
Automatic Document Clustering Using Topic Analysis

Robert Muscat

Department of Computer Science and AI,
University of Malta

Abstract. Web users are demanding more out of current search engines. This can be noticed
by the behaviour of users when interacting with search engines [12, 28]. Besides traditional
query/results interactions, other tools are springing up on the web. An example of such
tools includes web document clustering systems. The idea is for the user to interact with the
system by navigating through an organised hierarchy of topics. Document clustering is ideal
for unspecified search goals or for the exploration of a topic by the inexpert [21]. Document
clustering is there to transform the current interactions of searching through a large amount
of links into an efficient interaction where the interaction is navigation through hierarchies.
This report will give an overview of the major work in this area, we will also propose our
current work, progress and pitfalls which are being tackled.

1 Introduction

We propose document clustering as an alternative to traditional web searching where the user
submits a query to a search engine and is provided a ranked list of documents from which he has
to choose. The user traverses the list of links (usually aided by a description which is usually a
document snippet for each link).

With document clustering a query is optional, and initially the user is presented with an overall
structure of the topics related to the domain. Selecting a particular topic from those provided will
reveal further topical subdivisions which intuitively reside beneath the selected topic e.g. selecting
science will reveal mathematics, physics, computing, chemistry together with other documents
which fit under science but which do not fit under any other subcategory in science.

A number of terms are used to describe document clustering including text categorisation or
document classification. Even though the results of each process are in the same spirit described
above, the approach to solving the problem is different. Categorisation/classification methodologies
use a machine learning (statistical approach) where a learning algorithm is applied on a manually
built data set to allow the algorithm to find patterns within the data which allow classification.
We consider manually built data sets an issue due to the fact that typically indexers are not able
to agree on the majority of their indexing decisions [28, 30]. Typical text/document clustering on
the other hand uses text analysis and models to decide how documents are grouped. Both these
methods have their own pros and cons which we will illustrate.



Automatic Document Clustering Using Topic Analysis 53

Categorisation

Pros
⇒ The structure of the topics within documents is known before hand.
⇒ Straight forward to implement after the documents have been appropriately vectorised. A num-
ber of accepted vectorising methods is already available.
⇒ Typically, machine learning systems make common assumptions across all data set, which is not
always correct.
Cons
⇒ Requires a training period which may be lengthy at times.
⇒ Selection of training data is crucial.
⇒ Adding new topics to the collection requires reconfiguration of the training data and retraining.

Clustering

Pros
⇒ The structure is generally detected automatically, without (or with minimal) human input.
⇒ Does not require any previous knowledge, the approach extracts all required information from
the domain.
Cons
⇒ The structure is usually less intuitive and semantically nodes are less related than when manually
built.
⇒ Requires a lot of processing.
⇒ Assumption are not made, but everything is seen from the model’s perspective.

Throughout this report we will assume some knowledge of basic models used in information re-
trieval. We follow with a small introduction to clustering methodologies (domain independent dis-
cussion). The rest of the report describes work directly related to document clustering/classification,
followed by evaluation methodologies and proposed techniques.

1.1 Data Clustering

The main types of clustering algorithms are agglomerative and divisive. As the name suggests,
the former assumes that a domain of elements are initially separate clusters, during the clustering
process elements are combined into clusters until finally all elements are in one all inclusive cluster.
Divisive on the other hand is a top down approach, starting with one large cluster and ending up
with each element in a separate clusters.

The principle agglomerative algorithms are single link [27], complete link [6] and average link [31].
On the assumption that initially all elements are clusters, each algorithm compares all clusters
together to decide which will be joined (to form a single cluster) by comparing each element of the
cluster. The two clusters with the minimum distance are then joined. The distance varies depending
on the algorithm used:

Single-Link The distance between two clusters is the minimum distance between any two elements
from the two clusters.

Complete-Link The distance between two clusters is the maximum distance between any two
elements from the two clusters.



54 Robert Muscat

Average-Link The distance between two clusters is the average distance between all elements
from the two clusters.

The above algorithms, by nature, are a traversal across dichotomies. To reach a particular number
of clusters it is required to traverse all stages before reaching a target number of clusters. In most
applications this might be an overhead and alternatives to this approach have been suggested.

One such alternative is k-means [22]. The advantages are that the algorithm allows k clusters to
be generated immediately (k is the function parameter). Initially k random elements are selected
and assumed to be centroids. Centroids are points in the cluster which are the closest to all other
elements in the cluster. All others elements are assigned to the nearest centroids and a new centroid
is recalculated. The process is reiterated until no further elements move from one cluster to another.
Other variations on this algorithm exist [14, 17, 19].

2 Related Work

In this section we review some of the major approaches document clustering relates to our approach.
Some common evaluation methodologies will also be discussed.

2.1 Document Clustering

Scatter/Gather [10] was one of the first attempts to group document into clusters. The interaction
was quite simple. Initially the user is presented with a set of groups which have been determined
by the Fractionation algorithm. The user selects groups from the list presented, these groups are
then joined and reclustered using another algorithm Buckshot (which is faster but less accurate).
By iterating this process and selecting different clusters each time the user is shown different views
of the domain [4, 10, 3]. Both of the two algorithms used are an adapted version of k-means. Further
work on scatter/gather has improved the speed at which the user navigates through hierarchies
(by using the Cluster Refinement Hypothesis which essentially states that most of the elements in
two similar clusters will end up in the same cluster higher up in the hierarchy).

Another important approach was that taken Zamir and Etzioni [32, 33]. Their algorithm Suffix Tree
Clustering lies between an information retrieval system (search engine) and the user, and linearly
analyses the results of the query to provide a structure to the stream of data. The algorithm divides
the clustering process into three stages, preprocessing, base cluster identification and the combine
base clusters stage before it actually provides the user with a list of clusters. The main advantage
of the algorithm is that it starts generating data as soon as the stream is being processed, so this
means that the user can be provided with the data as soon as he makes a request. As the name
implies, the preprocessing stage processes the stream for analysis by removing tags, punctuation
and transforming terms into stems. The second phase, base cluster identification builds a suffix
tree out of the stems from the first phase. Each of these nodes is assigned a score which increases
with the number of documents which hit the nodes and decreases linearly with the length of the
phrase in the node. The final phase, combine base clusters analyses the nodes to join similar ones
with edges and spare the user from seeing duplicate data. Finally, the set of available graphs are
scored and the top ten are returned to the user. Grouper [33] was an online application of the
suffix tree algorithm and used results from HuskySearch [33] a meta-search engine which was under
development by the same team.

Other work by Lerman [19] and Schütze and Silverstein [25], takes a more standard approach to
clustering but concentrate, on the preprocessing of the document space. They reduce the dimensions



Automatic Document Clustering Using Topic Analysis 55

of documents to make clustering faster without deteriorating quality. Schütze tests two approaches,
document truncation (taking the top 20 and 50 terms) and Latent Semantic Indexing (LSI is a
method to project documents in a smaller dimension space while retaining the maximum infor-
mation possible). Their results show only a difference in time efficiency which was not expected,
since LSI (Latent Semantic Indexing [7, 5], discussed later) has generally improved performance of
information retrieval system. Lerman [19] shows that LSI does in fact improve cluster quality. Her
work shows that for this to happen, the dimension size selected must be optimal (or near optimal).
[19] suggests a method to select an ideal dimension by selecting the point in the vector space where
the largest weight gap occurs. Her work shows improvement on cluster quality (rather than time
efficiency) with LSI using a simple single link algorithm.

2.2 Evaluation

Evaluating document clustering is still a grey area with no accepted technique available, especially
for cases where the hierarchy is unknown and has to be generated.

The most common evaluation applied is using standard information retrieval values like recall
(percentage of relevant retrieved documents over total retrieved) and precision (percentage of
relevant retrieved over total retrieved). This is ideal for techniques where the hierarchical structure
is known beforehand, and we can compare the entries for each cluster from the test against the
correct data. To be able to calculate recall and precision clusters must be labelled a priori.

The issue is more complex when the overall hierarchy is not available. A number of attempts have
been made to define measures which objectively allow clustering algorithms to be compared but
there still is no accepted standard. Refer to [20] for a review. In most cases a function is defined
which determines the quality of a cluster but this is not objective and is only an independent
measure which is not gauged against any other reference except itself.

A number of datasets have emerged out of which a few are growing to become accepted standards,
but still these do not take in consideration algorithms which generate the hierarchy themselves.
Currently the Reuters-215781 data is the most widely used. Work is underway to add another
Reuters data set which is the Reuters Corpus2 which is a larger version and officially released by
Reuters. The Reuters Corpus is being promoted to replace the Reuters 21578 data set.

The closest method which is relevant to our requirements is that used by Mandhani et al. in [23].
The authors combine two methodologies to evaluate their work, the first considers each cluster
as a single entity and a measure is used to analyse the quality of its content (the two suggested
are entropy and purity). Secondly, they analyse the resulting tree, hierarchically at each level, by
looking at the number of nodes per level, the purity at each level and by comparing the generated
node labels at each level. We think that this kind of hybrid analysis is the best approach which can
be applied to automatic document clustering. However, this approach generates a large number
of results (separate values per level). An obvious enhancement would integrate all these separate
results in fewer (ideally one).

3 Proposed Approach

In this section we propose our approach to document clustering. A number of techniques bor-
rowed from other research areas in information retrieval to propose a method with which we can
automatically generate clusters and topic hierarchies.

1 http://www.daviddlewis.com/resources/testcollections/reuters21578/
2 http://about.reuters.com/researchandstandards/corpus/



56 Robert Muscat

3.1 Clustering Methodology

Our document clustering solution is based on the assumption that a document can refer to more
than one topic/concept. We will use these concepts to build the hierarchy and assign each document
to the part of the tree which relates mostly to it.

The first challenge involves subdividing each document into topics. A number of topic extraction
algorithms exist which help detect shifts in the topic of discussion in the text stream. A number
of techniques are already available with the two main ones being TextTiling [8, 9, 11] and C99 [2].

TextTiling determines topic shifts by first assuming that the document is divided up into blocks.
Usually these blocks are taken to be paragraphs or blocks of n terms. TFxIDF (Term Frequency and
Inverse Document Frequency) is calculated across the blocks (assumed to be separate documents)
and the terms in each block. After each term is assigned a weight, pairs of sequential blocks of
k terms are taken and compared using a distance algorithm. This will generate a sequence of
distances for all pairs. This sequence is then smoothed using two techniques, one based on an
average similarity value and another using simple median algorithm.

These sections will be analysed and keywords will be extracted from each section. The terms to
select will require the analysis of the term weightings which have been assigned globally. We need
to investigate other term weightings schemes to see which weightings best help determine the topic
terms. Currently the suggested weightings are TFxIDF, document frequency and term frequency.
We will also suggest local term and block frequency but these latter have not been tested yet. This
phase is important and from preliminary tests we noticed that it can determine the quality of the
overall system, since the quality of the tree is determined by the terms selected.

When a number of terms are selected they are used to build a concept hierarchy using specialised
algorithms. These algorithms analyse the relations between terms and determine which term, se-
mantically, lies beneath another. The idea is that of detecting relations of sub-topics, sub-categories
and co-similarity e.g. “physics” and “nuclear physics”, “science” and “physics”, and “chemistry”
and “physics”. Given a set of such relations, we then build a full fledged topic hierarchy which is
what the user will be navigating through at the very end. Documents are assigned to the topics
which are deemed most similar to the topic in the hierarchy.

A number of algorithms exist which detect topic relationship. Besides Lawrie et al. which bases his
approach on the Dominating Set Problem [18] we will describe the work by Sanderson and Croft in
[24] where they describe the subsumption algorithm. The algorithm analyses the co-occurrence of
a particular term A with term B. To find a relation we assume that A subsumes B if P (A|B) = 1
and P (B|A) < 1.

By applying these ideas we claim that we will be able to automatically build a document hierarchy,
with clusters containing documents which discuss similar topics. With this approach, we will not be
able to compare with statistical/machine learning techniques but at least we generate an acceptable
tree which can be traversed by a user.

All our comparisons will be performed using Latent Semantic Indexing (LSI) which is a technique
used to map a term-document index into a different (usually smaller to make comparisons faster)
space. LSI maps the index into a smaller dimension whilst retaining the information in the original
index [7, 5].

The final step would be to assign a naming to each cluster by looking at its contents. We intend to
extract phrases which are common inside each document in the cluster and use that as a cluster
identifier.



Automatic Document Clustering Using Topic Analysis 57

3.2 Evaluation

As we have discussed in Section 2.2 evaluation is an issue which has been tackled a number of
times but not yet settled, since the standards available are only useful for statistical/machine
learning approaches. We suggest a method for evaluating automatic document clustering where
the hierarchical structure is not known a priori.

We propose three test bases to be able to evaluate the quality of document hierarchies,

Tree Distance we will be using a tree distance algorithm in order to calculate the edit distance
between the tree from the data set and the generated hierarchy. The edit distance is a measure
which is based on a weight scheme assigned to each operation (insertions, deletions and edits)
which transforms tree A into tree B. A number of algorithms exist which carry out this task.
Zhang and Shasha’s algorithm returns the minimum edit distance between two trees [34].
Two tests will use the tree edit distance.
– An overall tree edit distance which will measure the two trees as a whole.
– An iterative test where starting from the leaves cluster nodes are replaced iteratively with

the cluster content moving up in the hierarchy. For each iteration the tree distance is
calculated.

More work related to tree edit distances is found in [1, 15, 16, 29, 26, 13].
Cluster Quality Measures This stage will measure cluster cohesiveness and quality. These mea-

sures are internal measures and they only base their calculations on the contents of the cluster
without comparing it to any external source of information (like the original data set).

Recall and Precision are the standard measure used in information retrieval. They will be used
to test each cluster. An overall average can be used to measure the overall system recall and
precision. Refer to Section 2.2 for details.

Note that since our clusters will not be labelled, we will be matching clusters between source and
generated clusters by taking the two with the shortest distance between them.

4 Results

At the moment no results are available. Zhang and Shasha’s algorithm resulted in extreme compu-
tation times especially since the algorithm requires a regular expression to find patterns in strings
representing the trees. We are at the moment trying to find a way to speed up this process. We are
also considering a tree edit distance algorithm which does not guarantee a minimum edit distance
but does allow us to compare tree structures in tractable times.

This hurdle stopped the development process of our ideas until we have fixed our evaluation algo-
rithms. At the moment we are concentrating our work on the evaluation process to get it up and
running.

5 Conclusion

We do not expect our results to compare with statistical/machine learning approaches since the
hierarchical structure is manually constructed beforehand. Our work should, however be able to
automatically build structures which are navigable by the average user. We intend to show this by
doing a user study to determine navigability.



58 Robert Muscat

The most critical stage in the process is the term selection to automatically identify topic terms.
Part of the research will be dedicated to the fine-tuning of the current models to enable better
term selection. This model is also critical in identifying cluster titles.

At this stage work is in progress to make the evaluation process as fast, accurate and easy as
possible to allow future reference to our work and allow use of the same evaluation models we
suggest in our system.

References

1. Philip Bille. Tree edit distance, alignment distance and inclusion. Technical report, IT University of
Copenhagen, March 2003.

2. Freddy Y. Y Choi. Advances in domain independent linear text segmentation. In Proceedings of
NAACL-00, 2000.

3. Douglass R. Cutting, David Karger, and Jan Pedersen. Constant interaction-time scatter/gather
browsing of very large document collections. In Proceedings of the Sixteenth Annual International
ACM SIGIR Conference on Research and Development in Information Retrieval, pages 126–135, 1993.

4. Douglass R. Cutting, David R. Karger, Jan O. Pedersen, and John W. Tukey. Scatter/gather: a cluster-
based approach to browsing large document collections. In Proceedings of the 15th annual international
ACM SIGIR conference on Research and development in information retrieval, pages 318–329. ACM
Press, 1992.

5. Scott C. Deerwester, Susan T. Dumais, Thomas K. Landauer, George W. Furnas, and Richard A.
Harshman. Indexing by latent semantic analysis. Journal of the American Society of Information
Science, 41(6):391–407, 1990.

6. D. Defays. An efficient algorithm for a complete link method. The Computer Journal, (20):346–366,
1977.

7. Susan T. Dumais, George W. Furnas, Thomas K. Landauer, Scott Deerwester, and Richard Harsh-
man. Using latent semantic analysis to improve access to textual information. In Proceedings of the
Conference on Human Factors in Computing Systems CHI’88, 1988.

8. Marti A. Hearst. Texttiling: A quantitative approach to discourse segmentation. Technical Report
S2K-93-24.

9. Marti A. Hearst. Multi-paragraph segmentation of expository text. In 32nd. Annual Meeting of the
Association for Computational Linguistics, pages 9 – 16, New Mexico State University, Las Cruces,
New Mexico, 1994.

10. Marti A. Hearst and Jan O. Pedersen. Reexamining the cluster hypothesis: Scatter/gather on retrieval
results. In Proceedings of SIGIR-96, 19th ACM International Conference on Research and Development
in Information Retrieval, pages 76–84, Zürich, CH, 1996.

11. Marti A. Hearst and Christian Plaunt. Subtopic structuring for full-length document access. In
Proceedings of the 16th annual international ACM SIGIR conference on Research and development in
information retrieval, pages 59–68. ACM Press, 1993.

12. Bernard J. Jansen, Amanda Spink, Judy Bateman, and Tefko Saracevic. Real life information retrieval:
a study of user queries on the web. SIGIR Forum, 32(1):5–17, 1998.

13. Taeho Jo. Evaluation function of document clustering based on term entropy. In The Proceedings of
2nd International Symposium on Advanced Intelligent System, pages 302–306, 2001.

14. J.H. Ward Jr. Hierarchical grouping to optimize an objective function. Journal of the American
Statistical Association, (58):236–244, 1963.

15. Philip Klein, Srikanta Tirthapura, Daniel Sharvit, and Ben Kimia. A tree-edit-distance algorithm for
comparing simple, closed shapes. In Proceedings of the eleventh annual ACM-SIAM symposium on
Discrete algorithms, pages 696–704. Society for Industrial and Applied Mathematics, 2000.

16. Philip N. Klein. Computing the edit-distance between unrooted ordered trees. In Proceedings of the
6th Annual European Symposium on Algorithms, pages 91–102. Springer-Verlag, 1998.

17. Jouko Lampinen. On clustering properties of hierarchical self-organizing maps. In I. Aleksander and
J. Taylor, editors, Artificial Neural Networks, 2, volume II, pages 1219–1222, Amsterdam, Netherlands,
1992. North-Holland.



Automatic Document Clustering Using Topic Analysis 59

18. Dawn Lawrie, W. Bruce Croft, and Arnold Rosenberg. Finding topic words for hierarchical summa-
rization. In Proceedings of the 24th annual international ACM SIGIR conference on Research and
development in information retrieval, pages 349–357. ACM Press, 2001.

19. Kristina Lerman. Document clustering in reduced dimension vector space. http://www.isi.edu/ ler-
man/papers/Lerman99.pdf (last visited 09/02/2004), January 1999.

20. David D. Lewis. Evaluating and optimizing autonomous text classification systems. In Proceedings
of the 18th annual international ACM SIGIR conference on Research and development in information
retrieval, pages 246–254. ACM Press, 1995.

21. Xin Liu, Yihong Gong, Wei Xu, and Shenghuo Zhu. Document clustering with cluster refinement and
model selection capabilities. In Proceedings of the 25th annual international ACM SIGIR conference
on Research and development in information retrieval, pages 191–198. ACM Press, 2002.

22. J. B. MacQueen. Some methods for classification and analysis of multivariate observations. In Symp.
Math. Statist. and Probability, 5th, Berkeley, volume 1, pages 281–297, Berkeley, CA, 1967. AD 66981.
157., 1967. Univ. of California Press.

23. Bhushan Mandhani, Sachindra Joshi, and Krishna Kummamuru. A matrix density based algorithm to
hierarchically co-cluster documents and words. In Proceedings of the twelfth international conference
on World Wide Web, pages 511–518. ACM Press, 2003.

24. Mark Sanderson and Bruce Croft. Deriving concept hierarchies from text. In Proceedings of the 22nd
annual international ACM SIGIR conference on Research and development in information retrieval,
pages 206–213. ACM Press, 1999.

25. H. Schutze and H. Silverstein. Projections for efficient document clustering, 1997.
26. Stanley M. Selkow. The tree to tree editing problem. Information Processing Letters, 6(6):184–186,

1977.
27. R. Sibson. Slink: an optimally efficient algorithm for a complete link method. The Computer Journal,

(16):30–34, 1973.
28. Associate Professor Amanda H. Spink, S. Ozmutlu, and H. C. Ozmutlu. A day in the life of web

searching: An exploratory study. Information Processing and Management 40.2, pages 319–45, 2004.
29. Kuo-Chung Tai. The tree-to-tree correction problem. J. ACM, 26(3):422–433, 1979.
30. D. Tarr and Harold Borko. Factors influencing inter-indexing consistency. In Proceedings of the

American Society for Information Science (ASIS) 37th Annual Meeting, volume 11, pages 50–55, 1974.
31. E. M. Voorhees. Implementing agglomerative hierarchic clustering algorithms for use in document

retrieval. Information Processing & Management, 22(6):465–476, 1986.
32. Oren Zamir and Oren Etzioni. Web document clustering: A feasibility demonstration. In Research and

Development in Information Retrieval, pages 46–54, 1998.
33. Oren Zamir and Oren Etzioni. Grouper: a dynamic clustering interface to Web search results. Computer

Networks (Amsterdam, Netherlands: 1999), 31(11–16):1361–1374, 1999.
34. K. Zhang and D. Shasha. Simple fast algorithms for the editing distance between trees and related

problems. SIAM J. Comput., 18(6):1245–1262, 1989.


