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ABSTRACT
Polygonal hybrid systems (SPDI) are a subclass of planar
hybrid automata which can be represented by piecewise con-
stant dierential inclusions. The computation of certain ob-
jects of the phase portrait of an SPDI, namely the viability,
controllability, invariance kernels and semi-separatrix curves
have been shown to be eciently decidable. On the other
hand, although the reachability problem for SPDIs is known
to be decidable, its complexity makes it unfeasible on large
systems. We summarise our recent results on the use of the
SPDI phase portraits for improving reachability analysis by
(i) state-space reduction and (ii) decomposition techniques
of the state space, enabling compositional parallelisation of
the analysis. Both techniques contribute to increasing the
feasability of reachability analysis on large SPDI systems.

1. INTRODUCTION
Hybrid systems combining discrete and continuous dynam-
ics arise as mathematical models of various artificial and nat-
ural systems, and as approximations to complex continuous
systems. They have been used in various domains, including
avionics, robotics and bioinformatics. Reachability analysis
has been the principal research question in the verification
of hybrid systems, even if it is a well-known result that for
most subclasses of hybrid systems most verification ques-
tions are undecidable. Various decidable subclasses have,
subsequently, been identified, including timed [1] and rect-
angular automata [10], hybrid automata with linear vector
fields [11], piecewise constant derivative systems (PCDs) [12]
and polygonal hybrid systems (SPDIs) [4].

Compared to reachability verification, qualitative analysis
of hybrid systems is a relatively neglected area [8, 9, 13, 19,
22]. Typical qualitative questions include: ‘Are there ‘sink’
regions where a trajectory can never leave once it enters
the region?’ and ‘Are there regions in which every point in
the region is reachable from every other?’. The collection of
objects in a system satisfying these and similar properties is

called the phase portrait of the system.

Defining and constructing phase portraits of hybrid systems
has been directly addressed for PCDs in [13], and for SPDIs
in [5]. Given a cycle on a SPDI, the viability kernel is the
largest set of points in the cycle which may loop forever
within the cycle. The controllability kernel is the largest
set of strongly connected points in the cycle (such that any
point in the set may be reached from any other). An in-
variant set is a set of points such that each point must keep
rotating within the set forever, and the invariance kernel is
the largest such set. Algorithms for computing these kernels
have been presented in [5, 21] and implemented in the tool
set SPeeDI+ [14].

Given the non-compositional nature of hybrid systems, de-
composing SPDIs to reduce the state space and to distribute
the reachability algorithms is a challenging task. A qualita-
tive analysis of hybrid systems does, however, provide useful
information for partitioning the state-space in independent
subspaces, thus helping in achieving compositional analysis.

In this paper we summarise and combine some recent re-
sults [17, 16] we have obtained, showing how kernels can be
used to improve the reachability analysis of SPDIs. We use
kernel information to (i) reduce the number of states of the
SPDI graph, based on topological properties of the plane
(and in particular, those of SPDIs); and (ii) partition the
reachability questions in a compositional manner, dividing
the problem into independent smaller ones and combining
the partial results to answer the original question, hence
enabling parallelization with minimal communication costs.

2. THEORETICAL BACKGROUND
We summarize here the main definitions and results about
SPDIs; for a more detailed description refer to [20]. A (pos-
itive) affine function f : R → R is such that f(x) = ax + b
with a > 0. An affine multivalued function F : R → 2R,
denoted F = 〈fl, fu〉, is defined by F (x) = 〈fl(x), fu(x)〉
where fl and fu are affine and 〈·, ·〉 denotes an interval. For
notational convenience, we do not make explicit whether
intervals are open, closed, left-open or right-open, unless re-
quired for comprehension. For an interval I = 〈l, u〉 we have
that F (〈l, u〉) = 〈fl(l), fu(u)〉. The inverse of F is defined
by F−1(x) = {y | x ∈ F (y)}. The universal inverse of F is

defined by F̃−1(I) = I ′ where I ′ is the greatest non-empty
interval satisfying ∀x ∈ I ′ · F (x) ⊆ I.
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Figure 1: (a) An SPDI and its trajectory segment;
(b) Reachability analysis

Clearly, F−1 = 〈f−1
u , f−1

l 〉 and F̃−1 = 〈f−1
l , f−1

u 〉, provided
that 〈f−1

l , f−1
u 〉 �= ∅.

A truncated affine multivalued function (TAMF) F : R → 2R

is defined by an affine multivalued function F and intervals
S ⊆ R

+ and J ⊆ R
+ as follows: F(x) = F (x) ∩ J if x ∈

S, otherwise F(x) = ∅. For convenience we write F(x) =
F ({x} ∩ S)∩ J . For an interval I, F(I) = F (I ∩ S)∩ J and
F−1(I) = F−1(I ∩ J) ∩ S. The universal inverse of F is

defined by F̃−1(I) = I ′ if and only if I ′ is the greatest non-
empty interval such that for all x ∈ I ′, F (x) ⊆ I and F (x) =
F(x). We say that F is normalized if S = Dom(F) = {x |
F (x) ∩ J �= ∅} (thus, S ⊆ F−1(J)) and J = Im(F) = F(S).

It can be proved [4], that TAMFs are closed under compo-
sition.

Theorem 1 The composition of TAMFs F1(I) = F1(I ∩
S1) ∩ J1 and F2(I) = F2(I ∩ S2) ∩ J2, is the TAMF (F2 ◦
F1)(I) = F(I) = F (I ∩ S) ∩ J , where F = F2 ◦ F1, S =
S1 ∩ F−1

1 (J1 ∩ S2) and J = J2 ∩ F2(J1 ∩ S2).

2.1 SPDIs
An angle ∠b

a on the plane, defined by two non-zero vectors
a,b, is the set of all positive linear combinations x = α a +
β b, with α, β ≥ 0, and α + β > 0. We will assume that b
is situated in the counter-clockwise direction from a.

A polygonal hybrid system1 (SPDI) is a finite partition P

of the plane into convex polygonal sets, such that for each
P ∈ P we have two vectors aP and bP . Let φ(P ) = ∠bP

aP .
The SPDI is determined by ẋ ∈ φ(P ) for x ∈ P .

Let E(P ) be the set of edges of P . We say that e is an entry
of P if for all x ∈ e and for all c ∈ φ(P ), x+cε ∈ P for some
ε > 0. We say that e is an exit of P if the same condition
holds for some ε < 0. We denote by in(P ) ⊆ E(P ) the set
of all entries of P and by out(P ) ⊆ E(P ) the set of all exits
of P .

Assumption 1 All the edges in E(P ) are either entries or
exits, that is, E(P ) = in(P ) ∪ out(P ).

Reachability for SPDIs is decidable provided the above as-
sumption holds [4]; without such assumption it is not know
whether reachability is decidable.

A trajectory segment of an SPDI is a continuous function
ξ : [0, T ] → R

2 which is smooth everywhere except in a
discrete set of points, and such that for all t ∈ [0, T ], if

ξ(t) ∈ P and ξ̇(t) is defined then ξ̇(t) ∈ φ(P ). The signature,
denoted Sig(ξ), is the ordered sequence of edges traversed by
the trajectory segment, that is, e1, e2, . . ., where ξ(ti) ∈ ei

and ti < ti+1. If T = ∞, a trajectory segment is called a
trajectory.

Example 1 Consider the SPDI illustrated in Fig. 1-(a).
For sake of simplicity we will only show the dynamics as-
sociated to regions R1 to R6 in the picture. For each re-
gion Ri, 1 ≤ i ≤ 6, there is a pair of vectors (ai,bi),
where: a1 = (45, 100),b1 = (1, 4), a2 = b2 = (1, 10), a3 =
b3 = (−2, 3), a4 = b4 = (−2,−3), a5 = b5 = (1,−15),
a6 = (1,−2),b6 = (1,−1). A trajectory segment starting on
interval I ⊂ e0 and finishing in interval I ′ ⊆ e4 is depicted.

We say that a signature σ is feasible if and only if there exists
a trajectory segment ξ with signature σ, i.e., Sig(ξ) = σ.
From this definition, it immediately follows that extending
an unfeasible signature can never make it feasible:

Proposition 1 If a signature σ is not feasible, then neither
is any extension of the signature — for any signatures σ′ and
σ′′, the signature σ′σσ′′ is not feasible.

Given an SPDI S, let E be the set of edges of S, then we
can define a graph GS where nodes correspond to edges of S
and such that there exists an arc from one node to another
if there exists a trajectory segment from the first edge to
the second one without traversing any other edge. More
formally: Given an SPDI S, the underlying graph of S (or
simply the graph of S), is a graph GS = (NG , AG), with
NG = E and AG = {(e, e′) | ∃ξ, t . ξ(0) ∈ e ∧ ξ(t) ∈ e′ ∧
Sig(ξ) = ee′}. We say that a sequence e0e1 . . . ek of nodes
in GS is a path whenever (ei, ei+1) ∈ AG for 0 ≤ i ≤ k − 1.

1In the literature the names polygonal differential inclusion
and simple planar differential inclusion have been used to
describe the same systems.



The following lemma shows the relation between edge sig-
natures in an SPDI and paths in its corresponding graph.

Lemma 1 If ξ is a trajectory segment of S with edge sig-
nature Sig(ξ) = σ = e0 . . . ep, it follows that σ is a path in
GS .

Note that the converse of the above lemma is not true in
general. It is possible to find a counter-example where there
exists a path from node e to e′, but no trajectory from edge
e to edge e′ in the SPDI.

2.2 Successors and Predecessors
Given an SPDI, we fix a one-dimensional coordinate system
on each edge to represent points laying on edges [4]. For
notational convenience, we indistinctly use letter e to denote
the edge or its one-dimensional representation. Accordingly,
we write x ∈ e or x ∈ e, to mean “point x in edge e with
coordinate x in the one-dimensional coordinate system of
e”. The same convention is applied to sets of points of e
represented as intervals (e.g., x ∈ I or x ∈ I, where I ⊆ e)
and to trajectories (e.g., “ξ starting in x” or “ξ starting in
x”).

Now, let P ∈ P, e ∈ in(P ) and e′ ∈ out(P ). For I ⊆ e,
Succe,e′(I) is the set of all points in e′ reachable from some
point in I by a trajectory segment ξ : [0, t] → R

2 in P (i.e.,
ξ(0) ∈ I ∧ ξ(t) ∈ e′ ∧ Sig(ξ) = ee′). Succe,e′ is a TAMF [4].

Example 2 Let e1, . . . , e6 be as in Fig. 1-(a), where all the
edges have local coordinates over [0, 10], and I = [l, u]. We
assume a one-dimensional coordinate system. We show only
the first and last edge-to-edge TAMF of the cycle:

Fe1e2(I) =
[

l
4
, 9

20
u
]
, S1 = [0, 10] , J1 =

[
0, 9

2

]
Fe6e1(I) = [l, 2u] , S6 = [0, 10] , J6 = [0, 10]

with Succeiei+1(I) = Feiei+1(I ∩ Si) ∩ Ji, for 1 ≤ i ≤ 6 ; Si

and Ji are computed as shown in Theorem 1.

Given a sequence w = e1, e2, . . . , en, since TAMFs are closed
under composition, the successor of I along w, defined as
Succw(I) = Succen−1,en ◦ · · · ◦ Succe1,e2(I), is a TAMF.

Example 3 Let σ = e1 · · · e6e1. We have that Succσ(I) =
F (I ∩ Sσ) ∩ Jσ, where: F (I) = [ l

4
+ 1

3
, 9

10
u + 2

3
], with Sσ =

[0, 10] and Jσ = [ 1
3
, 29

3
].

For I ⊆ e′, Pree,e′(I) is the set of points in e that can reach
a point in I by a trajectory segment in P . The ∀-predecessor
P̃re(I) is defined in a similar way to Pre(I) using the univer-

sal inverse instead of just the inverse: For I ⊆ e′, P̃reee′(I) is
the set of points in e such that any successor of such points
are in I by a trajectory segment in P . Both definitions can
be extended straightforwardly to signatures σ = e1 · · · en:

Preσ(I) and P̃reσ(I). The successor operator thus has two
“inverse” operators.

2.3 Qualitative Analysis of Simple Edge-Cycles
Let σ = e1 · · · eke1 be a simple edge-cycle, i.e., ei �= ej

for all 1 ≤ i �= j ≤ k. Let Succσ(I) = F (I ∩ Sσ) ∩ Jσ

with F = 〈fl, fu〉 (we suppose that this representation is
normalized). We denote by Dσ the one-dimensional discrete-
time dynamical system defined by Succσ, that is xn+1 ∈
Succσ(xn).

Assumption 2 None of the two functions fl, fu is the iden-
tity.

Without the above assumption the results are still valid but
need a special treatment making the presentation more com-
plicated.

Let l∗ and u∗ be the fixpoints2 of fl and fu, respectively, and
Sσ ∩ Jσ = 〈L, U〉. A simple cycle is of one of the following
types [4]: STAY, the cycle is not abandoned neither by the
leftmost nor the rightmost trajectory, that is, L ≤ l∗ ≤ u∗ ≤
U ; DIE, the rightmost trajectory exits the cycle through the
left (consequently the leftmost one also exits) or the leftmost
trajectory exits the cycle through the right (consequently
the rightmost one also exits), that is, u∗ < L∨l∗ > U ; EXIT-
BOTH, the leftmost trajectory exits the cycle through the
left and the rightmost one through the right, that is, l∗ < L∧
u∗ > U ; EXIT-LEFT, the leftmost trajectory exits the cycle
(through the left) but the rightmost one stays inside, that is,
l∗ < L ≤ u∗ ≤ U ; EXIT-RIGHT, the rightmost trajectory
exits the cycle (through the right) but the leftmost one stays
inside, that is, L ≤ l∗ ≤ U < u∗.

Example 4 Let σ = e1 · · · e6e1. Then, Sσ ∩ Jσ = 〈L, U〉 =
[ 1
3
, 29

3
]. The fixpoints from Example 3 are 1

3
< l∗ = 11

25
<

u∗ = 20
3

< 29
3

. Thus, σ is a STAY.

Any trajectory that enters a cycle of type DIE will eventu-
ally quit it after a finite number of turns. If the cycle is of
type STAY, all trajectories that happen to enter it will keep
turning inside it forever. In all other cases, some trajectories
will turn for a while and then exit, and others will continue
turning forever. This information is crucial for proving de-
cidability of the reachability problem.

Example 5 Consider the SPDI of Fig. 1-(a). Fig. 1-(b)
shows part of the reach set of the interval [8, 10] ⊂ e0, an-
swering positively to the reachability question: Is [1, 2] ⊂ e4

reachable from [8, 10] ⊂ e0? Fig. 1-(b) has been automati-
cally generated by the SPeeDI toolbox we have developed for
reachability analysis of SPDIs [2, 14].

2.4 Reachability Analysis
It has been shown that reachability is decidable for SPDIs.
Proof of the decidability result is constructive, giving an al-
gorithmic procedure Reach(S, e, e′) based on a depth-first
search algorithm. An alternative breadth-first search algo-
rithm which can deal with multiple edges has been presented
in [15].

2The fixpoint x∗ is the solution of f(x∗) = x∗, where f(·) is
positive affine.



Theorem 2 ([4]) The reachability problem for SPDIs is de-
cidable.

An edgelist is a set of intervals of edges. Given edgelists I
and I ′, we denote the reachability of (some part of) I ′ from

(some part of) I as I
S−→ I ′. Clearly, using the decidability

result on edge intervals, reachability between edgelists is de-
cidable. Although decidability may be point-to-point, edge-
to-edge, edgelist-to-edgelist and region-to-region, in the rest
of this paper, we will only talk about edgelist reachability.

Example 6 Consider the SPDI of Fig. 1-(a). Fig. 1-(b)
shows part of the reach set of the interval [8, 10] ⊂ e0, an-
swering positively to the reachability question: Is [1, 2] ⊂ e4

reachable from [8, 10] ⊂ e0? Fig. 1-(b) has been automati-
cally generated by the SPeeDI toolbox [14] we have developed
for reachability analysis of SPDIs based on the results of [4].

2.5 Kernels
We present now how to compute the invariance, controlla-
bility and viability kernels of an SPDI. Proofs are omitted
but for further details, refer to [5] and [21]. In the follow-
ing, for σ a cyclic signature, we define Kσ ⊆ R

2 as follows:
Kσ =

⋃k
i=1(int(Pi)∪ei) where Pi is such that ei−1 ∈ in(Pi),

ei ∈ out(Pi) and int(Pi) is Pi’s interior.

2.5.1 Viability Kernel
We now recall the definition of viability kernel [6]. A tra-
jectory ξ is viable in K if ξ(t) ∈ K for all t ≥ 0. K is a
viability domain if for every x ∈ K, there exists at least one
trajectory ξ, with ξ(0) = x, which is viable in K. The via-
bility kernel of K, denoted Viab(K), is the largest viability
domain contained in K.

For I ⊆ e1 we define Preσ(I) to be the set of all x ∈ R
2

for which there exists a trajectory segment ξ starting in x,
that reaches some point in I, such that Sig(ξ) is a suffix of
e2 . . . eke1. It is easy to see that Preσ(I) is a polygonal subset
of the plane which can be calculated using the following
procedure. We start by defining Pree(I) = {x | ∃ξ : [0, t] →
R

2, t > 0 . ξ(0) = x ∧ ξ(t) ∈ I ∧ Sig(ξ) = e} and apply this

operation k times: Preσ(I) =
⋃k

i=1 Preei(Ii) with I1 = I,
Ik = Preek,e1(I1) and Ii = Preei,ei+1(Ii+1), for 2 ≤ i ≤ k−1.

The following result provides a non-iterative algorithmic
procedure for computing the viability kernel of Kσ on an
SPDI:

Theorem 3 If σ is a DIE cycle, then Viab(Kσ) = ∅, oth-
erwise Viab(Kσ) = Preσ(Sσ).

Example 7 Fig. 2-(a) shows all the viability kernels of the
SPDI given in Example 1. There are 4 cycles with viability
kernels — in the picture two of the kernels are overlapping.

2.5.2 Controllability Kernel
We say K is controllable if for any two points x and y in K
there exists a trajectory segment ξ starting in x that reaches

Figure 2: (a) Viability kernels; (b) Controllability
kernels

an arbitrarily small neighborhood of y without leaving K.
More formally: A set K is controllable if ∀x,y ∈ K, ∀δ >
0, ∃ξ : [0, t] → R

2, t > 0 . (ξ(0) = x ∧ |ξ(t) − y| < δ ∧ ∀t′ ∈
[0, t] . ξ(t′) ∈ K). The controllability kernel of K, denoted
Cntr(K), is the largest controllable subset of K.

For a given cyclic signature σ, we define CD(σ) as follows:

CD(σ) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

〈L, U〉 if σ is EXIT-BOTH
〈L, u∗〉 if σ is EXIT-LEFT
〈l∗, U〉 if σ is EXIT-RIGHT
〈l∗, u∗〉 if σ is STAY
∅ if σ is DIE

(1)

For I ⊆ e1 let us define Succσ(I) as the set of all points
y ∈ R

2 for which there exists a trajectory segment ξ start-
ing in some point x ∈ I, that reaches y, such that Sig(ξ)
is a prefix of e1 . . . ek. The successor Succσ(I) is a polygo-
nal subset of the plane which can be computed similarly to
Preσ(I). Define C(σ) = (Succσ ∩Preσ)(CD(σ)). We compute
the controllability kernel of Kσ as follows:

Theorem 4 Cntr(Kσ) = C(σ).

Example 8 Fig. 2-(b) shows all the controllability kernels
of the SPDI given in Example 1. There are 4 cycles with
controllability kernels — in the picture two of the kernels
are overlapping.



The following result which relates controllability and viabil-
ity kernels, states that the viability kernel of a given cycle
is the local basin of attraction of the corresponding control-
lability kernel.

Proposition 2 Any viable trajectory in Kσ converges to
Cntr(Kσ).

Let Cntrl(Kσ) be the closed curve obtained by taking the
leftmost trajectory and Cntru(Kσ) be the closed curve ob-
tained by taking the rightmost trajectory which can remain
inside the controllability kernel. In other words, Cntrl(Kσ)
and Cntru(Kσ) are the two polygons defining the controlla-
bility kernel.

A non-empty controllability kernel Cntr(Kσ) of a given cyclic
signature σ partitions the plane into three disjoint subsets:
(1) the controllability kernel itself, (2) the set of points lim-
ited by Cntrl(Kσ) (and not including Cntrl(Kσ)) and (3)
the set of points limited by Cntru(Kσ) (and not including
Cntru(Kσ)). We define the inner of Cntr(Kσ) (denoted by
Cntrin(Kσ)) to be the subset defined by (2) above if the cycle
is counter-clockwise or to be the subset defined by (3) if it is
clockwise. The outer of Cntr(Kσ) (denoted by Cntrout(Kσ))
is defined to be the subset which is not the inner nor the
controllability itself. Note that an edge in the SPDI may
intersect a controllability kernel. In such cases, we can gen-
erate a different SPDI, with the same dynamics but with the
edge split into parts, such that each part is completely in-
side, on or outside the kernel. Although the signatures will
obviously change, it is easy to prove that the behaviour of
the SPDI remains identical to the original. In the rest of the
paper, we will assume that all edges are either completely
inside, on or completely outside the kernels. We note that in
practice splitting is not necessary since we can just consider
parts of edges.

Proposition 3 Given two edges e and e′, one lying com-
pletely inside a controllability kernel, and the other outside
or on the same controllability kernel, such that ee′ is fea-
sible, then there exists a point on the controllability kernel,
which is reachable from e and from which e′ is reachable.

2.5.3 Invariance Kernel
In general, an invariant set is a set of points such that for
any point in the set, every trajectory starting in such point
remains in the set forever and the invariance kernel is the
largest of such sets. In particular, for an SPDI, given a
cyclic signature, an invariant set is a set of points which
keep rotating in the cycle forever and the invariance kernel
is the largest of such sets. More formally: A set K is said
to be invariant if for any x ∈ K there exists at least one
trajectory starting in it and every trajectory starting in x
is viable in K. Given a set K, its largest invariant subset is
called the invariance kernel of K and is denoted by Inv(K).
We need some preliminary definitions before showing how
to compute the kernel. The extended ∀-predecessor of an
output edge e of a region R is the set of points in R such
that every trajectory segment starting in such point reaches
e without traversing any other edge. More formally, let R
be a region and e be an edge in out(R), then the e-extended

∀-predecessor of I, P̃ree(I) is defined as: P̃ree(I) = {x |

∀ξ . (ξ(0) = x ⇒ ∃t ≥ 0 . (ξ(t) ∈ I ∧ Sig(ξ[0, t]) = e))}.
It is easy to see that P̃reσ(I) is a polygonal subset of the
plane which can be calculated using a similar procedure as
for Preσ(I). We compute the invariance kernel of Kσ as
follows:

Theorem 5 If σ is STAY then Inv(Kσ) = P̃reσ(P̃reσ(Jσ)),
otherwise it is ∅.

Example 9 Fig. 3-(a) shows the unique invariance kernel
of the SPDI given in Example 1.

An interesting property of invariance kernels is that the
limits are included in the invariance kernel, i.e. [l∗, u∗] ⊆
Inv(Kσ). In other words:

Proposition 4 The set delimited by the polygons defined by
the interval [l∗, u∗] is an invariance set of STAY cycles.

The following result relates controllability and invariance
kernels.

Proposition 5 If σ is STAY then Cntr(Kσ) ⊆ Inv(Kσ).

Example 10 Fig. 3-(b) shows the viability, controllabil-
ity and invariance kernels of the SPDI given in Example
1. For any point in the viability kernel of a cycle there ex-
ists a trajectory which will converge to its controllability ker-
nel (proposition 2). It is possible to see in the picture that
Cntr(·) ⊂ Inv(.) (proposition 5). All the above pictures has
been obtained with the toolbox SPeeDI+ [14].

In a similar way as for the controllability kernel, we define
Invl(Kσ) and Invu(Kσ).

2.5.4 Kernel Properties
Controllability and viability kernels can be related together
in the following manner.

Definition 1 Given a controllability kernel C (of a loop σ
— C = Cntr(Kσ)), then let C+ be the related viability kernel
(C+ = Viab(Kσ)), Cin be the inside of the kernel, and Cout

be the outside.

Proposition 3 in [18] gives conditions for feasible trajectories
traversing controllability kernels. The following is a gener-
alization of such result:

Proposition 6 Given two edges e and e′, one lying com-
pletely inside a kernel, and the other outside or on the same
kernel, such that ee′ is feasible, then there exists a point on
the kernel, which is reachable from e and from which e′ is
reachable.

The following corollary follows from [18, Proposition 2], as-
serting that the controllability kernel is the local basin of
attraction of the viability kernel:



Figure 3: (a) Invariance kernel; (b) All the kernels

Corollary 1 Given an controllability kernel C, and related
viability kernel C+, then for any e ⊆ C+, e′ ⊆ C, there
exists a feasible path eσe′.

2.6 Semi-Separatrix Curves
In this section we define the notion of separatrix curves,
which are curves dissecting the plane into two mutually non-
reachable subsets, and semi-separatrix curves which can only
be crossed in one direction. All the proofs of this and forth-
coming sections may be found in [17]. We start by defining
these notions independently of SPDIs.

Definition 2 Let K ⊆ R
2. A separatrix in K is a closed

curve γ partitioning K into three sets KA, KB and γ itself,
such that KA, KB and γ are pairwise disjoint, K = KA ∪
KB ∪γ and the following conditions hold: (1) For any point
x0 ∈ KA and trajectory ξ, with ξ(0) = x0, there is no t
such that ξ(t) ∈ KB; and (2) For any point x0 ∈ KB and
trajectory ξ, with ξ(0) = x0, there is no t such that ξ(t) ∈
KA. If only one of the above conditions holds then we say
that the curve is a semi-separatrix. If only condition 1 holds,
then we say that KA is the inner of γ (written γin) and KB

is the outer of γ (written γout). If only condition 2 holds,
KB is the inner and KA is the outer of γ.

Notice that, as in the case of the controllability kernel, an
edge of the SPDI may be split into two by a semi-separatrix
— part inside, and part outside. As before, we can split the
edge into parts, such that each part is completely inside, or
completely outside the semi-separatrix.

The above notions are extended to SPDIs straightforwardly.
The set of all the separatrices of an SPDI S is denoted by

Sep(S), or simply Sep.

Now, let σ = e1 . . . ene1 be a simple cycle, ∠bi
ai (1 ≤ i ≤

n) be the dynamics of the regions for which ei is an entry
edge and I = [l, u] an interval on edge e1. Remember that
Succe1e2(I) = F (I ∩S1)∩J1, where F (x) = [a1x+ b1, a2x+
b2]. Let l be the vector corresponding to the point on e1 with
local coordinates l and l′ be the vector corresponding to the
point on e2 with local coordinates F (l) (similarly, we define

u and u′ for F (u)). We define first Succ
b1
e1 (I) = {l+α(l′−l) |

0 < α < 1} and Succ
a1
e1 (I) = {u + α(u′ − u) | 0 < α < 1}.

We extend these definitions in a straight way to any (cyclic)

signature σ = e1 . . . ene1, denoting them by Succ
b
σ(I) and

Succ
a
σ(I), respectively; we can compute them similarly as

for Pre. Whenever applied to the fixpoint I∗ = [l∗, u∗], we

denote Succ
b
σ(I∗) and Succ

a
σ(I∗) by ξl

σ and ξu
σ respectively.

Intuitively, ξl
σ (ξu

σ) denotes the piece-wise affine closed curve
defined by the leftmost (rightmost) fixpoint l∗ (u∗).

We show now how to identify semi-separatrices for simple
cycles.

Theorem 6 Given an SPDI, let σ be a simple cycle, then
the following hold:

1. If σ is EXIT-RIGHT then ξl
σ is a semi-separatrix curve

(filtering trajectories from “left” to “right”);

2. If σ is EXIT-LEFT then ξu
σ is a semi-separatrix curve

(filtering trajectories from “right” to “left”);

3. If σ is STAY, then the two polygons defining the in-
variance kernel (Invl(Kσ) and Invu(Kσ)), are semi-
separatrices.

In the case of STAY cycles, ξl
σ and ξu

σ are both also semi-
separatrices. Notice that in the above result, computing
a semi-separatrix depends only on one simple cycle, and
the corresponding algorithm is then reduced to find sim-
ple cycles in the SPDI and checking whether it is STAY,
EXIT-RIGHT or EXIT-LEFT. DIE cycles induce an infi-
nite number of semi-separatrices and are not treated in this
setting.

Example 11 Fig. 4 shows all the semi-separatrices of the
SPDI given in Example 1, obtained as shown in Theorem
6. The small arrows traversing the semi-separatrices show
the inner and outer of each semi-separatrix: a trajectory
may traverse the semi-separatrix following the direction of
the arrow, but not vice-versa.

The following two results relate feasible signatures and semi-
separatrices.

Proposition 7 If, for some semi-separatrix γ, e ∈ γin and
e′ ∈ γout, then the signature ee′ is not feasible.

Proposition 8 If, for some semi-separatrix γ, and signa-
ture σ (of at least length 2), then, if head(σ) ∈ γin and
last(σ) ∈ γout, σ is not feasible.



Figure 4: Semi-separatrices

3. STATE-SPACE REDUCTION
3.1 Reduction using Semi-Separatrices
Semi-separatrices partition the state space into two parts3

– once one crosses such a border, all states outside the re-
gion can be ignored. We present a technique, which, given
an SPDI and a reachability question, enables us to discard
portions of the state space based on this information. The
approach is based on identifying inert states (edges in the
SPDI) not playing a role in the reachability analysis.

Definition 3 Given an SPDI S, a semi-separatrix γ ∈ Sep,
a source edge e0 and a destination edge e1, an edge e is said
to be inert if it lies outside the semi-separatrix while e0 lies
inside, or it lies inside, while e1 lies outside:

inertγe0→e1 =
{e : E | e0 ∈ γin ∧ e ∈ γout} ∪ {e : E | e1 ∈ γout ∧ e ∈ γin}.

We can prove that these inert edges can never appear in a
feasible signature:

Lemma 2 Given an SPDI S, a semi-separatrix γ, a source
edge e0 and a destination edge e1, and a feasible signature
e0σe1 in S. No inert edge from inertγe0→e1 may appear in
e0σe1.

Given an SPDI, we can reduce the state space by discarding
inert edges.

Definition 4 Given an SPDI S, a semi-separatrix γ, and
two edges, a source edge e0 and a destination edge e1, we
define the reduced SPDI Sγ

e0→e1 to be the same as S but
without the inert edges.

Clearly, the resulting SPDI is not bigger than the original
one. Finally, we prove that checking reachability on the
reduced SPDI is equivalent to checking reachability on the
original SPDI:

3Here, we do not consider the semi-separatrix itself.
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Figure 5: Reduction using semi-separatrices

Theorem 7 Given an SPDI S, a semi-separatrix γ, and
edges e0 and e1, then, e1 is reachable from e0 in S if and
only if e1 is reachable from e0 in Sγ

e0→e1.

We have shown, that once semi-separatrices are identified,
given a reachability question, we can reduce the size of the
SPDI to be verified by removing inert edges of all the known
semi-separatrices.

Example 12 The shaded areas of Fig. 5 (a) and (b) are
examples of subsets of the SPDI edges of the reachability
graph, eliminated by the reduction presented in this section
applied to all semi-separatrices, when answering reachability
questions (in this case to the question: Is I ′ reachable from
I?).

This result enables us to verify SPDIs much more efficiently.
It is important to note that model-checking an SPDI requires
identification of simple loops, which means that the calcula-
tion of the semi-separatrices is not more expensive than the
initial pass of the model-checking algorithm. Furthermore,
we can perform this analysis only once for an SPDI and store
the information to be used in any reachability analysis on
that SPDI. Reduction, however, can only be applied once
we know the source and destination states.

3.2 State-space Reduction using Kernels
We have already shown that any invariant set is essentially
a pair of semi-separatices, and since the invariance kernel
is an invariant set, we can use the results from section 2.6



to abstract an SPDI using invariance kernels. We now turn
our attention to state space reduction using controllability
kernels:

Definition 5 Given an SPDI S, a loop σ, a source edge e0
and a destination edge e1, an edge e is said to be redundant
if it lies on the opposite side of a controllability kernel as
both e0 and e1:

redundantσe0→e1

{e : E | {e0, e1} ⊆ Cntrin(σ) ∪ Cntr(σ) ∧ e ∈ Cntrout(σ)}∪
{e : E | {e0, e1} ⊆ Cntrout(σ) ∪ Cntr(σ) ∧ e ∈ Cntrin(σ)}

We can prove that we can do without these edges to check
feasibility:

Lemma 3 Given an SPDI S, a loop σ, a source edge e0,
a destination edge e1, and a feasible signature e0σe1 then
there exists a feasible signature e0σ′e1 such that σ′ contains
no redundant edge from redundantσe0→e1.

Given an SPDI, we can reduce the state space by discarding
redundant edges.

Definition 6 Given an SPDI S, a loop σ, a source edge
e0 and a destination edge e1, we define the reduced SPDI
Sσ

e0→e1 to be the same as S but without redundant edges.

Clearly, the resulting SPDI is smaller than the original one.
Finally, based on proposition 3, we prove that reachability
on the reduced SPDI is equivalent to reachability on the
original one:

Theorem 8 Given an SPDI S, a loop σ, a source edge e0
and a destination edge e1, then, e1 is reachable from e0 in
S if and only if e1 is reachable from e0 in Sσ

e0→e1.

Given a loop which has a controllability kernel, we can thus
reduce the state space to explore. In practice, we apply this
state space reduction for each controllability kernel in the
SPDI. Once a loop in the SPDI is identified, it is straight-
forward to apply the reduction algorithm.

3.3 Immediate Answers
By definition of the controllability kernel, any two points in-
side it are mutually reachable. This can be used to answer
reachability questions in which both the source and destina-
tion edge lie (possibly partially) within the same controlla-
bility kernel. Using proposition 2, we know that any point
in the viability kernel of a loop can eventually reach the con-
trollability kernel of the same loop, which allows us to relax
the condition about the source edge to just check whether it
(partially) lies within the viability kernel. Finally, we note
that the union of non-disjoint controllability sets is itself a
controllability set which allows us to extend the result to
work for a collection of loops whose controllability kernels
form a strongly connected set.

I

I’

I’

I

Figure 6: Answering reachability using kernels

Definition 7 We extend viability and controllability kernels
for a set of loops Σ by taking the union of the kernels of
the individual loops, with Viab(KΣ) being the union of all
viability kernels of loops in Σ, and similarly Cntr(KΣ).

Definition 8 Two loops σ and σ′ are said to be compatible
(σ � σ′) if their controllability kernels overlap: Cntr(Kσ)∩
Cntr(Kσ′) �= ∅.

We extend the notion of compatibility to a set of loops Σ
to mean that all loops in the set are transitively compatible:
∀σ, σ′ ∈ Σ · σ �∗ σ′.

Based on proposition 2, we can prove the following:

Theorem 9 Given a source edge esrc and a destination
edge edst, if for some compatible set of loops Σ, we know
that esrc ∩Viab(KΣ) �= ∅ and edst ∩Cntr(KΣ) �= ∅, then edst

is reachable from esrc.

Example 13 Fig. 6-(a) shows a viability and a controlla-
bility kernel of a cycle and two intervals I and I ′. Whether
I ′ is reachable from I cannot be answered immediately in
this case, but Fig. 6-(b) shows the overlapping of the via-
bility and controllability kernels depicted in Fig. 6-(a) with
the kernels of an inner cycle. I ′ thus lies in a compatible
controllability kernel, and we can immediately conclude (by
theorem 9) that I ′ is reachable from I.

In practice, we propose to use these theorems to enable an-
swering certain reachability questions without having to ex-



plore the complete state space. It can also be used to reduce
reachability questions to (possibly) simpler ones by trying
to reach a viability kernel rather than a particular edge. As
in the case of semi-separatrices, a preliminary analysis of an
SPDI’s kernels be used in all subsequent reachability queries.
SPeeDI [14] starts by calculating and caching all loops in
the given SPDI, and can thus easily identify maximal com-
patible sets of loops. Combining this technique with the
semi-separatrix reduction technique we envisage substantial
gains.

4. COMPOSITIONAL ANALYSIS
4.1 SPDI Decomposition
In this section, we propose a number of theorems which,
given an SPDI and a reachability question, for each control-
lability kernel, allow us to either (i) answer the reachability
question without any further analysis; or (ii) reduce the state
space necessary for reachability analysis; or (iii) decompose
the reachability question into two smaller, and independent
reachability questions.

The following theorem enables us to answer certain reacha-
bility questions without any analysis, other than the identi-
fication of controllability and viability kernels. This result
is based on two properties, that within the controllability
kernel of a loop, any two points are mutually reachable, and
that any point on the viability kernel of the same loop can
eventually reach the controllability kernel. Therefore if the
source edgelist lies (possibly partially) within the viability
kernel of a loop, and the destination edgelist lies (possibly
partially) within the controllability kernel of the same loop,
then, there must exist a trajectory from the source to the
destination edgelist. The full proof of this result can be
found in [18].

Theorem 10 Given an SPDI S, two edgelists I and I ′ and
a controllability kernel C, then if I ⊆ C+ and I ′ ⊆ C, then

I
S−→ I ′.

The following theorem allows us to reduce the state space
based on controllability kernels. If both the source and des-
tination edgelists lie on the same side of a controllability
kernel, then we can disregard all edges on the other side of
the kernel. The full proof of this result can be found in [18].

Theorem 11 Given an SPDI S, two edgelists I and I ′ and
a controllability kernel C, then if I ⊆ Cin and I ′ ⊆ Cin, then

I
S−→ I ′ if and only if I

S\Cout−→ I ′. Similarly, if I ⊆ Cout

and I ′ ⊆ Cout, then I
S−→ I ′ if and only if I

S\Cin−→ I ′.

Finally, the following new result allows us to decompose a
reachability question into two smaller questions independent
of each other. The theorem states that if the source and
destination edgelists lie on opposite sides of a controllabil-
ity kernel, then we can try (i) to reach the related viability
kernel from the source edgelist, and (ii) to reach the desti-
nation from the controllability kernel. The original reacha-
bility question can be answered affirmatively if and only if
both these questions are answered affirmatively.

Theorem 12 Given an SPDI S, two edgelists I and I ′ and
a controllability kernel C, then if I ⊆ Cin and I ′ ⊆ Cout,

then I
S−→ I ′ if and only if I

S\Cout−→ C+ ∧ C
S\Cin−→ I ′.

Similarly, if I ⊆ Cout and I ′ ⊆ Cin, then I
S−→ I ′ if and

only if I
S\Cin−→ C+ ∧ C

S\Cout−→ I ′.

4.2 Unavoidable Kernels
Unavoidable kernels are defined geometrically to be kernels
which a straight line from the source interval to the desti-
nation interval ‘intersects’ an odd number of times. We call
the kernel unavoidable since it can be proved that any path
from the source to the destination will have to pass through
the kernel.

Definition 9 Given an SPDI S and two edgelists I and I ′,
we say that a controllability kernel Cntr(Kσ) is unavoidable
if any segment of line with extremes on points lying on I and
I ′ intersects with both the edges of Cntrl(Kσ) and those of
Cntru(Kσ) an odd number of times (disregarding tangential
intersections with vertices).

The following theorem enables us to discover separating con-
trollability kernels using a simple geometric test.

Theorem 13 Given an SPDI S, two edgelists I and I ′, and
a controllability kernel C = Cntr(Kσ), then C is an unavoid-
able kernel if and only if one of the following conditions holds
(i) I ⊆ Cin and I ′ ⊆ Cout; or (ii) I ⊆ Cout and I ′ ⊆ Cin.

Corollary 2 Given an SPDI S, two edgelists I and I ′, and
an unavoidable controllability kernel C = Cntr(Kσ), then

I
S−→ I ′ if and only if I

S−→ C and C
S−→ I ′.

The following result relates unavoidable kernels:

Proposition 9 Given two disjoint controllability kernels C
and C′, both unavoidable from I to I ′, then either C′ is
unavoidable from I to C or C′ is unavoidable from C to I ′,
but not both.

4.3 Parallel Reachability Algorithm
In Fig. 8 we give an algorithm for parallel reachability anal-
ysis of SPDIs using parallel recursive calls corresponding to
independent reachability questions.

The function ReachParKernels is called with the SPDI to
consider, a list of kernels still to be used for reduction, and
the source and destination edgelists. With no kernels to
consider, the algorithm simply calls the standard sequential
algorithm (Reach). Otherwise, one of the kernels is ana-
lyzed, with three possible cases:

1. If the source lies (possibly partially) on the extended
kernel, and the destination lies (possibly partially) on
the kernel, then we can give an immediate answer (us-
ing theorem 10).
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Figure 7: Unavoidable kernels and independent
reachability questions

2. If both the edgelists lie on the same side of the kernel,
then we simply eliminate redundant parts of the SPDI
— anything on the other side of the kernel (theorem
11).

3. Otherwise, if the kernels both lie on opposite sides of
the kernel, we can split the problem into two indepen-
dent questions (reaching the kernel from the source,
and the destination from the kernel) which can be run
in parallel (theorem 12). An affirmative answer from
both these subquestions is equivalent to an affirmative
answer to the original question.

Note that the function ReachParKernels is compositional
in the sense that each recursive call launch a process which
operates in (most cases in) disjoint state spaces which are
smaller than the original one (S). The final answer is the
composition of the partial reachability questions.

Given two edgelists I and I ′, we define the following predi-

cate I
S−→‖ I ′ ≡ ReachPar(S, I, I ′). The following theorem

states that the (compositional) parallel algorithm exactly
answers the reachability question, also giving a soundness
and completeness proof of the algorithm:

Theorem 14 Given an SPDI S and two intervals I ⊆ e

and I ′ ⊆ e′, I
S−→ I ′ if and only if I

S−→‖ I ′.

5. CONCLUDING REMARKS
We have given an overview of our recent results on the
optimisation of SPDI reachability analysis. Using semi-
separatrices and kernels, we presented techniques to improve
reachability analysis on SPDIs. In all cases, the techniques

function ReachPar(S, I, I′) =
ReachParKernels (S, ControllabilityKernels(S), I, I′)

function ReachParKernels(S, [], I, I′) =
Reach(S, I, I′);

function ReachParKernels(S, k:ks, I, I′) =
if (ImmedieteAnswer(S, I, I′)) then

True;
elsif (SameSideOfKernel(S, k, I, I′)) then

S_I := S \ EdgesOnOtherSideOf(S, k, I′);
ReachParKernels(S_I, ks, I, I′);

else
S_I := S \ EdgesOnOtherSideOf(S, k, I);
S_I’ := S \ EdgesOnOtherSideOf(S k, I′);
parbegin

r1 := ReachParKernels(S_I, ks, I, viability(k));
r2 := ReachParKernels(S_I’, ks, k, I′);

parend;
return (r1 and r2);

Figure 8: Parallel algorithm for reachability of
SPDIs.

require the identification and analysis of loops in the SPDI.
We note that most of this information is still required in
reachability analysis, and thus no extra work is required to
perform the optimization presented in this paper. We have
also shown how answering reachability on an SPDI can be
reduced to a number of smaller reachability questions. These
two techniques can be combined together applying the re-
duction tecniques globally (on the whole SPDI) or locally
on the decomposed SPDIs).

Our work is obviously restricted to planar systems, which
enables us to compute these kernels exactly. In higher di-
mensions and hybrid systems with higher complexity, calcu-
lation of kernels is not computable. Other work is thus based
on calculations of approximations of these kernels (e.g., [8,
7, 19]). We are not aware of any work using kernels and
semi-separatrices to reduce the state-space of the reachabil-
ity graph as presented in this paper.

We are currently exploring the implementation of the opti-
mizations presented in this paper to improve the efficiency of
SPeeDI+ [14]. We are also investigating other applications
of these kernels in the model-checking of SPDIs.

One current research direction is to apply our results to
semi-decide the reachability question for SPDIs defined on 2-
dimensional manifolds, for which the decidability of reacha-
bility remains unresolved [3]. Maybe the most prominent ap-
plication of SPDIs is for approximating complex non-linear
differential equations on the plane, for which an exact solu-
tion is not known. The decidability of SPDIs reachability
and of its phase portrait construction would be of invalu-
able help for the qualitative analysis of such equations. The
challenge would be to find an “intelligent” partition of the
plane in order to get an optimal approximation of the equa-
tions. Since such partition might produce a high number
of regions, our parallel algorithm might be extremely useful
here.
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