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Abstract

In referring to a target referent, speakers need to choose
a set of properties that jointly distinguish it from its
distractors. Current computational models view this as
a search process in which the decision to include a prop-
erty requires checking how many distractors it excludes.
Thus, these models predict that identifying descriptions
should take longer to produce the larger the distractor
set is, independent of how many properties are required
to identify a target. Since every property that is selected
is checked, they also predict that distinguishing a tar-
get should take longer the more properties are required
to distinguish it. This paper tests this prediction em-
pirically, contrasting it with two alternative predictions
based on models of visual search. Our results provide
support for the predictions of computational models,
suggesting a crucial difference between the mechanisms
underlying reference production and object identifica-
tion.
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Introduction

When a speaker refers to a target referent in a visual
domain, she identifies it for an addressee by using prop-
erties which distinguish it from its distractors. For ex-
ample, in order to identify the object surrounded by a
red border in Figure 1, a speaker needs to refer to it us-
ing both its colour and its size (the large blue aeroplane);
leaving out either of these properties would result in an
underspecified description.

Most psycholinguistic accounts of reference in such do-
mains assume that the discriminatory value of properties
plays an important role, since the objective is to iden-
tify an object for the addressee (Olson, 1970). On the
other hand, it is also well-established that certain prop-
erties are ‘preferred’ in that speakers often include them
when they are not required to distinguish the target, thus
producing overspecified descriptions (Pechmann, 1989 ;
Belke & Meyer, 2002 ; Arts, 2004).

The present paper is concerned with the mechanisms
underlying the selection of properties. Specifically, we
ask whether this process is best viewed as a search, along
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Figure 1: An example domain

the lines suggested by current computational models of
Referring Expression Generation (REG; see Krahmer &
van Deemter, 2012, for a survey). In these models (de-
scribed more fully in the next section), the decision to
include a property in a description requires checking it
against the distractor set to determine whether it ex-
cludes at least some of them. If speakers do perform
such a procedure, then larger domain sizes should result
in more effort (and this should be indicated, for exam-
ple, by increased speech onset times). This is because
more objects have to be checked every time a property
is considered for inclusion.

This prediction is compatible with a classic finding in
the visual search and attention literature, where search
time has been shown to increase linearly with domain
size (Treisman & Gelade, 1980). However, whereas REG
models predict an impact of domain size irrespective of
the number of properties required to distinguish a tar-
get referent, the task used by Treisman and Gelade only
evinces a linear increase with targets distinguished by
a conjunction of properties (e.g. blue and large). When
targets are distinguished by a single property, a ‘pop-out’
effect is observed and domain size has no impact.

Yet a third possibility is suggested by more recent vi-
sual search models (e.g. Ttti & Koch, 2001), which give a
more central role to parallel processing. In these models,



an initial, first-pass overview of a visual domain results
in the parallel activation of salient features, forming a
saliency map. From a production perspective, such mod-
els would predict that, irrespective of how many prop-
erties are needed for identification, domain size should
have no impact on search time because the salient, con-
trastive features of a referent could be ‘read off’ the
saliency map without exhaustive checking against the
distractors.

In short, there are at least three alternative models
that could account for how a speaker selects properties,
each with different predictions concerning the impact on
search time of (i) the size of the visual domain in which
the referent must be distinguished, (ii) the number of
properties that are required to achieve this. In the re-
mainder of this paper we first discuss these models in
more detail and then describe an experiment that sought
to investigate these relationships. In our experiment, we
focus on speech onset time as an indicator of the amount
of search effort required to produce a distinguishing de-
scription.

Three alternative models

Computational models of Referring Expression Gener-
ation (REG) are core components of systems which au-
tomatically generate text or speech from non-linguistic
data (Reiter & Dale, 2000). Their aim is to determine
the content of a distinguishing description of a referent
in a given domain. REG algorithms usually view this
process of content selection as a search (cf. Bohnet &
Dale, 2005) and this is often modelled as an incremen-
tal procedure (e.g. Dale, 1989 ; Dale & Reiter, 1995,
as well as several models based on these). The models
that this paper is concerned with focus on ‘first-pass’
references, that is, the generation of initial descriptions
in domains which are assumed to be mutually known
between speaker and hearer.

The input to a REG algorithm is a domain of objects
(such as Figure 1), one of which is the target referent.
These algorithms iterate through the available proper-
ties (for example, the size and colour) of the objects.
Each property is considered as a possible candidate for
inclusion in the description.!

For each property, the algorithm checks whether there
is at least one distractor that it excludes. If this is
the case, then the property is included in a descrip-
tion and the distractor set is updated. For example,
suppose the first property to be considered in Figure 1

! An important factor that distinguishes algorithms from
each other is how they prioritise properties during search. For
example, Dale et Reiter (1995) propose to prioritise proper-
ties based on the preferences evinced by humans in psycholin-
guistic experiments (e.g. Pechmann, 1989). By contrast,
Dale (1989) proposes a model which prioritises properties
based on their discriminatory value. Here, we abstract away
from these differences, focusing on the basic search mecha-
nisms common to all of them.

is (COLOUR:blue). A check of each of the four distrac-
tors shows that there are two non-blue objects. Since it
has some discriminatory value, this property is added to
the description and the distractor set updated to leave
only the two remaining distractors. Since, at this stage,
the target referent is not yet distinguished (it is not the
only blue object, as shown by the presence of the two
remaining distractors), the process does not terminate,
but considers the next available property, (S1zE:large).?
Upon checking, the algorithm discovers that the two re-
maining distractors are both excluded by this property.
Since, at this stage, there are no remaining distractors,
the procedure terminates with a description that con-
tains both size and colour. From the perspective of the
present paper, this content selection procedure makes
the following important predictions:

1. Search time should increase linearly with the number
of distractors, since each candidate property has to
be checked against the distractor set to determine its
discriminatory value;

2. Since search is incremental and every candidate prop-

erty is checked, the effect of domain size should be
observed irrespective of whether a distinguishing de-
scription contains a single property or a conjunction;

3. Independently of (2) above, the more properties are

required to distinguish the target referent, the longer
the search time should be, because each property rep-
resents a cycle in an iterative search procedure.

The first of these predictions is compatible with clas-
sic findings in the visual search literature. Treisman et
Gelade (1980) reported a steep linear increase in search
time with increasing domain size in tasks in which partic-
ipants have to determine whether some object is present
in a visual domain in response to a question presented
beforehand (e.g. Is there a red vertical?). Various repli-
cations of this effect have shown that reaction time in-
creases by as much as 31ms with every new object (e.g.
Spivey, Tyler, Eberhard, & Tanenhaus, 2001). However,
the effect only holds when participants search for a tar-
get defined by a conjunction of properties. Single prop-
erty search (e.g. Is there a vertical?) evinces a ‘pop-up’
phenomenon, attributed to parallel activation of salient
features, which obviates the need for serial search and in-
tergration of multiple features. Interestingly, in the case
of conjunction search, the linear increase in search time
with domain size is altered if participants hear the de-
scription of a target concurrently with the presentation
of a visual scene (Spivey et al., 2001). In this case, the
slope is significantly shallower, perhaps because concur-
rent presentation of description and domain allows lis-
teners to incrementally circumscribe the search domain

2We are assuming that the large value of the SIZE attribute
is determined as part of this procedure, perhaps by an algo-
rithm along the lines described by Deemter (2006).



as each property is processed (cf. Tanenhaus, Spivey-
Knowlton, Eberhard, & Sedivy, 1995 ; Sedivy, Tanen-
haus, Chambers, & Carlson, 1999, for related observa-
tions).

The third model we alluded to in the Introduction
makes neither of the predictions of REG models. It is pos-
sible that speakers default to a ‘fast and frugal’ heuristic
whereby, instead of searching for a distinguishing prop-
erty or combination thereof, they rely on a first-pass
overview of the coarse visual features of the domain to
select all the properties that seem to have some con-
trastive value. Such a procedure would be compatible
with more recent models of visual search and attention,
where salient contrasts are activated through an initial,
parallel process that results in a saliency map (Itti &
Koch, 2001). Under this model, we would expect the
number of properties required to distinguish a referent
to have no impact on search time. We would also not
expect the function modeling the impact of domain size
on search time to increase linearly.

As the foregoing discussion suggests, REG models
view the mechanism underlying reference production as
fundamentally similar to that of object identification,
namely, as a search process. However, there is a crucial
difference which accounts for the different predictions
made by the two classes of models.

In reference production, search is object-driven. A
speaker knows which target is intended. Her task, as it is
modelled in REG, is to identify a set of properties which
are individually discriminatory (each contributes to the
overall goal of identification) and jointly distinguishing.
Thus, even determining whether a single property is dis-
criminatory requires a check against the distractor set.
By contrast, in the standard identification task, search is
property-driven: a description of the object serves as an
instruction to pick out a particular entity. If the descrip-
tion contains only a single feature, a pop-out search is
sufficient, for the listener need not verify that the feature
in question has discriminatory value — that assumption
should follow from the fact that the speaker is being co-
operative and is not including redundant information.
Indeed, recent work has suggested that the inclusion of
properties with no discriminatory value — a strong ten-
dency among speakers, as we discussed above — results
in increased processing effort for listeners, suggesting
that they do in fact make this assumption (Engelhardt,
Baris Demiral, & Ferreira, 2011).

Experiment

In the experiment, participants were shown visual do-
mains of the kind displayed in Figure 1 and asked to
produce a distinguishing description of the target refer-
ent. We measured the time it took participants to initi-
ate a description, as a function of the size of the domain
and the number of properties (one or two) required to

distinguish the target.

Participants

The experiment was conducted at the Tilburg center for
Cognition and Communication. Forty native speakers of
Dutch participated in return for course credit.

Materials and design

The experimental stimuli consisted of 64 items selected
from a version of the Snodgrass and Vanderwart set of
line drawings with colour and texture (Rossion & Pour-
tois, 2004). The items were selected on the basis of a
pretest in which seven native speakers of Dutch were
asked to name greyscale versions of the pictures. For
the items, we selected only those pictures for which at
least 5 out of the 7 speakers agreed on the name of the
object. These were subsequently manipulated to create
versions in different sizes and colours. For each item, 8
versions of a visual domain were constructed, each con-
sisting of a target referent indicated by a red border,
and a number of distractors. The 8 versions represented
combinations of the following two factors:

e Properties (2 levels): Either size only (S) or both
colour and size (CS) were required to distinguish the
target. Figure 1 is an example of the ¢S condition.

o Distractors (4 levels): There were 2, 4, 8 or 16 distrac-
tors in addition to the target, representing increasing
domain size.

In each domain, all objects (target and distractors)
were of the same type (e.g. all were aeroplanes). In s
trials, distractors were identical to the target except for
size. Distractors were also identical to each other (e.g.
the target was a small blue aeroplane and all distractors
were large blue aeroplanes). In the Cs trials, half the dis-
tractors were identical to the target except for their size
and the other half were identical to the target except for
their colour (e.g. the target was a large blue aeroplane,
half the distractors were small green aeroplanes and the
other half were large blue aeroplanes).

In addition to the experimental items there were 108
fillers. In 64 of these, the target could be distinguished
using size only or both size and colour, as in the trials.
However, there was variation in the types of distractors
(not all distractors were of the same same type as the
target). In the remaining 64 fillers, the target could be
distinguished by using its type only. There were equal
numbers of fillers containing 2, 4, 8 or 16 distractors.

In each trial, objects were presented in a sparse grid.
For each item, the position of the target was fixed in ad-
vance and was the same in all conditions. The position
of the distractors was also fixed in the 2-, 4-, 8- and 16-
distractor conditions. Both items and participants were
randomly divided into 8 groups. Each participant saw
exactly 8 items in each condition; item and participant
groups were rotated through a latin square so that each



item was seen in a condition by an equal number of par-
ticipants.

Procedure

Participants did the experiment individually in a sound-
proof booth, wearing a headset through which their de-
scriptions were recorded. The experiment was run using
the DMDX package for stimulus presentation (Forster &
Forster, 2003). They were asked to imagine that they
were describing objects for a listener who could see the
exact same objects but did not know which one was the
target referent. In order to avoid the use of descrip-
tions containing locative expressions, participants were
also told that their putative listener would see the ob-
jects in different positions (none of the participants used
locatives).

A trial was initiated with a warning bell and a fixation
cross appearing for 500ms in the middle of the screen.
Subsequently, the visual domain appeared. After they
had described the target, participants pressed the Enter
key on their keyboard to move to the next trial.

Trials were presented in two blocks to allow partici-
pants to take a break. Speech onset time was measured
using the DMDX voice trigger from the point when the
visual domain was presented to the point when a partic-
ipant began to speak.

Data pre-processing

Descriptions were transcribed and annotated for whether
they contained size, colour or both. Descriptions in the
S condition which contained both size and colour were
classified as overspecified. Descriptions in the S condition
which contained only colour, or those in the ¢S condi-
tion which contained only one of the two properties, were
classified as underspecified. All other descriptions were
classifed as well-specified. Data from two participants
was excluded because they produced utterances which
compromised the calculation of speech onset time (for ex-
ample, starting all of their descriptions with I see a...).
The remaining 38 participants produced well-specified
descriptions 71% of the time, with 27% overspecified de-
scriptions and 2% underspecifications. The relative fre-
quency of over- compared to underspecifications is to be
expected, given previous work (see the Introduction).

Speech onset times were manually tuned using Check-
Vocal (Protopapas, 2007), a program for the detec-
tion and correction of voice key mistriggers (due to lip
smacks, coughs, background noise etc) in DMDX result
files. For each sound file, we ensured that the speech
onset time was taken at the precise point where the par-
ticipant’s description began. In case the description in-
cluded a determiner, this meant the onset of the deter-
miner. In case a description began with a hesitation
(e.g. uhhhh het kleine rode bed), the onset time was still
the onset of the description, that is, following the initial
hesitation.

Following tuning, an onset time was defined as an out-
lier if it exceeded the mean £2sD in its condition. 106
data points (4.4%) were considered outliers by this cri-
terion and were treated as missing.
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Figure 2: Mean onset times by number of distractors.

Results

In what follows, we report results based on descriptions
which were well-specified, excluding over- and under-
specified cases.®> This is because in the case of under-
specified descriptions, participants presumably did not
check against the distractor set to see whether a selected
property combination was distinguishing; where partic-
ipants overspecified, the inclusion of a redundant prop-
erty may not have involved such a check because it was
extra information.

Table 1 displays mean speech onset times in each Dis-
tractor condition for different levels of Property as well
as overall, while Figure 2 displays the relationship be-
tween onset times and Distractors. The means show an
increase in speech onset time in the ¢S compared to the S
condition. As the Figure shows, the relationship between
speech onset time and domain size appears linear.

We report a linear mixed effects analysis with Proper-
ties and Distractors as fixed effects, and random inter-
cepts for participants and items.* The Properties factor
was scaled and centred; Distractors was treated as a con-
tinuous variable, since our aim is to model the change in

3The statistical tests reported here were also conducted
on the full dataset; the general trends are identical to the
ones reported here.

4 A comparison of the model we report here to one with a
random intercept and slope for each participant showed that
the latter did not provide a better fit to the data (model
x? = 8.05,p > .5); neither did adding a random intercept
and slope for each item (x* = 3.34,p > .9).



2 4
CS | 2022.91 (492) 2022.44 (507)
S | 1872.30 (458) 1990.95 (566)

8 16 overall
2105.93 (525) 2139.67 (809) | 2073 (538)
1921.73 (209) 2046.73 (473) | 1955 (506)

overall | 1972.35 (486) 2011.97 (527)

2046.45 (527)

2111.16 (572) -

Table 1: Mean speech onset times and standard deviations in each condition

speech onset times as a function of continuous increases
in domain size.

There were strong main effects of both Properties (¢ =
—3.40,p < .001) and Distractors (¢ = 3.72,p < .001),
but no interaction (¢ = .22,p > .8). Thus, both the
increase in speech onset time with two properties com-
pared to one, and the increase with domain size are re-
liable.> To further investigate the nature of the effect
of Distractors, we carried out planned comparisons by
re-running a linear mixed effects analysis with Distrac-
tors as the only fixed effect and random intercepts for
participants and items. For this model, Distractors was
recoded as a factor using forward difference coding to
perform contrasts between adjacent levels. None of these
contrasts proved significant, although the difference be-
tween domains with 8 and 16 distractors approached sig-
nificance (p = .06). Post-hoc pairwise comparisons using
t-tests with Bonferroni adjustment showed a significant
difference between domains with 2 distractors and those
with 8 (p = .03) and those with 16 (p = .004) distractors,
but no other differences. This suggests that the primary
contrast is between relatively small domains and those
with many more objects in the visual display.

Discussion

Our experimental results show that the time speakers
take to produce references is influenced both by the num-
ber of distractors from which they have to distinguish
the referent and by the number of properties that they
need to include in their description in order for it to be
identifying.

The effect of domain size was very strong and crucially
did not interact with the number of properties required
to distinguish the target referent. This is compatible
with the predictions of computational REG models, in
which every property needs to be checked against the
distractor set in order to determine whether or not it
contributes to the goal of identifying a target referent.
By contrast, the literature on visual search and object
identification only reports robust effects of domain size
with conjunctions. In our initial discussion, we suggested
that this is in part due to the difference between the
task of reference production and that of object identi-
fication or online reference resolution. A speaker needs
to ensure that every selected property contributes to the

®The p-values for the LME models were estimated us-
ing Baayen’s (2008) pvals.fnc function, included in the
languageR package.

overall referential goal.® By contrast, there is no need
to check contrastive value in a task involving search and
identification for an object based on an instruction (e.g.
Treisman & Gelade, 1980) or a definite description (as in
the reference resolution experiments of Tanenhaus et al.,
1995). Here, reliance on pop-up search is a good strat-
egy for targets identified by a single feature (Treisman &
Gelade, 1980) whereas, when a description is presented
concurrently with a visual domain, each property in a de-
scription can be used to circumscribe the set of relevant
objects (Tanenhaus et al., 1995 ; Spivey et al., 2001).
Thus, the search mechanisms of speakers and listeners
are qualitatively different.

A second prediction in relation to domain size was that
its effect on speech onset time would be linear. Figure
2 does suggest a linear effect, although the increase be-
comes less steep as domain size grows larger. We also
do not find differences between adjacent levels of the
Distractors factor, with post-hoc analyses showing that
the primary differences are between the smallest and the
largest domains. Further research is required to confirm
these findings. Nevertheless, the main effect, which was
obtained by modelling Distractors as a continuous vari-
able, does support the predictions of REG algorithms. It
also runs counter to the predictions of models of visual
search based on parallel activation of salient, contrastive
properties (the third class of models discussed at the
beginning of this paper), which would predict no main
effect.

Finally, the finding that speakers take longer to ini-
tiate descriptions containing two properties, compared
to only one, also supports the incremental search proce-
dure in REG models, where each candidate property is
checked against the distractor set. Although our exper-
imental design does not allow us to determine whether
the effect of properties is linear or not, REG models do
make an interesting prediction in this regard.

Consider the effect of an incremental procedure of the

5The fact that speakers overspecify (that is, add prop-
erties that do not contribute to identification) may be due
to the incremental nature of reference production, whereby
speakers include properties one by one, starting from proper-
ties (such as colour) which are highly ‘preferred’ (Pechmann,
1989). Such properties may have discriminatory value indi-
vidually, but may turn out to be redundant once the descrip-
tion has been fully formulated. Note, however, that even
under this account — which is essentially the account incor-
porated by the incremental REG models we reviewed above
(Dale & Reiter, 1995) — speakers would still check a property
for its individual contrastive value.



sort we have described (Dale, 1989 ; Dale & Reiter, 1995)
when it selects two or more properties. Since discrimina-
tory value is a prerequisite for selection, every property
that is selected results in a decrease in the size of the
distractor set, an effect akin to the incremental domain
circumscription that Spivey et al. (2001) suggest as an
interpretation of their results. Thus every property that
is selected leaves fewer objects against which to check
the next candidate property, predicting that the effect
of properties should be non-linear. This is a possibility
that we intend to explore in future work, by including
conditions where more than two properties are required
to identify the referent.

Conclusions and future work

This paper focused on the predictions of computational
models of reference production, comparing them to some
well-known findings in the visual search and attention
literature. We reported an experiment that showed that
speakers take longer to refer to an object the more prop-
erties they require to distinguish it, and the more objects
there are in the domain. Our findings lend some sup-
port to current computational models, and also highlight
some important differences between the search mech-
anisms involved in reference production and those in-
volved in object identification or reference resolution.

We have identified a number of avenues for future
work. In the medium term, we plan to investigate the
effect of domain size further in order to determine more
precisely the nature of the relationship between domain
size and search time. We also plan to investigate the na-
ture of the effect of properties on search time, testing the
predictions made by incremental computational models
on the effect of adding properties to a description.
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