hand side of the
Poisson equation that has to be treated specifically. Sev-
eral approaches exist to deal with this singularity. These
approaches were summarized and benchmarked in [129].
In this article, it was shown that the potential distribution
changes significantly when using different approaches for
the dipole model. Further research in this field can
improve our understanding in numerical methods to
solve the forward problem and give insights towards cor-
rect numerical modelling of the dipole.
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