Learning with Distance

John Abela
Department of Computer Science
Faculty of Science
University of Malta

jabel@cs.um.edu.mt

ABSTRACT

The two main, competing, paradigms in Artificial Intelli-
gence are the numeric (vector-space) and the symbolic ap-
proaches. The debate on which approach is the best for
modelling intelligence has been called the 'central debate in
AT’. ETS is an inductive learning model that unifies these
two, competing, approaches to learning. ETS uses a dis-
tance function to define a class and also uses distance to
direct the learning process. An ETS algorithm is applied to
the Monk’s Problems, a set of problems designed to evaluate
the performance of modern learning algorithms - whether
numeric and symbolic.

Keywords
Machine Learning, ETS, Monk’s Problems

1. INTRODUCTION

Evolving Transformation System (ETS) is a new inductive
learning model proposed by Goldfarb [3]. The main ob-
jective behind this learning model was the unification of
the two major directions being pursued in Artificial Intel-
ligence (Al), i.e. the numeric (or vector-space) and sym-
bolic approaches. In Pattern Recognition (PR), analogously,
the two main areas are the decision-theoretic and syntac-
tic/structural approaches [2]. The debate on which of the
two is the best approach to model intelligence has been go-
ing on for decades - in fact, it has been called the ‘Central
Debate’ in Al [7]. It was McCulloch and Pitts who pro-
posed simple neural models that manifested adaptive be-
haviour. Not much later, Newell and Simon proposed the
physical symbol systems paradigm as a framework for devel-
oping intelligent agents. These two approaches more-or-less
competed until Minsky and Papert published their now fa-
mous critique of the perceptron, exposing its limitations.
This shifted attention, and perhaps more importantly fund-
ing, towards the symbolic approach until the 1980s when
the discovery and the development of the Error Back Prop-
agation algorithm together with the work of Rumelhart et

CSAW 2006 Dec 5-6, Kalkara, Malta

al reignited interest in the connectionist approach.

One of the main ideas in the ETS model is that the con-
cept of distance plays an important, even critical, role in
the definition, specification, and learning of the class. This
paper presents the results of applying an ETS learning al-
gorithm to the task of using distance to learn the classes
in the Monk’s Problems [8], a set of problems designed for
testing modern learning algorithms. The experiments on
the Monk’s Problems were carried out as part of the au-
thor’s Ph.D. programme. A full exposition can be found in
the author’s Ph.D. thesis [1]. Unless otherwise stated, the
definitions, tables and diagrams of this paper are reproduced
from this work.

2. THE ETS MODEL

The main idea that characterizes the ETS model is that
of using distance, i.e. metric or pre-metric function, for
defining a class. Given a domain of discourse O, a class
C in this domain can be specified by a non-empty finite
subset of C' which is called the set of attractors, and which
we denote by A, and also by a distance function dc. The
set of all objects in O that belong to C is then defined to
be:

{o€ Oldc(a,0) <6, ac A}

In other words, the class consists precisely of those objects
that are a distance of ¢ or less from some attractor. We
illustrate with a simple example. Suppose we want to de-
scribe (i.e. specify) the class (or concept) Cat. Let O be
the set of all animals, C' a finite set of (prototypical) cats,
0 as non-negative real number, and dcq: a distance func-
tion defined on the set of all animals. Provided that C, ¢,
and dca: are chosen appropriately, the set of all cats is then
taken to be the set of all animals that are a distance of § or
less from any of the attractors, i.e. the set of prototypical
cats. This is depicted below in Figure 1. Here the set C'
contains just one prototypical cat. All animals that are in
the d-neighbourhood of this cat are classified at cats.

This idea borrows somewhat from the theory of concepts
and categories in psychology. The reader is also referred
to [6] for a discussion of Eleanor Rosch’s theory of concept
learning known as Ezxemplar Theory. Objects are classified
together if they are, in some way, similar. In our example,
all the animals that are cats are grouped together since the
distance between any cat and the prototype is less than the
threshold 6. In other words, an animal is a cat if it is similar

-

Domain of Discourse O - Set of All Animals

PX)

J

Figure 1: Class Description in the ETS Model.

to the cat prototype. The less distance there is between two
animals, the more similar they are - i.e. distance is a measure
of dissimilarity.

The ETS model is not just about class description, but also
about learning class descriptions of classes from finite sam-
ples to obtain an inductive class description. Let O be a
domain of discourse and let C be a, possibly infinite, set of
related classes in O. Let C be a class in C and let C* be a
finite subset of C'and C™ be a finite subset of O whose mem-
bers do not belong to C. We call C* the positive training
set and C'~ the negative training set. The learning problem
is then to find, using Ct and C~, a class description for
C. Of course, in practice, this might be, for all intents and
purposes, impossible since if the number of classes in C is
infinite, then C™ may be a subset of infinitely many classes
in C. In other words, no finite subset, on its own, can char-
acterize an infinite set. We therefore insist only on finding a
class description for some class C’ € C such that C’ approx-
imates C. This depends, of course, on having a satisfactory
definition of what it means for a class to approximate an-
other.

In essence, learning in the ETS model involves finding a dis-
tance function that achieves class separation, i.e. a distance
function such that the distance between objects in C7 is
zero or close to zero while the distance between an object in
CT and an object in C~ is appropriately greater than zero.

An ETS algorithm achieves this by iteratively modifying a
(parametrized) distance function such that the objects in C*
start moving towards each other while, at the same time,
ensuring that the distance from any object in C* to any
object in C'~ is always greater than some given threshold.

3. KERNEL LANGUAGES

Kernel Languages is an interesting subclass of regular lan-
guages. A kernel language over a finite alphabet X is speci-
fied by the pair (K, F) where K C X* is a finite, non-empty,
set of strings called the set of kernels and F' C 7 is a finite,
non-empty, and factor-free set of strings called the set of fea-
tures. Informally, the strings in the kernel language specified
by (K, F) are precisely those strings that can be obtained
(generated) by inserting features from F anywhere, in any
order, and any number of times, into the kernel strings of
K. We only require that;

1. features are not inserted inside other features,

2. no feature is a factor! of any other feature, i.e. F is
factor-free, and

3. no kernel contains a feature as a factor.

We illustrate with an example. Consider the set of kernels
K = {bb,bc} and the set of features F = {ab,ba}. The
following strings in L(K, F'), the language generated from
K and F, are obtained by successive insertions of features
in the kernels: (kernels letters are shown in bold)

bb be

babb becab

babbab abbcab
bababbab abbbacab
bababbabab abbbabacab
abbababbabab baabbbabacab
abbababbababab baabbbabacabba

lie. a substring

Note that features can be inserted anywhere in a kernel but
not inside another feature. We must point out, however,
that this does not necessarily mean that a string in L(K, F')
cannot contain factors such as aabb which can be formed
by the insertion of the feature ab inside another occurrence
of the same feature. The reason for this is because this
feature can also be formed from the features ab and ba as
follows: bb —4, ab bb —,, baab bb to obtain the string
baabbb which, of course, contains aabb as a factor. Test-
ing for membership in a kernel language is achieved either
by checking if a given unknown string z can be generated
from one of the kernels by a sequence of feature insertions
or, alternatively, by (nondeterministically) deleting features
from x to obtain a kernel. Note that the latter procedure is
equivalent to computing the normal forms of x modulo the
special semi-Thue system, Rp, that consists exactly of |F|
rules of the form (f,¢), f € F. The set of rewrite rules of
Rp is therefore indexed by F'. To determine if = belongs to
L(K, F) we then need only check whether one of the normal
forms belongs to K.

There are various types of kernel languages. These include
confluent and non-confluent kernel languages, trivial ker-
nel languages, non-congruential kernel languages, and ker-
nel languages with single or multiple kernels. It turns out
that kernel languages have a number of real-world applica-
tions. The Monk’s Problems instances can be encoded as
strings from a kernel language. So can the parity problem
and other interesting real-world problems [1].

4. THE MONK’S PROBLEMS

In the summer of 1991 at the 2% European Summer School
on Machine Learning held at the Corsendonk Priory in Bel-
gium, a number or researchers proposed a set of problems for
testing the various machine learning algorithms that existed
at the time. This set of problems was called "The Monk’s
Problems’ . The idea was that the main machine learning
algorithms would be tested and compared using the same
dataset.

The Monk’s Problems are set in an artificial robot world
where a robot can be described by six different attributes as
follows (see Figure 2):

z1 : head_shape € {round, square, octagon}
z9: body_shape € {round, square, octagon}
z3 : is_smiling € {yes, no}

x4: holding € {sword, balloon, flag}
x5: jacket_colour € {red, yellow, green, blue}
z6: has_tie € {yes, no}

There were three problems in the set. Each problem was a
binary classification task, i.e. that of determining whether
or not a robot belongs to one of three classes. Each problem
consists of a description of the class and a training set that
is a proper subset of the 432 possible robots in the artificial
world. The task of the machine learning algorithm is to
generalize from the training examples and, if possible, to
output a class description of each of the three classes. The
three classes were:

1. Monk1:
(head_shape = body_shape) or (jacket_colour =
red)
124 labelled examples were randomly selected from 432
possible robots. No misclassifications.

2. Monk?2:
exactly two of the six attributes have their first
value
169 labelled examples were randomly selected from 432
possible robots. No misclassifications.

3. Monk3:
(jacket_colour is green and holding sword) or
(jacket_colour is not blue and body_shape is not
octagon)
122 labelled examples were randomly selected from 432
possible robots. 5% misclassifications.

The only problem that contained noise was Problem 3. The
intention here was to test the performance of the algorithms
in the presence of noise. Problem 2 is very similar to parity
problems. Problems 1 and 3 are in DNF form and are there-
fore assumed to be solvable by symbolic learning algorithms
such as ID3, AQ, etc. Problem 2 combines attributes in a
way which makes it awkward to express in DNF or CNF.

Table 1, reproduced from [8], lists the results obtained by
the different learning algorithms on the Monk’s Problems
datasets. The experiments were performed by leading re-
searchers in Machine Learning, each of whom was an advo-
cate of the algorithm he or she tested and, in many cases,
the creator of the algorithm itself.

The algorithms tested included the various decision tree
learning algorithms such as ID3 and its variations, mFOIL
- a rather interesting inductive learning system that learns
Horn clauses using a beam search technique, and various
neural networks such as Backpropagation and Cascade Cor-
relation. No algorithm managed to correctly learn all three
classes, although some came very close. In spite of the
fact that the Monk’s Problems are defined in a symbolic
rather than a numeric domain, the best performing algo-
rithms were, perhaps surprisingly, the neural networks.

S. THE VALLETTA ALGORITHM

The main objective of the Valletta algorithm is to investi-
gate the feasibility or otherwise of applying the ETS model
to a grammatical inference problem. The aim is to see if
and how distance could be used to direct the learning pro-
cess and also how such an algorithm would perform in the
presence of noise. Valletta’s learning strategy is based on the
observation that the set of features that partially specify an
unknown kernel language K must necessarily be a subset of
the set of all repeated substrings in C* - assuming, of course,
that the strings in C* were drawn at random from K and
that every feature occurs at least twice in C*. Valletta was
designed from the beginning to learn multiple kernel lan-
guages and not just single kernel languages. This is because
all examples of naturally occurring, i.e. real-world, kernel
languages that we came across were all multiple-kernel. It
turns out that learning multiple-kernel languages is much
more difficult than learning single kernel languages. With

S .

Figure 2: Some of the robots in the Monk’s Problems.

Learning Algorithm #1 #2 #3
AQ17-DCI 100% | 100% | 94.2%
AQ17-HCI 100% | 93.1% | 100%
AQ17-FCLS 92.6% | 97.2%
AQI7-NT 100%
AQI7-GA 100% | 86.8% | 100%
Assistant Professional 100% | 81.3% | 100%
mFoil 100% | 69.2% | 100%
ID5R 81.7% | 61.8%

IDL 97.2% | 66.2%
ID5R-Hat 90.3% | 65.7%

TDIDT 75.7% | 66.7%

1D3 98.6% | 67.9% | 94.4%
ID3, no windowing 83.2% | 69.1% | 95.6%
ID5R 79.7% | 69.2% | 95.2%
AQR 95.9% | 79.7% | 87.0%
CN2 100% | 69.0% | 89.1%
CLASSWEB 0.10 71.8% | 64.8% | 80.8%
CLASSWERB 0.15 65.7% | 61.6% | 85.4%
CLASSWEB 0.20 63.0% | 57.2% | 75.2%
PRISM 86.3% | 72.7% | 90.3%
ECOWESB leaf prediction 71.8% | 67.4% | 68.2%
ECOWERB l.p. & information utility 82.7% | 71.3% | 68.0%
Backpropagation 100% | 100% | 93.1%
Backpropagation with weight decay 100% | 100% | 97.2%
Cascade Correlation 100% | 100% | 97.2%

Table 1: The published results of the Monk’s Problems.

single-kernel languages one need only find a set of features.
On the other hand, with multiple-kernel languages one also
have to find the kernels without knowing beforehand the the
number of kernels in the unknown language. Besides the ob-
vious computational complexity this problem also poses an
interesting question. Should one find a TS description that
minimizes the number of features or the number of kernels?
Valletta can be instructed to find TS descriptions that mini-
mize either the number of features or the number of kernels.
Valletta has what is called a wariable inductive preference
bias. This means that Valletta allows the user to choose
which hypotheses (i.e. TS descriptions) are preferred over
others. This is an important advantage over other learning
algorithms.

Valletta has two main stages. The pre-processing stage searches

for all repeated substrings in C" and stores them in a re-
peated substring list Ro+. The learning stage then finds a
set of features from R+ that gives class separation, i.e. a
set of features that optimizes the function

f1

f:my

where f1 is the minimum EvD distance (over all pairs) be-
tween Ct and C~, f» is the average pair-wise intra-set EvD
distance in C, and € is a small positive real constant to
avoid divide-by-zero errors. Valletta’s learning stage builds
a structure, the search tree, in which each node represents a
feature set. Valletta expands this tree only on the basis of
f2. This means that Valletta’s search for the set of features
that describes the unknown kernel language K is completely
directed by f2. No other criteria are used to direct the learn-
ing process.

Valletta uses a new string-edit distance function called Evol-
untionary Distance (FvD) [1]. EvD is suitable for describing
kernel languages since it can detect features inserted inside
other features. The idea behind EvD is that, given two
strings and a set of features F', the distance between two
strings can be taken to be the weighted Levensthein dis-
tance (WLD) between the normal forms (modulo Rr) of
the two strings [1]. One important advantage of this tech-
nique is that normal forms are usually much shorter than
the actual strings and this this results in significantly shorter
computation times. The main problem is, of course, how to
efficiently reduce the strings to their normal form modulo
F'. This was accomplished using a data structure called a
parse graph. EvD works by first building the parse graphs
for the two strings and then extracting the normal forms
from the parse graphs. The EvD procedure then computes
the weighted Levensthein distance between the normal forms
and the set of kernels that is passed as a parameter.

An explanation of the inner workings of Valletta is beyond
the scope of this paper. The reader is refered to [1] for a full
exposition.

6. RESULTS AND CONCLUSIONS

The Monk’s problems can quite easily be posed as GI 2 prob-
lems. In theory, every learning problem can be posed as a
GI problem. In particular, each of the Monk’s three classes

2Grammatical Inference

of robots can be represented by a confluent kernel language.
For the experiments, a special version of Valletta was de-
veloped. This is simply Valletta but with a much narrower
inductive preference bias. The new version of Valletta was
called Mdina, after Malta’s old capital. Mdina considers
only trivial kernel languages [1]. Mdina successfully learned
problems 1 and 2 but did not learn problem 3. Investiga-
tion showed that this was because the training set was not
structurally complete [4]. The addition of one string made
the training set structurally complete and Mdina was then
able to learn the class.

Mdina served to show that distance can indeed be used to di-
rect the learning process. The experiments also highlighted
the fact that learning algorithms converge to the correct
class if the inductive bias of the algorithm is correct. In his
technical report Thrun describes the Monk’s problems and
the results obtained by the various algorithms does not at-
tempt to analyse or explain the results. We feel the whole
exercise served more to determine whether each algorithm
had the correct inductive bias to learn each of the Monk’s
problem than to determine the actual learning ability of the
various algorithms. Each of the algorithms listed in the re-
port have successfully been used for other learning tasks. We
believe that the apparent inability of some of the algorithms
to learn the Monk’s problems is due more to their type of
inductive bias rather than to anything else. Wolpert [10]
and others have shown that no inductive bias can achieve
a higher generalization accuracy than any other bias when
when considered over all classes in a given domain. In spite
of this, it has been documented that certain bias do perform
better than average on many real-world problems [9]. This
strongly suggests that many real-world problems are ho-
mogenous in nature in that they require very similar induc-
tive biases. This explains why certain learning algorithms
such as ID3 do well on most applications. When learning
algorithms do badly it is very often a case of an incorrect
inductive bias.

7. REFERENCES
[1] Abela, John.ETS Learning of Kernel Languages. Ph.D.
Thesis, University of New Brunswick, Canada, 2002.

[2] Bunke, H. and Sanfeliu, A., (eds). Syntactic and
Structural Pattern Recognition - Theory and
Applications. World Scientific series in Computer
Science, Vol. 7. 1990.

[3] Goldfarb, Lev.On the Foundations of Intelligent
Processes - 1: An Evolving Model for Pattern Learning.
Pattern Recognition, 23, pp. 595-616, 1990.

[4] Michalski, R., Carbonel, J., Mitchell, T., (eds).
Machine Learning - An Artificial Intelligence Approach.
Morgan Kaufmann Publishers Inc. 1983.

[5] Nigam, Sandeep, Metric Model Based Generalization
and The Generalization Capabilities of Connectionist
Models. Masters Thesis, Faculty of Computer Science,
University of New Brunswick, Canada. 1992.

[6] Rosch, Eleanor, H., On the Internal of Perceptual and
Semantic Categories. in Timothy E. Morre, ed.,
Cognitive Development and the Acquisition of
Language, Academic Press. 1973.

[7] J. Stender, and T. Addis (eds). Symbols vs Neurons.
IOS Press, Amsterdam, 1990.

[8] S. Thrun et al. The Monk’s Problems: A Performance
Comparision of Different Learning Algorithms.
Carnegie Mellon University CMU-CS-91-197, December
1991.

[9] Thornton, Chris There is No Free Lunch but the
Starter is Cheap: Generalisation from First Principles
Cognitive and Computing Sciences, University of
Sussex, Brighton, UK, 1999.

[10] Wolpert, D., and Macready, W. No Free Lunch
Theorems for Search, Unpublished MS, 1995.

	John Abela

