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A basic understanding of physics, 
and science in general, is necessary 
to lead a well-infonned life. Most of 
us see the need for physics: it gives 
a basic background both for the phy
sical sciences and the biological 
sciences. There are many topics in the 
life sciences which reqwire a back
ground knowledge of physics for a 
proper understanding, for example 
photosynthesis, osmosis, pigments 
or X-rays. To be able to formulate the 
laws governing natural phenomena 
we need an unambiguous language -
Mathematics. 

Man has always been fascinated by 
the wealth Of nature around him, and 
intrigued by the complexity of the 
heavens. His never-ending study of 
the universe has led him to improve 
techniques and open up new fields of 
study. Until the seventeenth century 
the predominant school of thought 
laid down the foundations for a sta
tic and immutable universe. This the
ory did not explain exactly the facts, 
collected over the centuries, which 
advocated the idea of a dynamic and 
developing world. This necessitated 
a review of the mathematics available 
at the time, to enable it to deal with 
problems of change and growth. The 
chief credit for the development of 
such a powerful mathematical tool -
the Calculus -- is due to Sir Isaac 
Newton and Baron von Leibniz, 
two of the scientists who were work
ing on the same problem, and who 
independently and simultaneously 

contributed to the solution. 
Calculus -- Latin for pebble, since 

cakulating two thousand years ago 
was largely a matter of counting peb
bles) -- was invented in the first place 
to deal with slopes of curves and the 
areas 'under' them. It has since prov
ed an invaluable aid to science and en
gineering. The theory of calculus first 
appeared in England in 1687 when 
Newton published his Principia 
Mathematica, a 250,000 word treatise 
on various topics of physics and 
mathematics. Simultaneously with 
Newton's publication, Leibniz's idea 
of the calculus appeared on the con· 
tinent. Immediately a race for priori
ties was initiated, with scientists in 
England supporting Newton's theory, 
and European scientists supporting 
Leibniz. One basic difference finally 
settled the issue -- Newton's 'flux
ion' notation in calculus was somewhat 
clumsy, whereas Leibniz offered the 
'd' notation, a more elegant symbol
ism. Some fifty years later Bishop 
Berkeley, a philosopher. attacked dif
ferential calculus (enabling the slope 
of a curve at a point to be found by 
taking a small sector and reducing it 
to a point mathematically), maintain
ing that a point could not have a slope. 
This attack opened up enquiries into 
the logical foundations of the calculus, 
with Colin Maclaurin, a professor of 
mathematics, finding a reasonably 
sound basis for the calculus in 1742. 
Leonard EU'ler, Marquis de I-Hopital, 
and the Bernoulli brothers (Daniel 
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and John) further developed the cal
culus, with notation only slightly dif
ferent from that which we use today, 
treating the most varied problems of 
differential calculus, integral calculus, 
and the calculus of variations. They ap
plied it in astronomical analysis, ex
amining the expected motions of earth, 
sun, moon under the mutual influence 
of each other's gravitational fields. 

But what does 'calculus' mean to 
the Physics student? Quite often one 
gets the mechanical answer: 'dy/dx'. 
However for the really interested 
physics student, 'calculus' should im
ply a concurrent course dealing with 
the derivative and integral, and the 
related physical concepts of slope and 
area under a curve. 

Perhaps the most obvious section in 
physics where the student comes 
across calculus is the 'Mechanics' part, 
involving the all-too-often 'rate of 
change'. Thus, velocity is defined as 
the rate of change of position with 
time; acceleratIon as the rate of 
change of velocity with time 
Both these definitions imply limit
ing values, leading to the con
cept of the derivative. The de
rivative we are speaking of is inter
preted as the instantaneous value of 
the quantity under observation, and 
is defined as the limit of the average 
value, as both elements of the aver
age .value approach zero. In the case 
of velocity the two elements are dis
tance and time. 

DIFFERENTIAL EQUATIONS 

Many natural laws, especially those 
concerned with rates of change, can 
be phrased as equations involving 
derivatives or differentials. Take for 
instance Newton's second law. Taken 
for granted, though not obvious, it 
took two thousand years of thinking 
by the most capacious minds before 

it was achieved - "a uniform force 
produces a uniform change of motion". 
Aristotle thought that a uniform force 
produced a uniform motion (we 
can associate his term with our 
'velocity'). Using our symbolism, he 
would have written his law as F = 
Rv, where R includes all resisting pro. 
perties. But Aristotle did not have a 
concept of acceleration. For the case 
of a stone falling through the medium 
of air the time of flight would be too 
short for any refined observations to 
reveal a continuous change of velo
city. His equation would apply, 
though, to a body falling through a 
very resistive medium, as this repre
sents Stokes' law, R being the visco
sity. And as soon as we handle dif
ferentials in such equations, we are 
then dealing wit h differential 
equations. 

Differential equations are promI
nent in the study of various physical 
phenomena, such as the slipping of a 
belt On a pulley, radioactive decay, 
and the bending of a cantilever beam 
under the action of vertical loads. Dif
ferential equations find their way also 
into electricity, the most common 
case occurring in the simple LRC cir
cuit. Here the current 'i' amperes and 
the charge 'q' coulombs for a capaci
tance C are related by: i = dq/ dt; 
the voltage drop across a coil of in
ductance L henries is L (dijdt). 

ISubst'ituting .these quantities into 
an equation for the total voltage drop 
gives a linear differential equation (a 
linear differential equation of the first 
order implies that the dependent var
iable y, and its derivative with respecl 
to x, dy/dx, occur in the first degree). 

Of the two types of differential 
equations - 'ordinary' and 'partial' 
- partial differential equations tend 
to be more complex. (O.D.E.'s involve 
only one variable and derivatives with 
respect to it; P.D.E.'s deal with more 
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than one independent variable). The 
two p'artial differential equations that 
one comes across most often in phy
sics are the wave equation and the 
heat conduction equation. 

Most general one-dimensional wave 
motion with velocity 'a' obeys the 
equation 

ij2y: 0 2 cFy 
(ltZ dx2 

This partial differential equation 
applies to the vertical vibrations of a 
flexible, elastic string stretched bet
ween two supports on the x-axis. By 
analogy to the 'standing-wave equa
tion', the motion can be regarded as 
a superposition of two waves moving 
with velocity 'a' in opposfte direction. 
As a result the free vibrations are 
periodic, no matter what the initiai 
conditions may be. Since periodic 
vibration is associated with musical 
effects, perhaps one can realise the 
importance of this fact in the develop
ment o.f musical intruments. Deviating 
from ideal conditions as encountered 
above, namely, free vibrations with 
constant amplitude, one can then con
sider damped oscillation of the string 
vibrating in air, or perhaps forced os
cillations, in which the force function 
is independent of the vertical displace
ment (for instance, the gravitational 
force On a horizontal vibrating string). 

Suppose it is required to find the 
distribution of temperature in an in
finite rod at an arbitrary moment. If 
the x-axis is directed along the rod, 
then the temperature T at a point x of 
the rod at moment t satisfies the 
HEAT CONDUCTIVITY EQUATION 

j)T: 0 2 eFT 
at (»)(2 

where 'a' is a characteristic of the 
rod. This equation assumes that the 

initial temperature is a prescribed 
fUnction of the distance 'x', and that 
the ends of the bar have the tem
perature zero. If an insulated rod of 
length 1 has one end maintained at 
temperature zero while the other end 
radiates into a medium of temperature 
zero, then this agrees with Newton's 
law of cooling. If, on the other hand, 
the ends of the bar are insulated, then 
the rate of flow across the ends (bu t 
not the temperature itself) is zero, 
which is an essentially different pro
blem. 

An extension of the above problem 
leads to the three-dimensional form of 
the equation (in Cartesian coordin
ates) for the flow of substance, such 
as heat and water, and known as the 
Laplace Equation of Continuity: 

This assumes that there are no 
sources or sinks within the region oc
cupied by the fluid, and that the flow 
of heat is steady, so that' T is inde
pendent of t. The temperature at an 
arbitrary point (x, y, z) of the body 
at moment t is represented by T. The 
same equation arises also in electro
statics and gravitation, since the 
mathematical structures of Newton's 
and Coulomb's laws are identical. 
Thus there is an equiUbrium distri
butilon of electric charge over the 
surface of a conductor, a stationary 
fluid flow in a closed region, and the 
like. 

The student will, however, come 
across simpler differential equations, 
such as Newton's second law, simple 
harmonic moti'on, and the catenary 
(the equation for a flexible chain in 
equilibrium under gravity). 

More important is the fact that such 
results indicate a certain parallelism 
between various physical phenomena. 
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Thus, for instance, all oscillations 
whether mechanical or electromagne
tic, are described by the same basic 
mathematical equations. The three ob
vious types of vibration consist of free 
vibration, vib ation with viscous dam
ping, and forced vibration leading to 
resonance. The analogue of a freely 
vibrating mechanical system is a 
closed LC circuit wherein a capaci
tance C discharges through an induc
tance L, the latter assumed to be of 
negligible resistance. The resistance is 
the direct equivalent of damping ef
fects. In the case of viscous damping, 
the electrical parallel is just an LCR 
circuit, this time C discharging 
through L whose resistance R is not 
negligible. 

At the other extreme, if C is placed 
in series with a source of electromo
tive force and allowed to discharge 
through a coil containing Land R, 
resonance occurs, which is exactly 
identical to resonance in mechanical 
systems. 

No matter how simple derivatives 
and differential equations might be, 
for anything of value to be extracted 
in the form of results one has to go 
through ,the reverse process of dif
ferentiation: integration. 
Thus, whereas velocity and acceler
ation led to the concept of the deri
vative, work leads to the concept of 
the integral. Defined as the product of 
force and distance, an estimate of 
the work done can be obtained 
from a 'force-displacement', graph 

simply by finding the area enclosed 
between the curve and the displace
ment axis. (A formal derivati'On of the 
integral using summations and limits 
is too detailed to go into at this stage, 
and as such the student is referred to 
any relevant publication regarding the 
subject.) 

The mechanics section will call to 
mind such appI.ications of the integral 
calculus as areas, volumes, centre of 
mass, centre 'Of gravjty, and moments 
of inertia, wheras in the electricity 
section, to quote one instance, one 
comes across Ampere's law, giving 
the relation between the current 'i' 
and the magnetic field 'B' using 
integral notation. 

"In the space of almost precisely 
one century infinitestmal calculus or, 
as we now call it in English, The 
Calculus, the calculating tool par ex
cellence, had been forged; and nearly 
three centuries of constant use have 
not completely dulled this incom
parable instrument." Some of the 
more common applications of this 
'instrument', so adequately described 
by N. Bourbaki, have been touched 
upon in this article with the hope that 
some of the results previously 'believ
ed' will someday be, 'understood', 
when one knows bow to handle this 
tool with dexterity, if not perfection. 

Robert Galea E.5c. teaches Physics at the 
Upper Secondary School, Valetta. 


