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Hereditary persistence of fetal hemoglobin (HPFH) is 
characterized by persistent high levels of fetal hemoglobin 
(HbF) in adults. Several contributory factors, both genetic and 
environmental, have been identified1 but others remain  
elusive. HPFH was found in 10 of 27 members from a Maltese 
family. We used a genome-wide SNP scan followed by linkage 
analysis to identify a candidate region on chromosome 
19p13.12–13. Sequencing revealed a nonsense mutation in 
the KLF1 gene, p.K288X, which ablated the DNA-binding 
domain of this key erythroid transcriptional regulator2. Only 
family members with HPFH were heterozygous carriers of this 
mutation. Expression profiling on primary erythroid progenitors 
showed that KLF1 target genes were downregulated in samples 
from individuals with HPFH. Functional assays suggested that, 
in addition to its established role in regulating adult globin 
expression, KLF1 is a key activator of the BCL11A gene, which 
encodes a suppressor of HbF expression3. These observations 
provide a rationale for the effects of KLF1 haploinsufficiency 
on HbF levels.

Hemoglobin (Hb) is composed of two α-like and two β-like globin 
chains, encoded by genes in the HBA and HBB clusters, respectively. 
Developmental regulation of globin genes results in the expression of 
stage-specific Hb variants (Supplementary Fig. 1). Persistent expres-
sion of HbF ameliorates the symptoms of β-thalassemia and sickle 
cell disease, and reactivation of the HBG1 and HBG2 genes in adults 
is therefore of substantial interest for the clinical management of  
β-type hemoglobinopathies. After birth, HbF is gradually replaced by 
adult hemoglobin (HbA)4. Residual amounts of HbF continue to be  
synthesized throughout life. In most adults, HbF contributes <2% to 
total Hb, but there is considerable variation5. Genetic studies have 
identified three loci that control HbF levels in adults: HBB (11p15.4)6,7, 

HBS1L-MYB (6q23.3)6,8,9 and BCL11A (2p16.1)10,11. Together, 
these loci account for <50% of the variation in HbF, indicating that  
additional loci are involved5.

Genetic analysis of families in which HPFH is found is a 
particularly powerful approach by which to identify modifiers of HbF  
levels8. Here we describe a Maltese pedigree with HPFH. The proband 
(II-5; Fig. 1a) was referred to the clinic because of microcytosis. She 
presented with high HbF levels (19.5%). We recruited additional 
family members, and 10 of 27 tested showed HPFH (Fig. 1a and 
Supplementary Table 1), suggesting that inheritance of the trait was 
autosomal dominant. We excluded linkage to the HBB locus, indicat-
ing that a trans-acting factor was involved.

We performed a genome-wide linkage analysis on 27 family mem-
bers to identify candidate loci for the HPFH modifier. We carried 
out whole-genome multipoint parametric linkage analysis using the 
Merlin program12 with two software packages, easyLINKAGE13 and 
dChip14. The analyses resulted in one significant linkage peak with 
log10 odds (LOD) scores of 2.7 and 4.2, respectively, on chromosome 
19p13.12–13 (Fig. 1b and Supplementary Fig. 2). We performed 
these analyses using an autosomal dominant model, assuming a 
penetrance of 90% and 1% phenocopy rate. We found no evidence of 
significant linkage to the previously reported trans-acting HPFH loci 
at 2p16.1 (BCL11A)10,11 and 6q23.3 (HBS1L-MYB)6,8,9. We further 
investigated these two loci by genotyping the five individual SNPs 
previously associated with increased HbF levels. These analyses ruled 
out involvement of the HBS1L-MYB locus and revealed that hetero-
zygosity at SNP rs766432 in the BCL11A locus might have contri
buted to the increased HbF levels but was not the main determinant 
(Supplementary Table 1).

Individuals with HPFH had a consistent haplotype at 19p13.12–13, 
and the inferred haplotypes revealed that all such individuals shared 
one copy of an identical chromosome segment, presumably containing  
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the putative HPFH locus (Supplementary Fig. 2). Recombination 
events delineating the linkage region are indicated with arrows. The 
distal boundary is determined by a recombination event in individuals 
IV-3 and IV-5 (Supplementary Fig. 2, white arrow). The proximal 
boundary is determined by individuals III-12, III-18, IV-6 and IV-7  
(Supplementary Fig. 2, black arrow). These results narrowed the 
region down to a 663-kb interval between rs7247513 and rs12462609. 

The KLF1 gene, encoding a key erythroid 
transcriptional regulator2, is found in this 
area. Mutations in KLF1 have been reported 
as the molecular basis of the rare blood group  
In(Lu) phenotype15 but have not been con-
nected with HPFH. DNA sequencing revealed 
two linked mutations in KLF1 that were found 
exclusively in all individuals with HPFH  
(Fig. 1c). The first mutation, p.M39L, is prob-
ably a neutral substitution as mouse Klf1 con-
tains a leucine at this position16. The second 
mutation, p.K288X, is predicted to ablate the 
complete zinc finger domain and therefore 
abrogate DNA binding of the mutant pro-
tein17. The KLF1 p.K288X variant was absent 
from a random sample drawn from the gen-
eral Maltese population (n = 400).

To identify differentially expressed genes, 
we isolated RNA from erythroid progenitors 
(HEPs) cultured from peripheral blood18 
from four family members with HPFH and 
four without, and performed genome-wide 
expression analysis. By comparing the results 
to the reported gene expression profiles of 
mouse Klf1 null erythroid progenitors19,  

we identified a set of common differentially regulated genes 
(Supplementary Table 2). Cluster analysis with this set of genes sepa-
rated the samples from individuals with HPFH from samples from 
those without (Fig. 2a), consistent with the notion that KLF1 activity 
is compromised in the family members with HPFH. Deregulation of 
these KLF1 target genes could explain the mild hypochromic micro-
cytic indices shown by the individuals with HPFH (Supplementary 
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Figure 1  Chromosome 19 locus linked to 
HPFH in a Maltese family. (a) The Maltese 
HPFH pedigree. HbF levels are indicated as 
percentage of total Hb (%HbF). Individuals 
with HPFH are shown as half-filled symbols. 
(b) LOD scores derived from genome-wide 
linkage analysis. The putative HPFH locus on 
chromosome 19 is indicated by an arrow. pLOD, 
parametric LOD score; MPT, multipoint test; 
cM, centiMorgan. (c) Sequence analysis of 
KLF1. Individuals with HPFH were heterozygous 
for two mutations (arrows; Supplementary Table 1). 
The predicted effects of the mutations on KLF1 
are shown below.

Figure 2  KLF1 target genes are 
downregulated in KLF1 p.K288X 
heterozygous HEPs. (a) RNA isolated 
from HEPs derived from healthy family 
members (wt/wt) and those with HPFH 
(wt/KLF1 p.K288X) was used for genome-
wide expression analysis. Deregulated 
genes common between wt/wt and wt/
KLF1 p.K288X and mouse wt/wt versus 
Klf1 null mutant erythroid progenitors19 
(Supplementary Table 2) were used for 
cluster analysis. (b) Validation of key target 
genes by qPCR. Expression levels of BCL11A 
were normalized using GAPDH as a reference. Expression of HBG1/HBG2 (HBG) was calculated as ratio to HBA1/HBA2 (HBA) expression. 
Medians are indicated by red lines in the box plots. *P = 0.0209. Error bars, s.d.
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Table 1). Of note, the embryonic Hbb-y and HBE1 genes were highly 
upregulated (Supplementary Table 2), whereas expression of the 
fetal globin repressor BCL11A3 was downregulated in individuals 
with HPFH (Supplementary Table 2 and Supplementary Fig. 3). We 
could not measure the expression of fetal and adult globins quantita-
tively on the microarrays owing to saturation effects. However, quan-
titative RT-PCR (qPCR) confirmed the downregulation of BCL11A 
and showed that the expression of HBG1/HBG2 genes was increased 
in the samples from individuals with HPFH (Fig. 2b).

Next, we investigated the effects of KLF1 knockdown in HEPs 
derived from healthy donors. We obtained efficient knockdown of 
KLF1 with two out of five lentiviral shRNA constructs20 tested (Fig. 3a).  
Quantitative S1 nuclease protection assays21 showed that KLF1 
knockdown led to a significant increase in HBG1/HBG2 expression  
(Fig. 3b–d), which was confirmed by qPCR (Fig. 3e). In addi-
tion, we found that BCL11A expression was diminished after KLF1 
knockdown, both at the protein (Fig. 3a) and at the mRNA level 
(Fig. 3e). Thus, the effects of KLF1 insufficiency on HBG1/HBG2 
and BCL11A expression in HEPs from healthy donors were similar 
to those observed in KLF1 p.K288X heterozygotes, supporting the 
causative role of this mutation in the HPFH phenotype.

To further investigate this idea, we transduced HEPs with len-
tiviral vectors that expressed either the KLF1 p.K288X truncation 
mutant or full-length KLF1. The transgenic proteins were expressed 

at physiological levels in control HEPs (Supplementary Fig. 4a). This 
did not affect HBG1/HBG2 expression (Supplementary Fig. 4b,c), 
indicating that the truncated form of KLF1 does not act as a domi-
nant-negative factor. In HPFH HEPs, lentivirus-mediated expression 
of full-length KLF1 resulted in considerable downregulation of HBG1/
HBG2 mRNA, whereas expression of truncated KLF1 had no effect  
(Fig. 4). Levels of BCL11A protein were increased after transduc-
tion with full-length KLF1 lentivirus, whereas no such changes were 
observed after transduction with either GFP or truncated KLF1 lentiviral  
vectors (Fig. 4a).

The endogenous truncated KLF1 protein was not or at best barely 
detectable in HEPs from individuals with HPFH. This suggested 
that RNA transcribed from the KLF1 p.K288X allele was subject to 
nonsense-mediated decay22, further emphasizing that it was dys-
functional. Consistent with this notion, we found that KLF1 mRNA 
expression was lower in HEPs from individuals with HPFH than in 
those from healthy donors (Supplementary Fig. 3).
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KLF1 preferentially activates the HBB gene at the expense of 
HBG1/HBG2 gene expression by interacting directly with regula-
tory elements in the HBB promoter23–25. The molecular analysis of 
the Maltese HPFH-affected family is consistent with this function of 
KLF1. In addition, our results also suggest a new potential mecha-
nism by which KLF1 might tip the balance from HBG1/HBG2 to HBB 
expression: through activation of the gene encoding the HBG1/HBG2 
repressor BCL11A3. The promoter region of the BCL11A gene con-
tains several putative KLF1 binding sites (CACC boxes; Fig. 5a). We 
performed chromatin immunoprecipitation (ChIP) assays to inves-
tigate whether KLF1 was bound to the BCL11A promoter in vivo. 
We used human fetal liver erythroid progenitors, which express high  
levels of HBG1/HBG2, and HEPs from adult peripheral blood in which 
the HBG1/HBG2 genes are suppressed. In adult HEPs, we observed 
strong binding of KLF1 to the BCL11A promoter (Fig. 5b). This was 
similar to the binding of KLF1 to the HBB promoter, which served as 
a positive control26. Neither promoter seemed to be bound by KLF1 
in fetal liver-derived erythroid progenitors. ChIP reactions with the 
unrelated CD71 antibody were negative in all cases. We conclude that 
in adult HEPs KLF1 is bound to the BCL11A promoter in vivo.

Diminished KLF1 activity, mediated either through mutation of 
one KLF1 allele (as occurs in the Maltese individuals with HPFH) or 
experimentally through shRNA-mediated knockdown in HEPs from 
normal donors, results in decreased BCL11A expression. Conversely, 
BCL11A levels were increased upon restoration of KLF1 activity 
in HEPs from Maltese family members with HPFH. This identi-
fies KLF1 as a dual regulator of fetal-to-adult globin switching in 
humans (Supplementary Fig. 5). First, it acts on the HBB locus 
as a preferential activator of the HBB gene27. Second, it activates 
expression of BCL11A, which in turn represses the HBG1/HBG2 
genes. This dual activity ensures that, in most adults, HbF levels are 
<2% of total Hb.

In conclusion, we have identified haploinsufficiency for KLF1 as 
a cause of HPFH. We suggest that attenuation of KLF1 activity may 
be a fruitful approach to raise HbF levels in individuals with β-type 
hemoglobinopathies.

Methods
Methods and any associated references are available in the online  
version of the paper at http://www.nature.com/naturegenetics/.

Accession code. The microarray expression data can be found at GEO 
under accession number GSE22109.

Note: Supplementary information is available on the Nature Genetics website.
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(a) Schematic drawings of the promoter areas of the BCL11A, HBB and 
RASSF1A genes. Positions of potential KLF1 binding sites (CACC boxes) 
and PCR primers used are shown. Arrows indicate transcription start sites. 
(b) ChIP analysis of KLF1 binding to the BCL11A promoter in human 
fetal liver cells and adult HEPs. The HBB promoter served as a positive 
control26. RASSF1A was used as a negative control, and the unrelated 
CD71 antibody served as a control for the specificity of the KLF1 
antibody. *P < 0.05; **P < 0.01. Error bars, s.d.
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ONLINE METHODS
Molecular genetic analysis. The proband (II-5; Fig. 1a) was referred to the 
clinic because of microcytosis. She presented with 19.5% HbF, and therefore 
additional family members were approached to participate (Supplementary 
Note). Blood samples were obtained with informed consent and standard 
hematological indices were determined (Supplementary Table 1). Genomic 
DNA was extracted from ~1 × 106 cells from whole blood using a modified 
salting out procedure29. Control DNA samples isolated from 400 random 
Maltese individuals were available from the Laboratory of Molecular Genetics, 
Biomedical Sciences Building, University of Malta. The family members were 
genotyped in the HBB, HBD genes and the HBG1/HBG2 gene promoters to 
detect point mutations and small insertions/deletions leading to β-thalassemia,  
δ-thalassemia or HPFH, respectively, using routine procedures30. Gap PCR was 
carried out to detect possible genomic rearrangements leading to deletional 
HPFH or δβ-thalassemia31. This excluded linkage of the HPFH phenotype to 
the HBB locus. Occurrence of common α-thalassemic mutations (SEA, 3.7 and 
4.2 deletions) was also excluded. The NspI mapping 250K set (Affymetrix) was 
used to analyze 27 DNA samples from the HPFH family, starting with 250 ng 
of genomic DNA per array. Individual SNPs in the HBS1L-MYB (rs28384513, 
rs9399137, rs4895441) and BCL11A (rs766432, rs11886868) loci32 were geno-
typed manually.

DNA linkage analysis. Multipoint parametric linkage analysis was performed 
using the Merlin v1.0.1 program12 with two software packages (EasyLinkage 
v5.05 Beta13 and dChip14) to calculate parametric LOD scores. Parametric 
analysis was carried out using an autosomal dominant mode of inherit-
ance. Penetrances used for the dominant model were 0.01, 0.90 and 0.90 for 
the wild-type homozygote, mutant heterozygote and mutant homozygote, 
respectively. We assumed a disease allele prevalence frequency of 0.0001 and 
a phenocopy rate of 1%. A co-dominant allele frequency algorithm was used 
for the analysis. These analyses were carried out using the sex-averaged 500K 
Marshfield genetic map provided with the easyLINKAGE software package13. 
A Mendelian inheritance check was performed for all family members using 
the program PedCheck33 and incompatibilities were omitted from the analysis. 
This increased the power and accuracy. The analysis was performed by taking 
HbF as a quantitative hematological value and classifying family members as 
‘affected’ with HbF >2%, and ‘nonaffected’ with HbF <2%. Replicates of the 
linkage analysis and inferred haplotypes were constructed and visualized using 
dChip14. DNA from 400 random Maltese individuals was used to check for the 
presence of the KLF1 p.K288X mutation in the population.

Cell culture. Human erythroid progenitor cells (HEPs) were cultured as 
described18 in the presence of recombinant human Epo (1 U/ml, gift from 
Ortho-Biotech), recombinant human SCF (50 ng/ml, gift from Amgen) and 
dexamethasone (5 × 10−7 M; Sigma). Cells were counted with an electronic 
cell counter (CASY-1, Schärfe System).

Transcription profiling. A minimum of 1.5 × 106 HEPs were harvested at  
day 12 of culture and RNA was extracted with Trizol reagent (Sigma) and puri-
fied using the RNeasy Mini Kit (Qiagen), including an on-column DNaseI diges-
tion, according to the manufacturer’s instructions. RNA yield was determined 
using the 2100 Bioanalyzer (Agilent Technologies). We analyzed 8–10 μg of 
total RNA by microarrays using cells from day 12 of culture. The quality of the 
total RNA samples and the resulting cRNA was assessed on the Bioanalyzer. 
Fragmented biotinylated cRNA was prepared and 15 μg hybridized to HG-U133 
plus 2 GeneChips according to the manufacturer’s protocols (Affymetrix). The 
data files have been deposited in MIAME-compliant format in the NCBI GEO 
database (GSE22109). Single array expression analysis was performed using the 
Affymetrix GeneChip Operating Software (GCOS). A global scaling strategy 
was used to give an average target intensity of 500 for each array. Data from all 
eight arrays were filtered to exclude probe sets called either absent or marginal 
in all arrays. Control probe sets with the prefix AFFX were also removed before 
subsequent data analysis. Filtered data were transformed to a log2 scale and ana-
lyzed to determine differentially expressed genes. A 1.5-fold change threshold 
and test statistic of P < 0.05 were used as cutoff. A list of genes differentially 
expressed in mouse Klf1 null erythroid progenitors (P < 0.05)19 was downloaded 
from http://data.genome.duke.edu/EKLFDef.

Quantitative S1 nuclease protection assays. To measure globin mRNA  
levels directly, we used quantitative S1 nuclease protection assays21. The probe 
fragment for detection of HBG1/HBG2 mRNAs was amplified by PCR using 
the primers S1-HBG-S and S1-HBG-A (Supplementary Table 3). Sizes of 
probes/protected fragments are: HBA1/HBA2: 700 nt/218 nt; HBG1/HBG2: 
350 nt/165 nt; HBB: 525 nt/155 nt (ref. 21). Quantification was performed 
using a Typhoon Trio Phosphorimager (GE Healthcare) and corrected for 
specific activity of the probes.

qPCR analysis. Total RNA (1 μg) isolated from HEPs was converted to cDNA 
using SuperScript II reverse transcriptase according to the manufacturer’s 
instructions (Invitrogen). Expression of mRNAs was analyzed by qPCR. 
Amplification reactions were performed with primers designed with Primer 
Express software v2.0 (Applied Biosystems). All amplifications used SYBR 
Green PCR Master Mix (Applied Biosystems). qPCR was performed with an 
Optical IQ Thermal Cycler (Bio-Rad Laboratories) with the following condi-
tions: 50 °C for 2 min and 95 °C for 10 min, followed by 45 cycles of 95 °C 
for 15 s and 62 °C for 45 s. All reactions were performed in triplicate. Gene 
expression levels were calculated with the 2 (−ΔΔC(T)) method34. Target gene 
expression was normalized to GAPDH expression, unless indicated otherwise. 
Primers used are listed in Supplementary Table 3.

Statistical analysis. Statistical analysis of gene expression data obtained 
from quantitative S1 nuclease protection assays and qPCRs was performed 
with Mann Whitney tests using STATA data analysis and statistical software 
(StataCorp LP).

KLF1 expression constructs. A human KLF1 cDNA clone (BC040000, 
Imagenes) was amplified by PCR with an att-specific set of primers (Invitrogen) 
to fuse the cDNA with a V5 tag at the carboxy terminus of the protein. Primers 
used were KLF1-F and KLF1-R1 (Supplementary Table 3). In parallel, part 
of the clone was amplified, truncating the protein at amino acid 288, with 
att-specific primers using a different reverse primer KLF1-R2. The PCR  
products were introduced into the lentiviral expression vector pRRLsin.sPPT.
CMV.Wpre35 modified for Gateway cloning (Invitrogen). The final clones were 
verified by sequencing.

Lentiviral transduction of human erythroid progenitors. Lentivirus was 
produced by transient transfection of 293T cells according to standard 
protocols36. Two days after transfection, the supernatant was collected, 
filtered and concentrated by centrifugation at 20,000 rpm for 2 h at 4 °C. 
HEPs cultured for 1 week were transduced in 24-well plates. We used  
0.5 × 106 cells per well and sufficient amounts of virus to transduce ~80% 
of the cells. When appropriate, puromycin (1 μg/ml final concentration) 
was added to the cells after 2 d, and selection was performed for 2–3 d. At 
day 5–7 after transduction, cells were harvested and nuclear extracts were 
prepared37. RNA was extracted with the Trizol reagent. For knockdown 
experiments, clones from The RNAi Consortium (TRC20; Sigma) were used. 
The nontarget SHC002 vector was used as a control (SHC002: 5′-CAACAA 
GATGAAGAGCACCAA-3′). Five shRNA clones targeting KLF1 were tested: 
TRCN0000016273, TRCN0000016274, TRCN0000016275, TRCN0000016276 
and TRCN0000016277. Efficient knockdown of KLF1 expression was observed 
with TRCN0000016276 (sh1) and TRCN0000016277 (sh2). Sequences are 
listed in Supplementary Table 3.

Protein blotting. Nuclear extracts were separated on denaturing polyacryl
amide gels followed by semi-dry blotting to PVDF or nitrocellulose membranes. 
The membranes were probed with the following primary antibodies: BCL11A 
(sc-56013, Santa Cruz Biotechnology), NPM1 (ab10530, Abcam), KLF1  
(ref. 26) and anti-V5-HRP (R961-25, Invitrogen). For detection, the appropriate  
secondary antibodies were used. The enhanced chemoluminescence kit  
(GE Healthcare) or the Odyssey Infrared Imaging System (Li-Cor Biosciences) 
was used to develop the membranes.

Chromatin immunoprecipitations. Fetal liver and adult HEPs were cul-
tured18 and used for ChIP reactions, which were performed as described38 
with the KLF1 antibody and a CD71 antibody (347510, BD Biosciences) as a 
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negative control. qPCR was performed on the input and immunoprecipitated 
samples using primers for the RASSF1A, HBB and BCL11A genes. The relative 
fold enrichment was calculated as 2−[(CT x ChIP y – CT input y)−(CT KLF1-ChIP HEP 

RASSF1A- CT input HEP RASSF1A] (where ‘x’ is the antibody and ‘y’ the sample), that 
is, setting the relative fold enrichment of the RASSF1A amplicon by the KLF1 
antibody in HEPs to 1. Primers used are listed in Supplementary Table 3.
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