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Abstract



When producing a description of a target referent in a visual context, speak-

ers need to choose a set of properties that distinguish it from its distractors.

Computational models of language production/generation usually model this

as a search process and predict that the time taken will increase both with

the number of distractors in a scene and with the number of properties re-

quired to distinguish the target. These predictions are reminiscent of classic

findings in visual search; however, unlike models of reference production, vi-

sual search models also predict that search can become very efficient under

certain conditions, something that reference production models do not con-

sider. This paper investigates the predictions of these models empirically.

In two experiments, we show that the time taken to plan a referring expres-

sion – as reflected by speech onset latencies – is influenced by distractor set

size and by the number of properties required, but this crucially depends on

the discriminability of the properties under consideration. We discuss the

implications for current models of reference production and recent work on

the role of salience in visual search.
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Introduction

Reference to objects in visual scenes is pervasive in everyday communication. An

intended referent, or target, is typically identified through the production of a description

in which the speaker includes a subset of the properties of the target referent she has in

mind. In other words, the speaker needs to perform content determination to establish

the properties to mention in a description of her intended referent, thereby enabling the

listener to identify it. In Figure 1(a) below, for example, it is immediately obvious that

the object in the centre can be distinguished on the basis of its colour (the red bell); by

contrast, colour alone won’t do the trick in Figure 1(b), and it is arguably redundant in

Figure 1(c), though speakers might include it anyway (producing the large red bell).

(a) A red bell among blue distrac-

tors

(b) A large red bell among large

blue and small red distractors

(c) A large bell among smaller dis-

tractors

Figure 1. Visual domains with different combinations of identifying features for a target.

Content determination has often been modelled as a search through the target’s

properties and combinations thereof (cf. Bohnet & Dale, 2005). At the heart of a search-

based algorithm is the abstract concept of a ‘state’. For example, a reg algorithm starts

from an initial state consisting of an empty description and the number of distractors

that still need to be excluded. The goal state is one in which the description contains

a set of properties which jointly distinguish the target from its distractors (thus, the
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description is non-empty, and the set of remaining distractors is empty). A typical search

algorithm recursively expands its current state into a set of possible subsequent states.

For example, the initial state in reg could be expanded into subsequent possible states

in which the description contains one property (size, colour, the type of the referent,

etc). Which state the algorithm moves to next depends on the heuristics built into it.

For example, an algorithm might choose to move to the next state (i.e. add a property

to the description) on the grounds that it is the one which is most likely to exclude the

largest number of the distractors remaining in the current state.

A number of influential computational models of Referring Expression Generation

(reg; see Krahmer & van Deemter, 2012, for a review) are based on this view; these are

summarised in an algorithm schema discussed in the next section. But if speakers do

perform search in the manner informally sketched above, then one of the things that is

likely to influence the speed of this process is the number of distractors against which

a target has to be compared, since this is necessary to determine whether a property

will help in achieving a distinguishing description. On the other hand, situations could

be envisaged in which this search is conducted more efficiently by a human being than

this search metaphor would suggest. To take an example, trying to verbally distinguish

one person in a crowd might be a slow and time-consuming process, unless that person

happens to be the only one wearing a very contrastive colour of clothing, in which

case, determining whether that particular property will help probably wouldn’t need an

exhaustive comparison against the distractor set.

These intuitions suggest an analogy between content determination in reference
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production and findings in the visual search literature, where participants are given a

description of such a target and need to scan a visual scene to verify its presence or

absence. As we shall see, the search literature has shed light on a range of difficulty in

search, from very fast identification times for certain targets, which are unaffected by

the number of distractors, to cases where search is slowed down as the distractor set gets

larger.

The question we address in this paper is whether production latencies are impacted

by distractor set size and to what extent this also depends on the type and number

of properties required to identify the referent in a given domain. In the experiments

reported below, we focus on speech onset time, that is, the time taken to initiate an

identifying description of a target, as an indicator of the time speakers spend planning

the content of a description prior to initiating an utterance.

Our starting point in addressing this question is the predictions of some computa-

tional models of content determination for reference production. While the models we

investigate do not typically aim to make predictions about human reference production,

they have often been motivated by psycholinguistic findings. Indeed, it has been argued

that such models can be leveraged to test predictions about the cognitive processes un-

derlying production (van Deemter, Gatt, van Gompel, & Krahmer, 2012). We propose

to view these as process models. In cognitive modelling, such models are distinguished

from product models (e.g. Vicente & Wang, 1998; Sun, 2008; Lewandowsky & Farrell,

2010) in that they aim to model the manner in which a given function is performed.

In contrast, product models focus on the relation between inputs to a system (e.g., a
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domain and an intended referent) and the outputs that it generates (e.g., a referring

expression), without making any claims about the manner in which that mapping comes

about.

Visual properties and distractors in reference production and

visual search

The relationship between language processing and visual context is a central prob-

lem for psycholinguistics, which has been given new impetus over the past two decades,

for example, through eye-movement studies in the visual world paradigm (e.g. Tanen-

haus, Spivey-Knowlton, Eberhard, & Sedivy, 1995; Altmann & Kamide, 1999; Cham-

bers, 2002; Knoeferle, Crocker, Scheepers, & Pickering, 2005; Griffin & Bock, 2000;

Brown-Schmidt & Tanenhaus, 2006, inter alia).

A related body of work within Artificial Intelligence has also explored the relation-

ship between vision and language, a theme that has also become dominant in research

on Natural Language Generation (nlg Reiter & Dale, 2000), which focusses on the

design of systems that generate text or speech in natural language from non-linguistic

data. Broadly, nlg systems have addressed the relationship between vision and lan-

guage in two different ways. One concern has been to automatically generate coherent,

‘high-level’ descriptions of visual scenes or images (e.g. Farhadi et al., 2010; Elliott &

Keller, 2013; Kulkarni et al., 2013; Yatskar, Galley, Vanderwende, & Zettlemoyer, 2014).

A different body of work has focussed on generating identifying descriptions of specific

objects within a scene, that is, on content determination during Referring Expression
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Generation (reg; e.g. Appelt, 1985; Dale, 1989; J. Kelleher, Costello, & Van Genabith,

2005; Stoia & Shockley, 2006; Campana, Tanenhaus, Allen, & Remington, 2010; Krah-

mer & van Deemter, 2012; J. Kelleher et al., 2005; Stoia & Shockley, 2006; Campana et

al., 2010; Garoufi & Koller, 2013; Kazemzadeh, Ordonez, Matten, & Berg, 2014).

Our focus in this paper is on content determination for definite descriptions, to

identify targets in visual domains of the sort depicted in Figure 1, with varying distrac-

tor set sizes.1 Content determination in reg parallels the conceptualisation process in

Levelt’s well-established model of speech production, in which it precedes grammatical

formulation and articulation (Levelt, 1989, 1999).

An influential class of reg models, based on the work of (Dale & Reiter, 1995),

have modelled the property selection process ‘incrementally’ (cf. Levelt, 1989). The

basic assumption is that if a speaker mentions, for example, that an object is red, she

implies that at least some of the distractors are not red. Thus, such algorithms assume

that the properties which are mentioned have a contrastive function. Put somewhat

differently, these algorithms assume that the path from the initial to the goal state

consists of intermediate states, at each of which the addition of a property reduces

the remaining set of distractors, thereby bringing the algorithm closer to the goal at

each step. Algorithmically, this assumption is incorporated in a procedure whereby a

1In what follows, we consider only properties such as size or colour, excluding any consideration of

the object’s type or category (e.g. bell). This is partly following proposals in the reg literature (e.g.

Dale & Reiter, 1995), and partly because in the visual domains used for our experiments, target referent

and distractor objects are all of the same type. Note, however, that this exclusion does not affect the

predictions made by computational models on the nature of search during reference production.
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1: while not all distractors have been ruled out do

2: select a new property p of r

3: if p excludes some distractors then

4: add p to the D under construction, and

5: remove the distractors ruled out by p

6: end if

7: end while

Figure 2. A general, ‘incremental’ content determination procedure.

candidate property – say, red in Figure 1(a) – is checked and if it removes at least some

distractors, then the property is included in the description. Taking r to be a target

referent and D the description under construction for r (that is: D is a set of properties,

initially empty), then the underlying algorithm that these models implement can be

schematised as in Figure 2.

In words: as long as there are still distractors that are not ruled out (line 1),

the model checks, for each new property of the target (2), whether it helps to rule out

any remaining distractors (3); if so, this property is added to the description under

construction (4) and the distractor set is updated (5).

It is worth emphasising that the model outlined here is an abstraction of various

existing models, which seeks to bring out some of their common assumptions. Differences

between various well-known content determination models are primarily due to the way

in which a new property becomes a candidate for inclusion (i.e., with how line 2 is
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actually implemented). An algorithm may prioritise certain properties over others for a

lot of different reasons, such as their perceptual salience, their frequency in a corpus, how

discriminatory they are (that is, how many distractors they exclude) and so on. To take

an example, Dale (1989) proposed a Greedy heuristic that tries out properties in order of

their discriminatory power: properties that rule out many distractors are preferred over

properties that rule out only a few. Thus, the algorithm first determines which property

rules out most distractors, and then incrementally extends the description based on

which property has most discriminatory power at that stage. In a related vein, recent

stochastic accounts (e.g. Frank & Goodman, 2012) model the production process as a

search for the most informative property available to identify a target referent.

A different heuristic is incorporated in the Incremental Algorithm (Dale & Reiter,

1995), as well as recent stochastic versions thereof (e.g. Mitchell, van Deemter, & Reiter,

2013). This model assumes the existence of a preference order; as a result, properties

are considered for inclusion in a description in order of their ‘preference’. Applied to

visual domains, this strategy is partly inspired by psycholinguistic work showing that

certain properties are preferred by speakers, who are more likely to include them in a

description even if they are not absolutely required for identification. A robust finding

is that colour tends to be included in this way much more than size (Pechmann, 1989;

Deutsch & Pechmann, 1982; Eikmeyer & Ahlsèn, 1996; Koolen, Gatt, Goudbeek, &

Krahmer, 2011; Engelhardt, Bailey, & Ferreira, 2006; Belke, 2006; Arts, 2004). Thus, a

speaker is more likely to refer to the target in Figure 1(c) as the large red bell than she

is to refer to the one in Figure 1(a) as the small red bell. Both of these descriptions are
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overspecified, in the sense that they contain a property that isn’t strictly required for

identification (though such redundancy is known to serve other communicative purposes;

see for example Jordan & Walker, 2005). The fact that more overspecification occurs

with colour than with size suggests a ‘preference’ for the former.

In visual domains such as these, the Incremental Algorithm has often been im-

plemented to check properties such as colour before those considered as prototypically

gradable, such as size, on the grounds that the latter is dispreferred because determining

the size of a target requires comparison to the distractors. However, it turns out that

the dichotomy between ‘crisp’ and ‘gradable’ is not so clear-cut and the likelihood of

selection of a property depends on how contrastive or discriminable it is in the context

of a scene (Viethen, Goudbeek, & Krahmer, 2012; van Gompel, Gatt, Krahmer, & van

Deemter, 2014), as well as how diagnostic of the object under consideration (Sedivy,

2003; Westerbeek, Koolen, & Maes, 2015).

REG models and search efficiency

One prediction that the model in Figure 2 makes is related to its treatment of dis-

tractors. This can be made explicit in relation to the procedure’s worst-case complexity,

that is, the function that serves as an upper bound for the time taken by the procedure

to identify a distinguishing set of properties to include in D.2 The computational com-

plexity will differ depending on the way in which the general procedure is implemented.

The crucial parts of the algorithm are lines 2 and 3 in Figure 2.

2Our discussion of complexity partly follows the exposition in Dale and Reiter (1995), with some

modifications.
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In the Greedy Algorithm interpretation (Dale, 1989), every time a property is

considered (line 2), it needs to be evaluated for its discriminatory power against all the

other remaining properties. This involves checking how many distractors the property

rules out, that is, checking for each distractor whether the property applies to it or not.

Since in the model every distractor has to be checked to see if it has the property, this

is usually assumed to be a serial process, an assumption common to all models under

discussion here.

Suppose there are np properties available, and nd distractors in the domain. Then,

at each iteration, the Greedy algorithm needs to check at most np properties against nd

distractors, resulting in complexity O(npnd). In this way, this procedure compares prop-

erties against each other to identify the most discriminatory one at each iteration. By

contrast, in the Incremental Algorithm interpretation, the order with which properties

are checked is fixed in advance by the preference order, obviating the need to make com-

parisons between properties. Nevertheless, this procedure still needs to check whether

a candidate property has any discriminatory value against the remaining distractors,

making O(nd) comparisons at most, at each iteration in line 3.

Note that, in both of these cases – indeed, in any instance of an algorithm that

fits the outline in Figure 2 – the number of distractors plays a role in determining

the amount of ‘effort’ expended on finding a distinguishing description, because every

candidate property is checked against the distractor set. The general model therefore

predicts that the time taken to identify a target using a referential description will

increase in the number of distractors. A further prediction is related to the number of
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properties that are eventually included in D. Suppose D is of length nl. For example,

nl = 2 for the description the large red bell for the target in Figure 1(b). This means

that the procedure will have made nl iterations, each time conducting a serial check

against the distractor set (line 3) to include one property (at line 4). In summary, two

predictions stem from incremental models of reference production:

1. The time taken to produce a description increases with the number of distractors

in the domain;

2. The time taken to produce a description also increases with the number of

properties in the description.

Crucially, these predictions are made independently of the factors which are known

to modulate speaker choices. Even in the case of the Incremental Algorithm, where

‘preference’ governs which properties are considered first, a property of a target is checked

against the distractor set in the same way, irrespective of the property.

The foregoing discussion highlighted a number of reasons to question this. Recall

that research on reference production suggests that speakers use certain properties, such

as colour, with greater likelihood than others, all other things being equal. In part, this

may be due to the centrality of colour in object representations, a proposal made early

on by Pechmann (1989) to explain his overspecification results, and which receives some

support from research on the central role of colour in object recognition (e.g. Wurm,

Legge, Isenberg, & Luebker, 1993; Naor-Raz, Tarr, & Kersten, 2003). On the other

hand, other research has argued for preferences in reference production as arising from

early (that is, pre-linguistic) perceptual processes (Belke & Meyer, 2002; Belke, 2006).
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Under this account, a preference for a property is evinced if the contrast between a

target referent and its distractors on that specific dimension is highly salient. Indeed,

as we have seen, recent work also shows that selection of colour may become less likely

in domains with more colour variation (and less likely when colour is highly diagnostic

of an object category); similarly, size is more likely to be used if size differences between

target and distractors are made much larger.

Given the potential effects of visual salience , not all properties may be selected as

predicted by Figure 2. While properties such as size, which tend not to be very salient,

may require the kind of serial, one-by-one checking of each distractor predicted by the

model, properties that are more salient, as colour often is, may not. The literature on

visual search tasks sheds further light on these issues.

Visual search

The standard visual search task requires participants to scan a domain and verify

the presence or absence of a target (Wolfe, 2010). Research using this paradigm has

often focussed on two components, namely (i) the target template, the representation

of the target based on its features (e.g. Duncan & Humphreys, 1989), which is usually

formed prior to the commencement of search on the basis of an instruction (is there a

red vertical?); and (ii) the visual display, in which the target may or may not be present,

and in which varying numbers of distractors are found.

The number of distractors is known to influence the speed with which a target can

be found, under certain conditions. In a classic study, Treisman and Gelade (1980) found



DISTRACTOR SET SIZE AND REFERENCE PRODUCTION 13

that search for single features (e.g. defined by the template red) did not depend on the

size of the display, evincing a ‘pop-out’ effect typified by a flat rt × set size slope. By

contrast, a search for conjunctions of features showed a linear increase in search time as

a function of domain size. Furthermore, search time was found to exhibit a roughly 2:1

ratio between target-absent and target-present trials; this was explained on the grounds

that in the target-absent case, participants had to search a display exhaustively, while

they only needed to search through half of a display on average in the target-present

case (cf. Nakayama & Joseph, 1998).

Feature Integration Theory (fit Treisman & Gelade, 1980) accounted for these

findings based on a two-stage model. Parallel, ‘preattentive’ processes sensitive to indi-

vidual features account for the pop-out effects observed in single feature search. These

are strongly dependent on the discriminability or salience of the features in question

(Treisman & Gormican, 1988; Itti & Koch, 2001), a factor that also plays a role in

many computational models whose task is to predict the salient regions in a scene (e.g.

Itti, 2005; Walther & Koch, 2006; Achanta, Hemamiz, Estraday, & Süsstrunky, 2009;

Erdem & Erdem, 2013). Discriminability is a relative notion. For example, search for

colour-defined targets becomes more difficult if the target colour is collinear with dis-

tractor colour Bauer, Jolicoeur, and Cowan (1996). Similarly, search for a target which

is distinguished by size, a feature which has also been claimed to be subject to parallel,

preattentive processing (e.g. Stuart, Bossomaier, & Johnson, 1993), turns out to depend

on numerous context effects that modulate its discriminability (e.g. Busch & Müller,

2004). In contrast to these bottom-up, feature-driven processes, fit posits a role for
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top-down, serial, attention-driven processes which are responsible for feature binding

and hence come into play during conjunction search. Thus, fit is a two-stage architec-

ture, at whose core is the distinction between parallel, bottom-up and serial, top-down

processes (cf. Neisser, 1967).

Subsequent work questioned the adequacy of this dichotomy in explaining the

data, both on empirical and theoretical grounds. For example, a large scale meta-

analysis of search data by Wolfe (1998) found no evidence of bimodality which could

be taken to correspond to different search processes. Although bimodality is not a

necessary and sufficient criterion for identifying distinct processes, subsequent follow-up

research has nevertheless suggested a departure from the standard bottom-up/parallel

versus top-down/serial dichotomy (Haslam, Porter, & Rothschild, 2001). At the same

time, arguments were put forward against the split between ‘pre-attentive’ (bottom-up)

and attentive processes (Nakayama & Joseph, 1998). Indeed, the empirical evidence

supports a more nuanced view of the relationship between search time and distractor set

size. Faster versus slower search is known to be affected by a variety of factors, including,

among others, the extent to which a display affords the formation of perceptual groups

(Nakayama & Silverman, 1986; He & Nakayama, 1995; Nakayama & Joseph, 1998;

Nordfang & Wolfe, 2014); the salience of individual features that are reliably correlated

with a conjunction (Wolfe, Cave, & Franzel, 1989; Sobel & Cave, 2002; Found, 1998); and

the similarity between target and distractors, as well as the specificity of the template

(Duncan & Humphreys, 1989; Malcolm & Henderson, 2009). Search for complex targets

is also affected by the nature of the experimental paradigm (e.g. cueing vs. standard
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visual search; cf. Palmer, 1994, 1995; Vickery, King, & Jiang, 2005); and by the search

strategy afforded by the display (e.g. the presence of subsets; cf. Friedman-Hill &

Wolfe, 1995). Guidance (Olds, Cowan, & Jolicoeur, 2000b, 2000c, 2000a) or preview of

features in a target conjunction (Olds & Fockler, 2004) also facilitate search for complex

targets. One set of results has shown evidence for linguistic guidance. Spivey, Tyler,

Eberhard, and Tanenhaus (2001) showed that auditory presentation of a target template

or description, incrementally and concurrently with the display, results in shallower rt

× set size slopes (though it has been argued that this form of linguistic guidance is

dependent on the speech rate with which the description of the target is delivered;

Gibson, Eberhard, & Bryant, 2005). This claim is also supported by evidence of search

facilitation when features of the target are incrementally presented using a visual, rather

than a linguistic modality (Chiu & Spivey, 2012). Reali, Spivey, Tyler, and Terranova

(2006) provided further confirmation by replicating the findings of Spivey et al. (2001),

while also showing that the order in which information is delivered matters: describing

the target using colour followed by orientation facilitated search more than did the

opposite order. This echoes findings by Olds and Fockler (2004), who found a similar

order effect using visual preview of stimuli. Crucially Reali et al. (2006)’s design excludes

the possibility that linguistic guidance effects are an artefact of blocked designs, or that

they are due to an odd-one-out search strategy.

An important outcome of this body of work has been a more unified view of the

processes underlying visual search. Some models explicitly argue for a continuum of

search efficiency determined by such factors as target-distractor similarity (Duncan &
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Humphreys, 1989) and competition between multiple features across the visual field

as a function of both top-down and bottom-up processes, leading to bias in attentional

allocation (Desimone & Duncan, 1995; Desimone, 1998). Simulations such as those made

by (Reali et al., 2006) lend support to these unified models, by showing that multiple

factors – visual features and linguistic input – can contribute to the gradual emergence of

a region in the visual field as the likely target for attention. On the other hand, current

models which maintain a two-stage architecture, such as Guided Search (gs; Wolfe et

al., 1989; Wolfe, 1994, 2007), differ from the classic fit model in that attention and

selection are explicitly guided by a limited number of visual features (reviewed by Wolfe

& Horowitz, 2004).

The present study

How does content determination for referring expressions relate to visual search?

Our discussion of the two bodies of literature concerning these processes highlights points

of convergence, but also important differences.

The nature of search in reference production could be described as object-driven: in

a typical referential situation, the speaker has a target referent in focus, whose properties

are known, or at least accessible, to her, and from among which she needs to select a

distinguishing subset to enable an interlocutor to identify the same object. As the

family of computational models we have discussed make explicit, this results in a search

within the space defined by these properties and their combinations. Furthermore, this

conceptualisation or content determination process is incremental (Pechmann, 1989;



DISTRACTOR SET SIZE AND REFERENCE PRODUCTION 17

Levelt, 1999).

By contrast, in a typical visual search paradigm, search is template-driven: success

is defined as matching a target against a description, or concluding that no such target

is present (Wolfe, 2010). Research showing that search effort can be modulated by

the concurrent verbal delivery of the target description (Spivey et al., 2001; Reali et

al., 2006), or by facilitation of search through the concurrent presentation of individual

target features in the visual modality (Chiu & Spivey, 2012) suggests that incrementality

can also play a role in this task.

Despite the differences between them, in both cases search has often been assumed

to require comparison between elements of the display, under certain conditions. In the

visual search case, this assumption has been made on the basis of evidence that certain

types of search are made slower with increasing numbers of distractors although, as we

have seen, there are many factors that modulate this, as well as competing accounts

of the causes of search inefficiency. In the reference production case, the evidence is

more indirect, stemming from preferences for properties observed in production data.

Thus, there is an open question related to the extent to which efficiency in content

determination is affected by distractor set size, and by the nature of the properties

required to identify the target. The family of computational reg models discussed here

make explicit predictions about this, which remain untested.

In what follows, we empirically investigate the two predictions of computational

reg models outlined above in two experiments. Experiment 1 compares reference pro-

duction in conditions where size alone, or both size and colour, suffice to distinguish
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a target; Experiment 2 compares the situation where colour alone can do the trick,

compared to the same condition where size and colour are required.

Our experiments make simplifying assumptions about the set of distractors by

focussing on a fixed array of objects that constitute a referential domain. This is some-

what akin to the assumption in many of the visual search experiments described above,

where the entities and features manipulated are simple and well-defined. The picture

is of course far more complex in real-world scenes. As Wolfe (2010) notes, for instance,

the process of verifying whether a cow is present in a field will be informed not only by

the features of that cow in relation to the other elements of the scene, but also by prior

knowledge of what such scenes typically consist of. Recent work on vision has begun

to explicitly address how attention and search are influenced by such factors, including

prior expectations about typical scene structure (see Oliva & Torralba, 2007, and refer-

ences therein), semantic factors (e.g. Henderson, Brockmole, Castelhano, & Mack, 2007;

Belke, Humphreys, Watson, Meyer, & Telling, 2008; Hwang, Wang, & Pomplun, 2011)

and task-based factors (e.g. Einhäuser & Koch, 2008; Awh, Belopolsky, & Theeuwes,

2012). This research has culminated in models which use of such global factors to mod-

ulate the impact of low-level features in the computation of salience, in order to predict

likely regions where attention will be deployed (e.g. Torralba, Oliva, Castelhano, &

Henderson, 2006; Kanan, Tong, Zhang, & Cottrell, 2009).

Ignoring such ‘global’ or ‘contextual’ information is a simplifying step, but one

that permits us to study the predictions of the algorithms under consideration more

precisely. Nevertheless, we return to the role of contextual information in visual search
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in the concluding section of this paper, where we also speculate on its implications for

reference production in light of the results obtained in the present work.

Experiment 1

In our first experiment, participants were exposed to visual domains with a desig-

nated target object surrounded by a number of distractors. The target was distinguish-

able from the distractors either on the basis of both its size and colour (Figure 3(a))

or its size alone (Figure 3(b)). Participants had to identify the target using a spoken

description. We focussed on the speech onset time for the description, that is, the time

from the presentation of the visual scene to the beginning of their utterance.

(a) Colour and size required (b) Size only required

Figure 3. Two example domains with four distractors, from Experiment 1

If the predictions of current reg models are correct, the distractor set size should

impact speech onset time. Thus, the domains in Figure 3, containing four distractors,

speakers should be slower compared to domains where there are two, for example. Fur-

thermore, we would expect the scenario displayed in Figure 3(a), where a conjunction

of properties is required, to evince longer speech onset times compared to the single-

property case.
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Participants

The experiment was conducted at the Tilburg center for Cognition and Commu-

nication. Forty native speakers of Dutch participated in return for course credit.

Materials and design

The experimental stimuli consisted of 64 items selected from a version of the

Snodgrass and Vanderwart (1980) set of line drawings with colour and texture (Rossion

& Pourtois, 2004). The items were selected on the basis of a pretest in which seven

native speakers of Dutch were asked to name greyscale versions of the pictures. For the

items, we selected only those pictures for which at least 5 out of the 7 speakers agreed

on the name of the object. The pictures were subsequently manipulated to create a

version of each in two different sizes (large and small) and four different colours (red,

blue, green and grey). For the size manipulation, small images covered 45% of the pixel

area of large images, excluding the white background.

For each item, 8 versions of a visual domain were constructed, each consisting of

a target referent surrounded by a red border, and a number of distractors, as shown in

Figure 3. The 8 versions represented combinations of the following two factors:

• Properties (2 levels): On half the trials, the target could be distinguished on the

basis of size only (s), as in Figure 3(b). On the remaining trials, both colour and size

(cs) were required to distinguish the target, as in Figure 3(a).

• Distractors (4 levels): There were 2, 4, 8 or 16 distractors in addition to the

target, representing increasing domain size. Figure 3 is an example of the 4-distractor
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condition.

In each domain, all objects (target and distractors) were of the same type (e.g.

all were aeroplanes). In the s trials, distractors were identical to the target except

for their size. Distractors were also identical to each other (e.g. the target was a

small blue aeroplane and all distractors were large blue aeroplanes). In the cs trials,

half the distractors were identical to the target except for their size and the other half

were identical to the target except for their colour (e.g. the target was a large blue

aeroplane, half the distractors were small green aeroplanes and the other half were large

blue aeroplanes). Thus, distractors in the visual display in this condition fell into two

subsets.

In addition to the experimental items there were 108 fillers. In 64 of these, the

target could be distinguished using size only or both size and colour, as in the critical

trials. However, there was variation in the types of distractors (not all distractors were of

the same type as the target). In the remaining 64 fillers, the target could be distinguished

by using its type only. There were equal numbers of fillers containing 2, 4, 8 or 16

distractors.

In each trial, objects were presented in a sparse grid. For each of the items, a

position in the grid was randomly fixed in advance, so that a given item (such as an

aeroplane) always appeared in the same position as a target, irrespetive of the condition.

The position of the distractors was also fixed in the 2-, 4-, 8- and 16-distractor conditions.

Both items and participants were randomly divided into 8 groups. Item and participant

groups were rotated through a Latin square so that each item appeared in each condition
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and each participant saw all conditions, but each participant saw each item only once.

The 64 items were placed in a pseudo-random order at the outset, so that they

occurred in exactly the same order irrespective of condition, for all participants. Among

the 64 trials, there were approximately equal numbers of targets in the two different

sizes and the four different colours.

Procedure

Participants did the experiment individually in a sound-proof booth, wearing a

headset through which their descriptions were recorded. The experiment was run using

the dmdx package for stimulus presentation (Forster & Forster, 2003). Participants

were asked to imagine that they were describing objects for a listener who could see

the exact same objects but did not know which one was the target referent. In order

to avoid the use of descriptions containing locative expressions (e.g. the one in the top

right), participants were also told that their putative listener would see the objects in

different positions. None of the participants used locative expressions in the experiment.

Participants were also instructed to speak naturally and clearly, but to respond as fast

as possible given these conditions.

A trial was initiated with a warning bell and a fixation cross appearing for 500ms

in the middle of the screen. Subsequently, the visual domain appeared with the target

surrounded by a red border. After they had described the target, participants pressed

the Enter key on their keyboard to move to the next trial.

Trials were presented in two blocks to allow participants to take a break. Speech
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onset time was measured using the dmdx voice trigger from the point when the visual

domain was presented to the point when a participant began to speak.

Data pre-processing

Descriptions were transcribed and annotated for whether they contained size,

colour or both. Descriptions in the s condition which contained both size and colour

were classified as overspecified. Descriptions in the s condition which contained only

colour, or those in the cs condition which contained only one of the two properties,

were classified as underspecified. All other descriptions were classifed as minimally spec-

ified. Data from two participants was excluded because they produced utterances which

compromised the calculation of speech onset time (for example, starting all of their de-

scriptions with I see a...3). In what follows, analyses are conducted from data from the

remaining thirty-eight participants.

Table 1 displays frequencies and proportions of well-specified, overspecified and

underspecified descriptions, by condition and overall. The relatively high proportion

of overspecifications in the s condition is compatible with previous findings, where the

rate of overspecification is typically similar or higher, as speakers tend to use colour

non-contrastively. For example, Gatt, van Gompel, Krahmer, and van Deemter (2011)

report between 78% and 80% redundant use of colour in conditions where size suffices

to distinguish an entity; Belke (2006) report similar proportions (ca. 87%).

3In such cases, it is possible that content planning for the referring expression is going on during

speech. This would mean that speech onset time would not reflect planning time before the utterance is

initiated.
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Minimally specified Overspecified Underspecified

CS2 295 (97) 0 9 (3)

CS4 291 (95.7) 0 13 (4.3)

CS8 296 (97.4) 0 8 (2.6)

CS16 297 (97.7) 0 7 (2.3)

S2 145 (47.7) 157 (51.6) 2 (0.7)

S4 142 (46.7) 157 (51.6) 5 (1.6)

S8 138 (45.5) 162 (53.5) 3 (1)

S16 132 (43.56) 168 (55.4) 3 (1)

overall 1736 (71) 644 (26.5) 50 (2)

Table 1: Frequencies and percentages (in parentheses) of minimally specified, underspecified and

overspecified descriptions in Experiment 1.

In what follows, we report statistical analyses based only on the minimally specified

descriptions, excluding over- and underspecified cases, although we also report speech

onset times for overspecified and underspecified descriptions, for ease of comparison.

Our exclusive focus on minimally specified descriptions is due to the following reasons.

In underspecified descriptions, participants presumably did not check against the en-

tire distractor set to see whether a selected property combination was distinguishing,

whereas when participants overspecified, the inclusion of a redundant property may not

have involved such a check because it was extra information, added after initial content
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planning had determined the minimal requirements to identify the referent.

Speech onset times were manually tuned using CheckVocal (Protopapas, 2007),

a program for the detection and correction of voice key mistriggers (due to lip smacks,

coughs, background noise etc) in dmdx result files. For each sound file, we ensured that

the speech onset time was taken at the precise point where the participant’s description

began. In case the description included a determiner, this meant the onset of the de-

terminer. In case a description began with a hesitation (e.g. uhhhh het kleine rode bed

‘uhhhh the small red bed’), the onset time was the onset of the description following the

initial hesitation.

Following tuning, an onset time was defined as an outlier if it exceeded the mean

±2sd in its condition. 112 data points (4%) were considered outliers by this criterion

and were treated as missing.

Results

Table 2 displays mean speech onset times and standard deviations as a function of

condition, as well as across conditions for minimally specified, overspecified and under-

specified descriptions. Among minimally specified descriptions, there appears to be an

increase in onset time in the cs compared to the s condition. Onset time also increases

with the number of distractors.

Figure 4 displays the effect of increasing distractor set sizes on speech onset time

for minimally specified descriptons in the s and cs conditions. In both cases, times

increase, albeit with a slight decrease for 8-distractor domains in the s condition. The
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2 4 8 16 Overall

Minimally specified

CS 2023 (492) 2022 (507) 2106 (525) 2140 (809) 2073 (538)

S 1872 (458) 1991 (566) 1922 (209) 2047 (473) 1955 (506)

Overall 1972 (486) 2012 (527) 2047 (527) 2111 (572) –

Underspecified

CS 2308 (623) 2076 (524) 2019 (727) 2699 (624) 2215 (635)

S 2202 (1314) 2571 (649) 2246 (1450) 2703 (19) 2491 (647)

overall 1977 (491) 2013 (523) 2066 (564) 2084 (554) –

Overspecified S 1972 (487) 1992 (502) 2120 (647) 1986 (480) 2019 (537)

Table 2: Mean speech onset times (in milliseconds) and standard deviations (in parentheses)for

minimimally specified, overspecified and underspecified descriptions, in each condition in Exper-

iment 1. Overspecifications occurred only in the s condition.

Figure 4. Mean onset times by number of distractors for minimally specified descriptons in the

s and cs conditions. Error bars represent ±1 standard error of the mean
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plot shows no evidence of an interaction between the two factors.

In what follows, we use Linear Mixed Effects models, reporting both model com-

parisons and estimates of significance of main effects and interactions.4 We first construct

a baseline (model 0) consisting only of the intercept, together with random effects. We

then assess the contribution of the fixed effects of Properties and Distractors (a) sepa-

rately, by constructing models incorporating each one (models 1 and 2) and comparing

them to the baseline; and (b) jointly, by constructing a model with both fixed effect

terms (model 3) and comparing it to the baseline. Finally (c) we compare model 3 to a

maximal model incorporating the two fixed effects and their interaction (model 4). In

each case, model comparison is carried out on the basis of goodness-of-fit, using Bayesian

Information Criterion (bic) and Log-likelihood estimates. Finally, we give full details

of the best-fitting model, including its parameter estimates and associated significance

tests.

For the purposes of the analysis, the Distractors factor was coded as numeric, since

we wish to test the impact of linearly increasing numbers of distractors in the visual

domain. Both the distractors and properties factors were centred to reduce collinearity

and facilitate interpretation of main effects.

Following Barr, Levy, Scheepers, and Tily (2013), models were initially fitted with

a maximal random effects structure, including random intercepts, and random slopes

4The analysis was conducted in R using the lme4 package, version 1.1.6 (Bates, Maechler, & Bolke,

2014). Model comparisons and estimates of p-values were conducted using the anova and summary

functions in the lmerTest package version 2.0.6 (Kuznetsova, Brockhoff, & Christensen, 2014). All

significance tests are estimated from the models described below.
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for both fixed effects and their interaction. Where this led to problems of convergence,

we fitted the models by omitting covariances from the variance-covariance matrix; this

maintains the maximal random effects structure while permitting model fitting with

fewer parameters.

As a final check, the best-fitting model among the four we test is further com-

pared to a version of the same model that includes random intercepts and slopes for

item frequency, that is, the frequency of the noun for the pictures used as stimuli. This

controls for possible frequency-related differences among items, which may have im-

pacted the time taken to plan a description. Frequencies for the Dutch noun for each

item were identified from the NLTenTen corpus, a Dutch web corpus of ca. 2.5 billion

words constructed in 2014 and available via the SketchEngine5. We used log-transformed

frequencies for the analysis.

Table 3 summarises the baseline model and all subsequent models, with indications

of their goodness of fit. Both models 1 and 2, incorporating a single fixed effect, have a

better goodness of fit than the baseline model, as reflected by the bic and χ2 estimates.

The model that best explains the variance in the data is the one including both Properties

and Distractors as main effects (model 3), as indicated by the bic estimate. This model

was significantly better than either of the models incorporating the individual fixed

effects (model 1: χ2 = 15.97, p < .001; model 2: χ2 = 17.26, p < .001). As expected,

given the trends displayed in Figure 4, the inclusion of an interaction term (model 4)

does not improve fit over model 3, although model 4 is still significantly better than the

5http://www.sketchengine.co.uk
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Fixed effects bic Model χ2

0 Intercept only (baseline) 25312 –

1 Properties 25302 17.67∗ (relative to model 0)

2 Distractors 25303 16.37, ns (relative to model 0)

3 Properties + Distractors 25293 33.64∗ (relative to model 0)

4 Properties × Distractors 25300 0.04, ns (relative to model 3)

Table 3: Model goodness of fit statistics. Models 1, 2 and 3 are compared to the baseline (model

0) to establish the contribution of Properties and Distractors separately. Model 4 is compared

to model 3 to establish the contribution of the interaction. (*) indicates significantly better

goodness of fit at p < .001.

baseline model (χ2 = 33.69, p < .001).The best-fitting model is therefore Model 3, whose

details are shown in Table 4. Note that apart from an increase in speech onset time of

roughly 130ms between the one- and two-property conditions, the slope for Distractors

suggests an additional 50ms in speech onset time per unit increase in the number of

objects in the domain. A comparison of this model to a similar model with additional

random intercepts and slopes for item frequency showed no significant difference (bic

for model 3 with item frequency: 25352; χ2 = 0.03, ns). Hence, we conclude that there

was no impact of frequency on speech onset time.
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Parameter Estimate Standard Err. t-value

Intercept 2051.26 48.37 42.41∗

Properties 130.18 25.02 5.20∗

Distractors 49.47 11.05 4.48∗

Table 4: Estimes for Model 3, the best-fitting model for the data in Experiment 1, incorporating

fixed effects of Properties and Distractors. (*) indicates significance at p < .001.

Discussion

The main effect of Properties in this experiment suggests that speakers took longer

to initiate a description when they had to describe a target using both size and colour,

compared to size only. Furthermore, this occurred independently of the distractor set

size effect, as shown by the lack of an interaction.

Interestingly, when speakers identified a target referent using size only, there was

evidence that the number of distractors impacted the efficiency of the content determi-

nation process. This is compatible with an interpretation whereby speakers needed to

compare the size of the target to that of distractors in order to determine that the target

was large or small; thus, the search speakers conduct to determine the size of a target is

relatively inefficient, at least for the size differences manipulated here.

These findings lend support to the predictions of reference production models,

which predict that distractor set size should affect efficiency, even in the single-property

case. However, in the reference production literature, size has usually been found to
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be ‘dispreferred’ by speakers, an oft-cited reason being that it is a paradigm case of a

gradable property, and hence less easily codable (Belke & Meyer, 2002; Belke, 2006),

compared to properties like colour. Indeed, our own data (see Table 1) suggests that

speakers often overspecified and used colour in the s condition. This raises the question

of whether distractor set size would impact content determination in the same way when

the required distinguishing property is highly ‘preferred’, in the sense that speakers tend

to use it very frequently, even when it is not required. Such preference data could indicate

that, all other things being equal (for example, the discriminability of the property or its

typicality relative to the type of object under consideration Viethen et al., 2012; Sedivy,

2003; Westerbeek et al., 2015), speakers are able to conduct a more efficient search for

such properties in the course of planning a description.

Experiment 2

Experiment 2 replicated the design of Experiment 1 and maintained the condi-

tion where two properties (colour and size) are required to distinguish a target referent.

However, the single-property case this time featured a colour rather than a size con-

trast, as shown in Figure 5. Colours were selected to be highly distinctive, in order to

provide a contrast to the previous experiment where size differences may have been less

discriminable.

Participants

The experiment was conducted at the Tilburg center for Cognition and Commu-

nication. Thirty-eight native speakers of Dutch participated in return for course credit.
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Figure 5. A domain in which colour alone distinguishes the target, from Experiment 2.

None of them had participated in Experiment 1.

Materials and design

The experimental stimuli consisted of the same 64 items used in Experiment 1,

with the same size and colour values. Pictures were manipulated to create 8 versions of

a visual domain representing combinations of the following two factors:

• Properties (2 levels): On half the experimental trials, the target could be dis-

tinguished on the basis of colour only (c), as in Figure 5. On the remaining trials, both

colour and size (cs) were required to distinguish the target, as in Figure 3(a).

• Distractors (4 levels): There were 2, 4, 8 or 16 distractors in addition to the

target, representing increasing domain size. Figure 3 is an example of the 4-distractor

condition.

Once again, a pseudo-random ordering of items was set in advance. Items and

participants were divided into eight groups, as before, and were rotated through a latin

square to ensure a within-participants and within-items design. The different colours

and sizes were again used an equal number of times for target referents across the 64

items.
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Procedure

The procedure was identical to that followed in Experiment 1.

Data pre-processing

The data from three out of the thirty-eight participants had to be omitted: in two

cases, participants were pressing the Enter key to move on to the next scene before having

finished describing the target, resulting in incomplete recordings; a third participant

underspecified more than 50% of the time.

Speech onset times were once again tuned using CheckVocal. Speech onset times

that lay outside the range of the condition mean ±2SD were classified as outliers and

treated as missing. There were 86 (3.8%) outliers overall.

Descriptions were transcribed and annotated for whether they contained size,

colour or both. Once again, they were coded as minimally specified, overspecified, or

underspecified. Table 5 displays the frequencies of these description types, by condition.

Note the much lower proportion of overspecified descriptions in the c conditions, com-

pared to the s conditions in Experiment 1 (see Table 1). This is expected, given that

size is usually found to be dispreferred with respect to colour, and especially in view of

the relatively limited size contrasts used in the materials in the previous experiment.

Once again, we focus exclusively on the minimally specified descriptions in the

analysis of results. Given the very small proportions of underspecified and overspeci-

fied descriptions, we refrain from reporting mean speech onset times for these types of

descriptions.
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Minimally specified Overspecified Underspecified

C2 275 (98.2) 4 (1.4) 1 (0.4)

C4 273 (97.5) 5 (1.8) 2 (0.7)

C8 277 (99) 3 (1) 0

C16 278 (99.3) 2 (0.7) 0

CS2 275 (98.2) 0 5 (1.8)

CS4 277 (98.9) 0 3 (1.1)

CS8 276 (98.6) 0 4 (1.4)

CS16 276 (98.6) 0 4 (1.4)

overall 2207 (98.5) 14 (0.6) 19 (0.9)

Table 5: Frequencies and percentages (in parentheses) of minimally specified, underspecified and

overspecified descriptions in each condition in Experiment 2.

2 4 8 16 Overall

C 1785 (415) 1737 (374) 1759 (382) 1740 (407) 1755 (394)

CS 1862 (491) 1887 (495) 1926 (501) 1953 (475) 1907 (491)

Overall 1824 (454) 1812 (445) 1842 (452) 1845 (454) –

Table 6: Mean speech onset times (in milliseconds) and standard deviations (in parentheses) for

minimimally specified descriptions, in each condition in Experiment 2.

Results
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Table 6 displays mean speech onset times and standard deviations as a function of

condition, as well as across conditions, for minimally specified descriptions. In contrast

to Experiment 1, there is little prima facie evidence that speech onset time increases

with the number of distractors overall. Closer inspection reveals the expected trend in

the cs condition, where the mean onset time increases, especially for domains with 8

or more distractors. By contrast, the means for the c condition show a drop from the

two-distractor to the four-distractor condition, with smaller fluctuations for distractor

set sizes above four. This is made more explicit in Figure 6, which also indicates an

interaction between Distractors and Properties.

Figure 6. Mean onset times by number of distractors for minimally specified descriptions in the

s and cs conditions. Error bars represent ±1 standard error of the mean

We turn now to the Linear Mixed Effects analyses, where we follow the same
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strategy as per Experiment 1 in incrementally comparing models. All models converged

with a maximal random effects structure. Once again, the fixed effect of Distractors

is modelled numerically; both Properties and Distractors were centred. Possible item

frequency effects are accounted for by comparing the best-fitting model to the same

model with random intercepts and slopes for noun logarithmic frequency, calculated as

per Experiment 1. Model comparisons are summarised in Table 7.

Fixed effects bic Model χ2

0 Intercept only (baseline) 31651 –

1 Properties 31632 27.11∗∗ (relative to model 0)

2 Distractors 31659 0.06, ns (relative to model 0)

3 Properties + Distractors 31639 27.71∗∗ (relative to model 0)

4 Properties × Distractors 31641 5.91∗ (relative to model 3)

Table 7: Model goodness of fit statistics: (**) indicates that model has significantly better

goodness of fit than the model indicated in parentheses at p < .001; (*) indicates better fit at

p < .05.

The difference between the two levels of Properties (model 1) contributes signifi-

cantly to explaining the variation in speech onset times, but distractor set size (model

2) does not: this model does not fit the data any better than the baseline. The addition

of both fixed effects in model 3 outperforms the baseline model. Although this model

fits the data better than model 2, which incorporates only the fixed effect of Distractors



DISTRACTOR SET SIZE AND REFERENCE PRODUCTION 37

(χ2 = 27.65, p < .001), it is no better than the model containing only Properties (model

1; χ2 < 1, ns), suggesting that it is Properties that is playing the most important role

in explaining the variance. Model 4, which incorporates the interaction, fits the data

best, achieving a better fit than model 3. A comparison of this model to the same model

incorporating random intercepts and slopes for log-transformed noun frequency revealed

no significant difference in goodness of fit (bic for model incorporating frequency: 32018;

χ2 = 27.4, p > 0.9). Once again, we conclude that frequency did not exert an impact on

speech onset times.

Parameter Estimate Standard Err. t-value

Intercept 1840.10 37.43 49.15∗∗

Properties 153.81 26.11 5.89∗∗

Distractors 13.33 9.80 1.36, ns

Properties × Distractors 48.17 19.29 2.50∗

Table 8: Details of the best-fitting model for the data in Experiment 2, incorporating fixed effects

of Properties and Distractors and their interaction. (**) indicates significance at p < .001; (*)

at p < .05.

The full details of model 4 are displayed in Table 8. Overall, an increase in the

number of distractors does not result in an increase in speech onset time. However,

the presence of a significant interaction shows that larger distractor set sizes had an

impact in the cs condition, but not in the c condition. To investigate this further, we
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carried out separate Linear Mixed Effects analyses on the c and cs data, using the same

model-comparison strategy as before to compare models with Distractors as the sole

fixed effect to a baseline model. The models are summarised in Table 9. All models

included random intercepts and random slopes by participants and items.

Condition Fixed effects bic Model χ2

C
Intercept only (baseline) 15594 –

Distractors 15600 1.24, ns

CS
Intercept only (baseline) 15948 –

Distractors 15942 6.03∗

Table 9: Separate model goodness of fit statistics for the c and cs conditions: (*) indicates

significance at p < .05;

As the table shows, a model that incorporates Distractors does not improve fit over

the baseline in the c condition. Significance testing shows no main effect of Distractors

(t = 1.12, p > .2). By contrast, the fixed effect of Distractors contributes to a signficantly

better fit in the cs condition, with a main effect of Distractors (t = 2.53, p = .01). Thus,

our results suggest no impact of domain size on speech onset time when a target referent

is identified by a single property, in this case a highly contrastive difference in colour; on

the other hand, domain size has a significant impact in case the target referent requires

two properties in an identifying description.
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Discussion

The results of Experiment 2 show that there is little effect of number of distractors

on the time taken to initiate a referring expression, in case the property required is

colour. By contrast, content determination involving a conjunction of properties (colour

and size) is significantly slower, and an increase in the number of distractors in the

domain results in an increase in speech onset time. By contrast, in Experiment 1, the

impact of distractors was evident even in case a target referent could be identified using

only its size.

There is a further notable difference between speech onset times for Experiment

2 and Experiment 1 in the cs condition, which was identical in both experiments: in

Experiment 1, the mean latency over all levels of Distractors was 2073.27, compared to a

mean of 1906.76 in Experiment 2 (see Tables 2 and 6). This difference is likely due to an

effect of experimental context: peformance may have been influenced by the alternation

of the cs condition with size in Experiment 1, and with colour in Experiment 2.

We explored this possibility by combining the data from Experiments 1 and 2. We

compared the two models summarised in Table 10, the first of which included Distractors,

Properties and their interaction, while the second also included a fixed effect of Item

Order. Item Order was incorporated as a continuous predictor, with a number indicating

the trial where an item was encountered in the course of the experiment. This was

possible, since item orders were determined in advance, using an identical pseudo-random

order in both experiments, so that every item occurred in the same order in the course of

the experiment, irrespective of condition. A fixed effect of Experiment was also included
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in both models as a between-groups factor; both models included random intercepts and

slopes for Distractors, Properties and Order by participants (nested within Experiment)

and items.

Fixed effects bic Model χ2

1 Properties × Distractors × Experiment 56754

2 Properties × Distractors × Experiment × Order 56771 16.40∗

Table 10: Model goodness of fit statistics reflecting the impact of item order in the data from

both experiments: (*) indicates that model has significantly better goodness of fit than the model

indicated in parentheses at p < .01.

While the second model had a slightly higher bic, likely due to the greater number

of parameters compared to the first, it was significantly better at predicting the data

than Model 1. Significance tests over Model 2 showed that there was a main effect of

Experiment (SE = 54.01; t = 2.60, p < .01). This is unsurprising, given the observed

difference in mean speech onset time between the two experiments. Table 11 summarises

the remaining components of the model.

When the data from both experiments are combined, the main effects of Proper-

ties and Distractors approach, but do not reach significance, while Item Order exerts

a significant main effect. Crucially, we observe a significant interaction between Prop-

erties and Distractors, confirming the observations, from the separate analyses of the

two experiments, that the impact of domain size depends on the property combination
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Parameter Estimate Standard Err. t-value

Intercept 1905.65 32.45 58.72∗∗

Properties 99.53 21.04 4.73†

Distractors 31.58 7.72 4.08†

Item Order -83.96 23.51 3.57∗∗

Properties × Distractors 24.90 7.48 3.33∗∗

Distractors × Item Order -7.02 6.50 1.08, ns.

Properties × Item Order -26.171 7.99 3.27∗∗

Distractors × Properties × Item Order -7.357 7.38 0.99, ns.

Table 11: Details of the best-fitting model for the combined data in Experiments 1 and 2,

incorporating fixed effects of Properties and Distractors and their interaction. (†) indicates that

a fixed effect approaches, but does not reach, significance at p < .05; (**) indicates significance

at p < .001; (*) at p < .05.

required for identification. An interaction of Item Order with Properties lends support

to the conclusion that the gain in speed made by participants over a series of trials was

dependent on which property was required to distinguish the target referent. This is

further supported by studying the role of Item Order in each experiment individually.

Individual models were obtained by adding the fixed effect of Item Order to the best-

fitting model found for each experiment (model 3 in Table 3 and model 4 in Table 7). In

Experiment 1, the model estimate for the main effect of order was −109.61ms, while it

was −61.40 for Experiment 2. Both indicate a gain in speed, but this gain is higher in the
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first Experiment, suggesting that here latencies were initially slower as speakers needed

to scrutinise size differences, compared to Experiment 2, where the single-property con-

dition involved an easily discriminable colour difference. The upshot was a greater gain

in speed over the course of Experiment 1.

To summarise the findings, the current experiment showed that the effect of dis-

tractor set size on speech onset latencies depended on the properties used to distinguish

a referent; in particular, we do not find a main effect of Distractors, but we do find

an interaction with Properties, in contrast to the findings in Experiment 1, where size,

rather than colour, was compared to the cs condition. Combining the data from both

experiments confirms that the distractor set size effect is dependent on the properties

required to plan a description; furthermore, as participants become more efficient at the

task, as reflected by the impact of item order, the extent to which there is a gain also

depends on the properties required for an identifying description.

General discussion

Our starting point in this paper was the observation that conceptualisation during

reference production can be modelled as a search process, a view adopted by compu-

tational models developed within the field of Referring Expression Generation (reg;

Krahmer & van Deemter, 2012). Furthermore, some insights from these models and

from empirical work on reference production converge with insights from several decades

of research on visual search, especially where this work has shed light on the efficiency

of search processes, from so-called ‘pop-out’ search at one extreme, through various de-
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grees of difficulty arising from the conditions present in the visual stimulus. At the same

time, there is a difference in emphasis between the two bodies of work. Search during

reference production begins from a known target referent and proceeds through a search

space defined by the target’s properties and their combinations. In visual search, the

starting point is usually a template, or a description of a target, and the aim is to verify

its presence or absence.

The primary aim of this paper was to test the predictions of reg models, which

predict that the efficiency of search for properties of a target referent will be affected both

by the number of properties required to identify it, and by the number of distractors

to which the target needs to be compared. The results only lend partial support to

these predictions. As reg models predict, increasing distractor set size makes content

determination less efficient in case a referent needs to be distinguished by a conjunction

of colour and size. This is reminiscent of early results in visual search (e.g. Treisman

& Gelade, 1980) showing that conjunction search exhibits a linear dependency on the

number of distractors. However, contrary to the predictions of models, the effect of

increasing distractor set size where a referent can be distinguished on the basis of a single

property depends on the property under consideration. Where the property in question

was highly discriminatory (colour in Experiment 2), search latencies were unaffected by

distractor set size (reminiscent of a ‘pop-out’ effect in some visual search studies). With

a less discriminatory property – such as the size contrast in Experiment 1 – search is

affected by domain size. This is further supported by the observation that participants

made gains in efficiency in the course of the experiment, but the extent of these gains
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differed among these two cases.

In the remainder of this section, we outline some of the implications of these find-

ings for our understanding of reference production, first by holding up the computational

models we have considered against our experimental results, as well as results from re-

cent work on visual search, and then by considering the prospects for models that go

beyond artificial visual domains.

Implications for models of reference production

Two of the assumptions of the models we have considered deserve further scrutiny

in light of the results of our experiments.

The first assumption is that conceptualisation or content determination is per-

formed against a knowledge base where entities and their properties are represented.

This allows these models to assume a separation between the speaker’s initial identifica-

tion of a target’s properties on the one hand – for example, her knowledge of the target’s

colour, shape, or size – and the search through those properties on the other. It is only

the latter that is considered central to conceptualisation or content determination. This

assumption is clear in the formulation of the algorithm schema outlined in Figure 2.

There are approaches which do pay closer attention to the establishment of the

initial set of properties on the basis of which search will be carried out, especially where

these properties can be numerically represented (as in the case of height or width of an

object; van Deemter, 2006) or where these properties consist of spatial landmarks that

can be used to identify a target in a relation (such as to the right of X; cf. J. D. Kelleher
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& Kruijff, 2006; Elsner, Rohde, & Clarke, 2014; Clarke, Elsner, & Rohde, 2015). In the

latter cases, the salience of a landmark plays an explicit role in determining whether it

is included in a description.

Common to these approaches is the notion that visual salience can be used to

prioritise information during search, a view that harks back to an early body of work on

language generation (e.g. Arbib, Conklin, & Hill, 1987; Novak, 1987, inter alia). What

is missing from this picture is an account of how salience itself can inform that part

of the content determination process whereby a property is determined to be relevant

to a distinguishing description. This leads us to the second assumption underlying the

models under discussion: while properties can be prioritised during search on the basis

of various heuristics, including discriminatory power (Dale, 1989; Frank & Goodman,

2012), salience or preference (Dale & Reiter, 1995; Gatt et al., 2011; Mitchell et al.,

2013), the inclusion of a property in a description ultimately depends on a comparison

with the distractors in the relevant domain, so that a property is included if it is found

to be contrastive. This holds irrespective of the property under consideration. Such a

Gricean view of content determination has continued to dominate reg models, though

once again, work which pays closer attention to the interface between vision and language

production (e.g. Kazemzadeh et al., 2014) has tended to weaken this Gricean orientation.

Thus, as far as contrastiveness is concerned, ‘all properties are equal’, in the sense that

they are subject to the same treatment, even if they might be considered first.

To a first approximation, one could maintain this process model, with one alter-

ation, and still account for the experimental results reported here. Based on the finding
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that where colour is the property required to distinguish an intended referent (Experi-

ment 2), there is little evidence of comparison between target and distractors, the model

could be altered to first select colour, then check whether the resulting description is

distinguishing, proceeding to search for other discriminatory properties should this not

be the case. This account would remain faithful to the notion of a preference order, in

which colour takes precedence over size or other prototypically gradable properties, also

accounting for the redundant use of preferred properties in overspecified descriptions

(Pechmann, 1989; Deutsch & Pechmann, 1982; Eikmeyer & Ahlsèn, 1996; Koolen et al.,

2011; Belke, 2006; Arts, 2004). It would also appear to address findings in the vision

literature that confirm the centrality of colour to object recognition (e.g. Wurm et al.,

1993; Naor-Raz et al., 2003) and early visual processes (e.g., Itti & Koch, 2001; Wolfe

& Horowitz, 2004; Wolfe, 2010, among others). Such a privileged treatment of colour is

also a feature of some recent stochastic reg models (Mitchell et al., 2013; Gatt et al.,

2011).

However, we suggest that this account wouldn’t make an algorithm a psychologi-

cally realistic process model, for two reasons. First, the dichotomy between colour and

other properties such as size has been qualified in recent years, based on evidence that

the preference or salience of colour is dependent on its discriminability (Viethen et al.,

2012), the homogeneity of the scene (Koolen, Goudbeek, & Krahmer, 2013), as well as

colour typicality in relation to the type of object being described (Sedivy, 2003; Wester-

beek et al., 2015). Similar evidence has been reported for size contrasts, which are in any

case also subject to salience-based processing (Stuart et al., 1993; Treisman & Gormican,
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1988; Busch & Müller, 2004). Where such contrasts are highly salient, size is no longer

as dispreferred by speakers, suggesting that the contrast is easier to identify and encode

during the content determination process (Hermann & Deustch, 1976; Levelt, 1989; van

Gompel et al., 2014).

These findings converge with models of visual search proposed in the wake of the

foundational work of Treisman and Gelade (1980): for example, Duncan and Humphreys

(1989) proposed that similarity or contrastiveness is central to determining search effi-

ciency. The Biased Competition model (Desimone & Duncan, 1995; Desimone, 1998)

similarly assumes that attention is drawn to salient regions as a result of competition

taking place across the visual field. Wolfe’s Guided Search model (Wolfe, 1994, 2007)

also emphasises a reliance on salient features to guide attentional deployment to salient

regions.

Turning back to our experimental results, the difference found between the single-

property cases – colour on the one hand, and size on the other – could be accounted for

on the basis that the colour contrasts used in our experiment were relatively stark and

easy to perceive, compared to the size contrasts. This would account for the absence of

an effect of distractor set size with colour-only descriptions. This more nuanced view,

we argue, should underlie future models of conceptualisation in reference production,

where salience and discriminability not only determine the order in which properties

of a target referent are considered for inclusion in a description, but also inform the

process of selection itself. A highly discriminable feature or set of features would serve to

draw attention to a specific region in a visual scene, thereby circumscribing the relevant
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portion of the scene within which a target needs to be compared to its distractors. The

extent of this comparison would depend on whether the feature uniquely characterises

the target or not. Some eye-tracking studies lend preliminary support to this account.

For example, Brown-Schmidt and Tanenhaus (2006) found that the use of a size adjective

for a target referent is more likely in the presence of a size contrast, following a fixation

to a distractor of differing size. A more general finding is that during visual search, there

are more saccades to regions of a scene containing objects which are visually similar to a

target, both in complex, real-world scenes (Hwang et al., 2011) and in artificial displays

of realistic objects (Alexander & Zelinsky, 2011), although these findings also need to

be discussed in light of other findings concerning semantic similarity and global scene

properties (see below).

Establishing the validity of a salience-based account of the sort sketched here

requires much more research that explicitly manipulates the degree of salience of different

features, using methodologies, such as eye-tracking, which shed a direct light on the

process of domain circumscription during reference production.

What this tentative account does not address is the differences, such as they

are, between single property and conjunctive descriptions, where our experiments sug-

gest speakers are slower and may be engaging in serial comparison to the distractors.

However, the findings of our experiments do suggest that the single-property versus con-

junction distinction is also not as crisp as assumed by classical models of visual search

such as fit (Treisman & Gelade, 1980), or models of reference production compatible

with the schema in Figure 2. Distractor set size impacted production latencies in the
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conjunctive case in both experiments, but made search less efficient only for size in the

single-property case. When the results from both experiments are combined, the main

effect of Distractors only approaches significance, while its interaction with Properties

exerts a highly significant effect on speech onset times. A plausible interpretation of

these patterns is that where a salient colour contrast existed, it was discerned relatively

quickly. In case colour alone was sufficient for identification, search could terminate; in

case an additional property was required – in this case, size, which we have suggested

was less salient in our manipulation – some comparison to the distractors was needed

to determine the value for the target referent. Under this account, in the cs conditions

of both experiments, the colour contrast could have supported a subset search, where

the target needed to be compared to distractors on the basis of size, but only within

the subset of distractors that had the same colour as the target. This view finds some

support in the visual search literature, which has shown that the effiency of conjunc-

tive search is enhanced in visual displays that afford subset search strategies or, more

generally, the formation of perceptual groups (e.g. Nakayama & Silverman, 1986; He &

Nakayama, 1995; Nakayama & Joseph, 1998; Friedman-Hill & Wolfe, 1995; Nordfang &

Wolfe, 2014).

Conclusion: Beyond static, artificial scenes?

The experiments in this paper were designed to address questions arising from

reference production data and models. As we noted at the outset, much of this work

has relied on visual displays which are artificially constructed and the present paper was
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no exception. This is a property shared with many visual search experiments. While it

has the obvious benefit of enabling researchers to control the relevant conditions in the

display, it has also led to models which focus exclusively on the relationship between

target and distractors, usually on the basis of exclusively visual properties, in domains

where speakers’ knowledge and expectations can be ignored (but see Stoia & Shockley,

2006; Garoufi & Koller, 2013; Elsner et al., 2014, for examples of models that deviate

somewhat from this norm). While this general picture is changing, as the problem of

automatically generating descriptions of real-world scenes receives more attention (e.g.

Farhadi et al., 2010; Feng & Lapata, 2010; Yang, Teo, Daume, & Aloimonos, 2011;

Mitchell et al., 2012; Elliott & Keller, 2013; Yatskar et al., 2014; Kulkarni et al., 2013,

among many others), there is as yet very little work that specifically addresses reference

production in such scenes from a computational perspective, or only does so by focussing

attention on low-level features. Thus, Kazemzadeh et al. (2014) propose a model for

referring expression generation in complex photographs which exploits visual features,

but does not incorporate knowledge of other factors that come into play when we view

such scenes. In this concluding section, we speculate on the challenges that arise for

models of reference production when such factors are explicitly considered, based on

recent research in visual search.

Evidence that search patterns are not exclusively guided by visual properties of

a scene has been forthcoming from experiments showing both that visual search can be

made less efficient by semantically related distractors (e.g. Belke et al., 2008) and that

semantic relationships between objects in a real-world scene (measured, for example,
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by distributional semantic models such as Latent Semantic Analysis Landauer, Foltz, &

Laham, 1998) are better predictors of eye-movement patterns than relationships based

on visual similarity alone, though the latter also have some predictive power (Hwang et

al., 2011). In a related vein, eye-movement research by Henderson et al. (2007) showed

that the fixated regions of a complex scene tended to be those with lower intensity and

high local contrast; however, these were also regions that were independently judged

as having high semantic content. The role of saliency in vision has also been shown

to depend on the nature of the task. For instance, Einhäuser and Koch (2008) found

that the degree to which observers’ saccades were determined by visually salient regions

differed between a free viewing task, a template search and an odd-one-out detection

task. Similar conclusions have been reached on the basis of studies showing strong

selection biases that are not due to bottom-up factors, but to expected reward based

on previous experience and to previous selection history (see Awh et al., 2012, and

references therein).

Thus, low-level properties of a scene, including the salience of regions based on

their features, interact with processes of attention and selection in more complex ways

than envisaged by models based on visual search in artificial displays. Rather, they

highlight the role of global and contextual effects at multiple levels, including task and

semantic relationships. For example, in searching for a particular object in a scene, an

observer’s attention is likely to be guided not only by the task itself, but by their knowl-

edge of the structure of such scenes, based among other things on expected regularities

(Oliva & Torralba, 2007). For instance, the Contextual Guidance Model (Torralba et
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al., 2006) addresses this by modelling the likelihood that a target is located in a region

of a scene in a Bayesian framework, as a function both of locally salient features and

global scene priors learned from past experience. A comparison of the predictions of the

model to eye-movement data has shown that the inclusion of contextual priors improves

model accuracy, compared to a model that only incorporates salience. Interestingly,

excluding local information and including only contextual priors in the model shows a

much smaller decrease in accuracy, suggesting that in real-world scenes, it is context

that plays the dominant role in guiding attention. A different model, sun (Kanan et al.,

2009) highlights the role of prior knowledge of the target class and appearance of the

target. Under this model, the likelihood that a target is present at some point in the

visual field is contingent on bottom-up saliency, target appearance and target location.

This model has also outperformed a purely bottom-up model in predicting fixations.

How might these findings alter our view of reference production? Incorporating

contextual and object-based knowledge would need to take into account the differences

between visual search tasks and reference production. The question for reference pro-

duction raised by models such as that of Torralba et al. (2006) or Kanan et al. (2009) is

how contextual or object-based priors can influence what might be said about a referent,

rather than how quickly the entity might be detected.

Consider a common scenario, such as an office scene. In order to refer to an object

in the scene, such as a pen or a telephone, a speaker’s conceptualisation of the referent

is likely to be informed by such factors as its typical location (on the desk), whether it

would be expected to be the only such object in the scene (an office may contain several
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pens, but might be less likely to have more than one telephone), as well as deviations

from such expectations (as in the case where the telephone is on the floor). What

is selected, as well as the amount of information conveyed in a description, would be

expected to change as a function of such deviations (the findings cited above, to the effect

that the likelihood with which ‘preferred’ properties are used changes as a function of

their predictability with respect to a referent, are compatible with this view; cf. Sedivy,

2003; Westerbeek et al., 2015). Thus, a speaker might choose to refer to the red pen if

its colour were salient among similar objects in the relevant portion of the scene. On

the other hand, a deviation from the usual location of the target referent might alter the

referential strategy altogether (yielding, for example, the pen on the chair).

In the previous section, we informally sketched an alternative to current reg mod-

els, based on a graded salience mechanism underlying property selection and comparison

during content determination. Consideration of contextual factors opens up an avenue

for research into how such a salience-based mechanism is modulated by prior knowledge

and expectations, and how this impacts planning and choice.

An explicit account of the role of contextual and world knowledge remains elu-

sive in reference production models (but see Kutlak, van Deemter, & Mellish, 2012,

for a computational account of communal common ground relying on general knowl-

edge). Just as experimental and modelling work using classical visual search paradigms

has yielded interesting convergences with reference production, more recent work in-

corporating contextual priors offers insights that can bring reference production models

closer to real-world language production tasks. A greater synergy between research
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on language production and research on vision can enhance our understanding of how

speakers conceptualise referents in visual scenes.
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