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Abstract. Grammatical Inference (GI) addresses the problem of learning a grammar G,
from a finite set of strings generated by G. By using GI techniques we want to be able
to learn relations between syntactically structured sequences. This process of inferring the
target grammar G can easily be posed as a search problem through a lattice of possible solu-
tions. The vast majority of research being carried out in this area focuses on non-monotonic
searches, i.e. use the same heuristic function to perform a depth first search into the lattice
until a hypothesis is chosen. EDSM [?] and S-EDSM [6] are prime examples of this technique.
In this paper we discuss the introduction of diversification into our search space [5]. By in-
troducing diversification through pairwise incompatible merges, we traverse multiple disjoint
paths in the search lattice and obtain better results for the inference process.

1 Introduction

Grammatical Inference (GI) is an instance of inductive inference and can be described as the
algorithmic process of discovering syntactic patterns from a corpus of training data. GI addresses
the following problem:

Given a finite set of strings that belong to some unknown formal language L,
and possibly a finite set of strings that do not belong to L, we require a learning
algorithm that infers L.

Machine learning of grammars finds a variety of applications in syntactic pattern recognition,
diagnosis, computational biology, systems modeling, prediction, natural language acquisition, data
mining and knowledge discovery.

One of the main challenges in DFA learning algorithms is that of learning grammars from as sparse
as possible training set of that particular grammar. In real-life scenarios the amount of data avail-
able for the learning task might be very limited. Both the Evidence Driven State Merging (EDSM)
[?] and the Shared Evidence Driven State Merging (S-EDSM) [6, 1] heuristic aim at improving
target convergence when using sparse data. Sharing the evidence gathered from different potential
merges has in effect improved the convergence rate of grammatical inference. The interested reader
is referred to [6] for a detailed description of how the S-EDSM heuristic works.

A number of DFA learning tasks still remain very difficult to solve. This difficulty measure depends
both on the size of the target automata and the size of the training set. Figure 1 refers to the current
Gowachin map for DFA problems 1. The graph plots the size of the target automata against the
number of training strings. The sparser the training set the more difficult it is for a learning
algorithm to identify the target grammar.

1 http://www.irisa.fr/Gowachin/
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Fig. 1. Gowachin Map

2 Search Diversification

This section discusses the motivations behind our introduction of search diversification techniques.
It is being assumed that the reader is already familiar with the definitions and results in set theory
and formal languages, as well as the area of DFA learning in particular state merging algorithms. If
this is not the case the interested reader is referred to [3] and [6] for an exposure to formal languages
and grammatical inference respectively. We shall start by defining what state compatibility means
followed by pairwise compatibility of merges. We then explore how search diversification can be
obtained by taking into account pairwise incompatibility of merges.

2.1 State Compatibility and Merges

States in a hypothesis DFA are either unlabeled or labeled as accepting or rejecting. Two state
labels A,B are compatible in all cases except when, A is accepting and B is rejecting, or, A is
rejecting and B is accepting. Two states are state compatible if they have compatible labels.
The set of all possible merges is divided between the set of valid merges, MV , and that of invalid
merges, MI . A valid merge is defined in terms of the transition trees mapping operation [6] as
follows:

Definition 1 (Valid Merge) A valid merge MV in a hypothesis DFA H is defined as (q, q′),
where q and q′ are the states being merged, such that, the mapping of q′ onto q results in a state
partition π of H, with a number of blocks b, such that for each block b ∈ π, all states in b are state
compatible with each other.

Choosing which states to merge next depends on the heuristic adopted. Both EDSM and S-EDSM
searches for a target DFA within a lattice of hypotheses (automata) enclosed between the aug-
mented prefix tree acceptor (APTA) and the Universal Acceptor Automaton (UA) [?]. It is as-
sumed that the target DFA lies in the search space of EDSM. It therefore follows, that at least one
sequence of merges exists that will lead to the target DFA.

With search diversification we explore more than one sequence of merges. Our goal is to order these
sequences in such a way such that the optimal one (i.e. the one producing the target grammar) is
produced in the first few sequences.
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2.2 Diversification through Pairwise Incompatible Merges

The most basic interaction between two merges is pairwise compatibility. Merge M is said to be
pairwise compatible to merge M ′ if after performing merge M , M ′ remains a valid merge in the
hypothesis automaton as changed by M . More formally two merges are pairwise compatible, if the
following property holds:

Definition 2 (Pairwise Compatible) Let π1 and π2 be the state partitions resulting from the
application of the map operator to the two merges M1 and M2 on hypothesis H. Let H1 and H2

be the hypotheses resulting from π1, π2 respectively. M1 and M2 are pairwise compatible if for
each state s ∈ H, s ∈ H1 is state compatible with s ∈ H2.

Suppose we have a set S of high scoring merges generated by the EDSM or S-EDSM algorithms.
Each merge M in S might not necessarily be pairwise compatible with all the other merges in the
same set S. Let merges M1 and M2 be two pairwise incompatible merges from the set of merges
S. As a result of their incompatibility we know that the merge path followed after M1 is carried
out in the DFA lattice can never cross the merge path which follows M2. Thus we can state that
pairwise incompatible merges guarantee diversification of the search paths.

APTA


Merge
 M1

Merge
 M2


Fig. 2. Paths in DFA Lattice

Figure 2 gives a simple illustration of how performing merges M1 and M2 produces two disjoint
paths in the DFA lattice. Now suppose that after performing M2 there are two further merges (at
the same level), we can further diversify our search paths by performing these two merges. When
doing so we are increasing our probabilities of inferring the target grammar.

Clearly, by increasing the degree of diversification (i.e. the number of disjoint lattice paths explored)
we are also increasing the amount of computation required. For this reason a distributed application
has been developed in [5]. A central authority would determine which path in the lattice each
daemon connected to the system has to traverse. Finally each daemon sends back its hypothesis
and the central authority of the system decides which of the received hypothesis is closest to the



Search Diversification Techniques for Grammatical Inference 65

target DFA (by comparing the number of states of the hypotheses with the number of states of the
target DFA).

The following example illustrates the notation that has been developed to describe diversification
strategies.

M1:M1
M2:PI(M1)
M3:PI(M1 ∧ M2)
M4:F(M2)
M5:F(M2) ∧ PI(M4)

In this example M1 is carried out first. M2 is then carried out at the same level of M1. Note
that M2 is pairwise incompatible with M1. M3 is pairwise incompatible with both M1 and M2
and is carried out at their same level. The algorithm then performs further diversification on the
node following merge M2. The two paths followed are M4 and M5. Note that M4 simply follows
from M2, while M5 follows after M2 and is also pairwise incompatible with M4. Various search
diversification strategies can easily be described through this notation.

3 Results

This section presents some preliminary results of our search diversification strategies. The training
sets of all the problems used for experimentation were downloaded from the Gowachin server. 60
state DFAs with 4000 training examples have been used with the following diversification strategy.

M1:M1
M2:PI(M1)
M3:PI(M1 ∧ M2)

The EDSM heuristic was used to order the valid merges. The following table illustrates the classifi-
cation rate for five DFA learning problems. Three daemons were used to traverse the three different
search paths. In these examples diversification has been carried out on the APTA node of the DFA
lattice.

Problems Daemon 1 Daemon 2 Daemon 3
1 100 99.1 98
2 97.8 99.3 99.5
3 59.1 90.4 92.9
4 100 98.4 99.6
5 100 99.2 99.2

It is interesting to note that in two occasions (out of five), the third daemon performed better than
the first one. The first daemon performs the standard EDSM algorithm (i.e. always traversing the
highest scoring merge), while the third daemon traverses a path which starts with a merge which is
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incompatible with the first two merges. This indicates that when introducing search diversification
through pairwise incompatible merges we are able to considerable improve on what EDSM and
S-EDSM can do.

For a complete listing of results the reader is referred to [5].

4 Conclusion and Future Perspectives

Search diversification is clearly an important technique to exploit in DFA learning. Instead of
focusing solely on improving the heuristic by which merges are ordered, we are also exploiting a
heuristic which orders different merge sequences in the DFA lattice. This heuristic is based on
pairwise incompatibility of merges. Further research in this area is currently being carried out.

Another area which is currently being researched is that of developing algorithms which perform
well when noise is present in the training set. There is currently no algorithm which is capable of
learning a 50 state DFA from a training set of 5000 strings with 10% noise.

This paper has presented an overview of the research currently being carried out by the Gram-
matical Inference Research Group (GIRG) at the CSAI department. Our aim is that of designing
better DFA learning algorithms which further push the boundaries of DFA learning.
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