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  Monoamine modulation of tonic GABA A  inhibition    
  Abstract:   In recent years, it has become evident that many 

neurotransmitters and endogenous ligands differentially 

modulate synaptic  γ -aminobutyric acid type A receptors 

(sGABA 
A
 Rs) and extrasynaptic GABA 

A
 R (eGABA 

A
 Rs). In this 

mini-review, we will summarize the available evidence on 

the ability of the monoamines serotonin (5-HT), noradren-

aline (NA), and, in particular, dopamine (DA) to alter the 

functional response of eGABA 
A
 Rs, thus either increasing 

or decreasing tonic GABA 
A 

 inhibition. Although this field 

of research is still in its infancy, it has already been dem-

onstrated that eGABA 
A
 Rs show a nucleus-selective and 

neuronal-type-selective regulation by monoamines in a 

way that differs from that of sGABA 
A
 Rs. Further work will 

undoubtedly advance our knowledge of the intricate talk 

between monoamines and eGABA 
A
 R and may ultimately 

provide new leads for the treatment of neurological and 

neuropsychiatric disorders, where alteration in GABA 
A
 R 

function is one of the underlying causes.  
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      Introduction 
  γ -Aminobutyric acid type A receptors (GABA 

A
 Rs) are 

expressed throughout the central nervous system (CNS) 

and represent the principal inhibitory receptors in the 

adult mammalian brain ( Schwartz, 1988 ). Two main 

GABA 
A
 R populations have now been identified that 

mediate two distinct forms of inhibition:  ‘ phasic ’  inhi-

bition that is brought about by activation of synaptic 

GABA 
A
 Rs (sGABA 

A
 Rs) and  ‘ tonic ’  inhibition that is medi-

ated by perisynaptic/extrasynaptic GABA 
A
 Rs (eGABA 

A
 Rs) 

(Figure 1) ( Farrant and Nusser, 2005 ;  Belelli et al., 2009 ). 

  The different functional properties of these two 

classes of GABA 
A
 Rs derive from their different subunit 

composition. Thus, in the dentate gyrus and cerebellar 

granule cells, thalamocortical (TC) neurons, and some 

cortical neurons ( Nusser et al., 1998 ;  Pirker et al., 2000 ; 

 Nusser and Mody, 2002 ;  Belelli et  al., 2005 ;  Cope et  al., 

2005 ;  Jia et  al., 2005 ), eGABA 
A
 Rs contain a  δ  subunit, 

while the  α 5 subunit is present in eGABA 
A
 Rs in CA1 and 

CA3 hippocampal pyramidal cells ( Caraiscos et al., 2004 ; 

 Hortnagl et al., 2013 ). The  δ  subunit containing eGABA 
A
 Rs 

coassemble with two  α  ( α 4 or  α 6) and two  β  subunits. The 

 α 5 subunit containing eGABA 
A
 R usually coassemble with 

 α ,  β , and  γ 2 subunits.  α 1 and  α 2 subunits as well as  β 3 

subunits are also found in eGABA 
A
 Rs on the soma of hip-

pocampus CA1 pyramidal neurons ( Kasugai et al., 2010 ). 

 The very low GABA concentration that is present in 

the extracellular space can activate eGABA 
A
 R-mediated 

tonic inhibition, which thus occurs in a much more spa-

tially and temporally diffuse manner than phasic inhi-

bition ( Farrant and Nusser, 2005 ). Tonic inhibition has 

been observed in the cerebellum ( Brickley et  al., 1996 ), 

hippocampus ( Stell and Mody, 2002 ), striatum ( Ade et al., 

2008 ), and thalamus ( Cope et  al., 2005 ). Interestingly, 

tonic inhibition may also be involved in a number of neu-

rological and neuropsychiatric disorders ( Belelli et  al., 

2009 ;  Hines et al., 2012 ;  Egawa and Fukuda, 2013 ), includ-

ing stroke ( Clarkson et  al., 2011 ), epilepsy ( Cope et  al., 

2009 ;  Di Giovanni et al., 2011a ), anxiety ( Lydiard, 2003 ), 

depression ( Maguire et  al., 2005 ;  Luscher et  al., 2011 ), 

schizophrenia ( Guidotti et  al., 2005 ), and autism ( Pizza-

relli and Cherubini, 2011 ). 

 In this article, we will summarize the data supporting 

the existence of a modulation of eGABA 
A
 Rs by dopamine 

(DA), serotonin (5-HT), and noradrenaline (NA) recep-

tors in different brain areas. Since the vast majority of 

these receptors are G-protein-coupled receptors (GPCRs), 

the emerging picture is one where both sGABA 
A
 Rs and 

eGABA 
A
 R are under the influence of GPCRs (see  Connelly 

et al., 2013a ).  

  DA modulation of the tonic GABA A 
 current 
 DA receptors (DARs) are members of the GPCR super-gene 

family ( Kebabian and Calne, 1979 ), and dysfunction of 

the DA system has been implicated in many neurological 
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and neuropsychiatric disorders, including depression, 

schizophrenia, attention-deficit hyperactivity disorders, 

drug abuse, Gilles de la Tourette ’ s syndrome, Alzheimer ’ s 

disease, Parkinson ’ s disease (PD), and epilepsy ( Di Gio-

vanni, 2008 ,  2010 ). Two subclasses of DARs have been 

identified, that is, D1-like (D1 and D5) and D2-like (D2-D4) 

( Missale et  al., 1998 ). D1-like receptors are positively 

coupled to AC, while D2-like receptors generally inhibit 

this enzyme. Importantly, D1R agonists activate and D2R 

agonists block protein kinase A (PKA) ( Chen et al., 2006 ) 

via different second-messenger cascade systems, that is, 

through Gs/Golf and Gi/o, respectively ( Stoof and Keba-

bian, 1984 ). 

 Increasing evidence indicates that the interaction 

between the DA and GABA systems in the brain can be 

mostly attributed to the functional interactions between 

their receptors ( Liu et al., 2000 ;  Lee et al., 2005 ), which 

are mostly mediated by classic second-messenger systems 

(see below). However, a direct protein-protein interaction 

between these two receptors has also been reported, which 

is mediated by the carboxyl terminus of the D5R and the 

second intracellular loop of the GABA 
A
 R  γ 2 subunit ( Liu 

et al., 2000 ). This direct D5R-GABA 
A
 R coupling mutually 

inhibits the activity of both receptors: thus, GABA 
A
 R stim-

ulation inhibits the ability of D5Rs to activate AC, whereas 

D5R activation decreases sGABA 
A
 R-mediated inhibition 

( Liu et al., 2000 ;  Lee et al., 2005 ). Whether similar or dif-

ferent protein-protein interactions exist between DARs 

and eGABA 
A
 Rs remains to be investigated. 

  Striatum 

 The striatum, the main input of the basal ganglia circuitry 

( DeLong, 1990 ), receives a robust dopaminergic innerva-

tion from the substantia nigra pars compacta (SNc) but 

also from the ventral tegmental area (VTA). In the stria-

tum, DA binds to D1-like and D2-like receptors, modulat-

ing their intrinsic excitability and synaptic plasticity. The 

medium spiny neurons (MSNs) are the GABAergic prin-

cipal projecting striatal neurons and selectively express 

D1Rs on those of the direct pathway (to the SN) and D2Rs 

on those of the indirect pathway (to the external part of 

pallidum) ( Gerfen et al., 1990 ;  Di Giovanni et al., 2009 ). 

GABAergic terminal
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 Figure 1      Regulation of tonic inhibition and CNS disorders. 

 Aberrant tonic inhibition is suspected to be a mechanism underlying the neuronal dysfunctions in the listed disorders based on at least 

one of the following: (1) a direct measurement of tonic inhibition in model animals, (2) the use of eGABA 
A
 R-selective modulators in model 

animals, and (3) evaluation of  α 5 subunit expression in living human subjects (via positron emission tomography). Colored arrows indicate 

the proposed protein/subunit responsible for aberrant tonic inhibition (blue, down-regulation; red, up-regulation; black, GABA signaling 

during synaptic transmission). Dashed arrows indicate pathways still under debate. vGAT, vesicular GABA transporter; Best-1, bestrophin-1; 

glu, glutamate. Modified from  Egawa and Fukuda (2013) .    
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 Contrasting results have been reported on the subunit 

composition of GABA 
A
 Rs expressed in the striatum ( Liste 

et  al., 1997 ;  Flores-Hernandez et  al., 2000 ;  Schwarzer 

et al., 2001 ;  Ade et al., 2008 ;  Santhakumar et al., 2010 ). 

The striatum stains positively for  α 1 to  α 5 subunits 

(although weakly for  α 3 and  α 5), all  β  subunits, as well 

as  γ 2 and  δ  subunits ( Pirker et al., 2000 ). Others, however, 

have reported that MSNs do not express  α 3 and  α 6 sub-

units ( Liste et  al., 1997 ;  Rodriguez-Pallares et  al., 2000 ; 

 Schwarzer et al., 2001 ) but do express  α 2 and  β 2/ β 3 sub-

units ( Liste et al., 1997 ). Moreover, single-cell polymerase 

chain reaction (PCR) suggests that  β 1 and  β 3 subunits 

are expressed in MSNs ( Flores-Hernandez et  al., 2000 ), 

while  β 2 subunits appear to be solely present in striatal 

interneurons ( Schwarzer et al., 2001 ). 

 Many groups ( Ade et  al., 2008 ;  Kirmse et  al., 2008 ; 

 Janssen et al., 2009 ,  2011 ;  Santhakumar et al., 2010 ;  Luo 

et  al., 2013 ) have shown the presence of a tonic GABA 
A 

 current in MSNs, although one study ( Gertler et al., 2008 ) 

did not report a tonic GABA 
A
  current in either D2  +   or D1  +   

MSNs. D2  +   MSNs have a greater tonic GABA 
A
  current 

( Zheng and Johnson, 2001 ) and are more sensitive to low 

doses of GABA than D1  +   MSNs ( Ade et al., 2008 ). In young 

mice (P16-25), application of the GABA 
A
 R antagonist 

bicuculline blocks spontaneous inhibitory postsynaptic 

currents (IPSCs) and consistently reduces the holding 

current in D2  +   MSNs, suggestive of an endogenous tonic 

GABA 
A
  current. This effect can also be observed in D1  +   

MSNs, although its magnitude is significantly smaller, 

and in some neurons, it can be absent altogether ( Ade 

et al., 2008 ). As it is the case in other brain areas ( Bright 

et al., 2007 ), the strong TTX sensitivity of the tonic GABA 
A
  

current in MSN indicates that synaptic spillover is the 

main origin of the ambient GABA that in the striatum is 

responsible for the tonic current ( Ade et al., 2008 ). 

 The larger tonic current in D2  +   cells of young mice is 

likely to be mediated by  α 5 β 3 γ 2 receptors. This is based 

on the evidence that there is (i) a differential expression 

of  α 5- and  β 3-containing receptors in D2  +   compared to D1  +   

neurons; (ii) the similar expression and effect of  δ -subunit-

containing eGABA 
A
 Rs between the two MSN populations, 

with a minimal contribution to tonic GABA 
A
  currents; 

and (iii) a lack of effect of  α 1-containing GABA 
A
 R recep-

tor activation on both D2  +   and D1  +   MSNs ( Ade et al., 2008 ; 

 Janssen et al., 2009 ,  2011 ;  Santhakumar et al., 2010 ). Since 

GABA 
A
 R subunits are developmentally regulated ( Laurie 

et  al., 1992 ), it is not surprising that there is a develop-

mental reversal in the tonic GABA 
A
  current profile of adult 

(p  >  30) MSNs: thus, a larger tonic current is present in D1  +   

MSNs, due to an increase of  δ -containing GABA 
A
 Rs, and 

a smaller current in D2  +   MSNs, as a result of a reduced 

 α 5 subunit expression ( Santhakumar et  al., 2010 ). This 

developmental switch in the tonic inhibitory control of 

the MSNs from those of the indirect to those of the direct 

pathway will undoubtedly affect the input-output curve of 

the striatal circuit. 

 DA1Rs and DA2Rs modulate the tonic GABA 
A
  current 

in both young and adult MSNs ( Janssen et  al., 2009 ). 

Although DA is present in such low concentrations that 

it does not activate D1Rs and D2Rs in striatal slices, DA2R 

stimulation with quinpirole decreases the tonic current in 

D2  +   MSNs, whereas D1R activation with SKF-81297 induces 

a tonic GABA 
A
  currents in D1  +   MSNs ( Janssen et al., 2009 ). 

This dopaminergic modulation of the tonic current is likely 

due to changes in the phosphorylation state of eGABA 
A
 Rs 

in both young and adult mice, and  β 1 and  β 3 subunits are 

substrates for PKA-mediated phosphorylation ( Moss et al., 

1992 ;  Poisbeau et al., 1999 ;  Flores-Hernandez et al., 2000 ; 

 Vithlani and Moss, 2009 ;  Kang et al., 2011 ). Importantly, 

DA agonists and intracellular PKA application fail to sig-

nificantly alter sGABA 
A
  currents in the striatum ( Janssen 

et al., 2009 ), although it is well known that, in other brain 

areas, sGABA 
A
  responses are phosphorylation dependent 

( McDonald et al., 1998 ;  Nusser et al., 1999 ;  Flores-Hernan-

dez et al., 2000 ). In conclusion, DA exclusively modulates 

tonic GABA 
A
  currents and not IPSCs in the striatum.  

  Thalamus 

 Differently from humans, the thalamus of rodents only 

shows a sparse dopaminergic innervation ( Groenewe-

gen, 1988 ;  Papadopoulos and Parnavelas, 1990 ;  Garcia-

Cabezas et al., 2007 ,  2009 ) and moderate levels of DARs 

( Wamsley et al., 1989 ;  Weiner et al., 1991 ;  Khan et al., 1998 ). 

In addition, the precise cellular localization of DARs in the 

thalamus is mostly unknown. On the contrary, compelling 

experimental evidence shows an important DA modula-

tion of thalamic cell excitability. For instance, the nucleus 

reticularis thalami (NRT) is rich in DA4Rs ( Khan et  al., 

1998 ), which are located presynaptically on globus palli-

dus (GP) terminals and, once activated, lead to a reduced 

inhibitory input of these afferents to the NRT neurons 

( Floran et  al., 2004 ;  Gasca-Martinez et  al., 2010 ). More-

over, strong  in vitro  electrophysiological evidence shows 

that DAR1 and DAR2 can modify the excitability of tha-

lamic neurons with both cellular and nucleus specificity. 

For example, D2Rs but not D1Rs are involved in DA-medi-

ated excitation of mediodorsal (MD) thalamic neurons 

( Lavin and Grace, 1998 ), while DA acting via D1Rs leads 

to a membrane depolarization in dorsal lateral geniculate 

nucleus (dLGN) TC neurons ( Govindaiah and Cox, 2005 ). 
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On the contrary, DA has also been shown to indirectly 

inhibit these neurons via D2R-mediated excitation of local 

GABAergic interneurons, producing an increase of phasic 

GABA 
A
  inhibition ( Munsch et al., 2005 ). In agreement with 

this, DA is capable of increasing the tonic GABA 
A
  current 

in rat dLGN TC neurons ( Di Giovanni et al., 2008 ). 

 DA also modulates the activity of ventrobasal (VB) TC 

neurons: it increases firing (via an action on postsynaptic 

D2Rs) and induces membrane depolarization (via D1Rs) 

( Govindaiah et al., 2010 ). As far as inhibition is concerned, 

DA has no effect on miniature IPSCs (mIPSCs) ( Yague 

et  al., 2013 ) but strongly reduces eGABA 
A
 R-mediated 

tonic inhibition in VB TC neurons of Wistar rats (Figure 2) 

( Yague et al., 2013 ). Quinpirole and PD-168,077 (D2R and 

D4R agonists, respectively) also reduced the tonic current 

without altering phasic inhibition (Figure 2). These DA 

effects might be mediated by D4Rs, since (i) quinpirole 

binds with higher affinity at D3/4Rs than at D2Rs ( Sokoloff 

et al., 1990 ) and mimics the DA effects, (ii) D3Rs are not 

considerably expressed in the thalamus ( Gurevich and 

Joyce, 1999 ), and (iii) PD-168,077 is a selective and potent 

D4 agonist ( Glase et al., 1997 ). Finally, the action of DA, 
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 Figure 2      Dopaminergic modulation of the eGABA 
A
  tonic current in the VB thalamus. 

 (A1) Representative current traces (top) and averaged IPSCs (bottom) from different TC neurons in VB slices from Wistar rats, under control 

conditions [100  μ  m  ascorbic added to artificial cerebrospinal fluid (aCSF)] and in the continuing presence of DA (200  μ  m ; right). Focal 

application of gabazine (GBZ; 100  μ  m ; gray bar) reveals different magnitude of tonic GABA 
A
  tonic current. (A2) Summary of the effects of DA 

on the tonic current (right) and normalized I 
GABA 

 tonic. (B1, C1, and D1) Representative current traces (top) and averaged IPSCs (bottom) from 

different TC neurons of the VB thalamus of Wistar rats under control conditions (left) and in the continuing presence of SKF-39383 (50  μ  m ), 

quinpirole (50  μ  m ), and PD-16,8077 (100  μ  m ; right). (B2, C2, and D2) Summary of the effects of SKF-39383, quinpirole, and PD-16,8077 on 

GABA 
A
  tonic current (left) and normalized GABA 

A
  tonic current (right) (*p<0.05, **p<0.01, unpaired t-test). Adapted from  Yague et al. (2013) .    
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quinpirole, and PD-168,077 on the tonic current does not 

result from a decreased vesicular GABA release, since 

GABA 
A 

 sIPSC frequency, a measure of action potential-

dependent vesicular GABA release, is unaffected by both 

DA and these two agonists. 

  It is difficult to speculate on the localization of the 

DARs that mediate the above effects on the tonic current. 

It is conceivable that DA might decrease eGABAR activity 

by reducing glial GABA release and its ambient concen-

tration, since DARs have been reported to be present in 

astrocytes in some brain areas ( Khan et al., 2001 ;  Miyazaki 

et al., 2004 ) and because astrocyte-neuron GABA signal-

ing in the VB specifically targets eGABA 
A
 Rs ( Jimenez-

Gonzalez et  al., 2011 ). As mentioned earlier, the only 

clear evidence regarding DAR localization in the thala-

mus is the high expression of D4Rs in GP terminals in the 

NRT ( Ariano et  al., 1997 ), where they negatively control 

this inhibitory input to the NRT ( Gasca-Martinez et  al., 

2010 ). D4R activation, therefore, may decrease intra-NRT 

GABA release ( Floran et al., 2004 ), leading, in turn, to an 

increase firing of GABAergic NRT neurons ( Gasca-Mar-

tinez et al., 2010 ). However, selective D4R activation does 

not affect sGABA 
A
 R activity, indicating no change in the 

phasic NRT input to the VB. Thus, the effect of D4R acti-

vation on eGABA 
A
 R-mediated tonic current ( Yague et al., 

2013 ) might be due to the presence of D4Rs expressed in 

VB TC neurons, in agreement with other recent electro-

physiological evidence ( Govindaiah et al., 2010 ). 

 In view of the increased eGABA 
A
 R function in experi-

mental absence epilepsy ( Cope et  al., 2009 ), it is inter-

esting that, in one of these models [the Genetic Absence 

Epilepsy Rats from Strasbourg (GAERS)], D4R activation 

decreases the tonic but not the phasic GABA 
A
  current 

( Yague et al., 2013 ). Since a selective reduction of the tonic 

current in the VB has been shown to drastically reduce 

absence seizures ( Cope et al., 2009 ), it is possible that the 

known anti-absence effects of some dopaminergic drugs 

( Marescaux et al., 1992 ) may occur in part by their ability 

to decrease thalamic eGABA 
A
 R function. 

 In summary, DA can excite VB neurons through differ-

ent actions, one of which involves a reduction in the tonic 

GABA 
A
  current. Strikingly, DA selectively modulates tonic 

vs. phasic inhibition similarly to its action in the striatum.   

  NA modulation of the tonic GABA A 
 current 
 NA excites GABAergic interneurons ( McCormick, 1992a ; 

 Kawaguchi and Shindou, 1998 ) and indirectly inhibits the 

principal neuron in different CNS areas ( Segal et al., 1991 ). 

Moreover, NA can increase GABA 
A
  IPSCs in cerebellar stel-

late ( Kondo and Marty, 1997 ), frontal cortex ( Kawaguchi 

and Shindou, 1998 ), and cerebellum neurons and has 

opposite effects on GABAergic neurons of different corti-

cal layers depending on the type of NAR involved ( Salgado 

et  al., 2011 ). NA slowly depolarizes dLGN TC neurons 

through a decrease in a K  +   conductance ( McCormick and 

Prince, 1988 ) and strongly increases I 
h
  via stimulation of 

 β -adrenergic receptors ( McCormick and Pape, 1990 ). Sur-

prisingly, the effect of NA on GABAergic transmission in 

the thalamus has not been investigated, and our prelimi-

nary data show that NA does increase both the frequency 

of sIPSC and the amplitude of the tonic GABA 
A 

 current in 

rat dLGN TC neurons ( Di Giovanni et al., 2008 ). The effect 

of NA (50  μ  m ; n = 6) was even larger (107.2  ±  14.8 pA; n = 5; 

 p   <  0.005) compared to the DA (50  μ  m ; n = 6) effect (90.7  ±  5.6 

pA; n = 6;  p   <  0.005) (Figure 3). 

    5-HT modulation of the tonic GABA A  
current 
 Almost all brain regions are innervated by serotonergic 

fibers arising from the midbrain dorsal (DR) and median 

raphe (MR) nuclei ( Dahlstrom and Fuxe, 1964 ;  Hillegaart, 

1991 ;  Abrams et al., 2004 ;  Di Giovanni et al., 2010 ;  Hale 

and Lowry, 2010 ). 5-HT receptors are presently divided 

into seven classes (5-HT 
1
 -5-HT 

7
 ), which are then subdi-

vided into subclasses with a total of at least 14 different 

receptors ( Barnes and Sharp, 1999 ;  Hoyer et al., 2002 ;  Di 

Giovanni et  al., 2011b ). With the exception of the iono-

tropic 5-HT 
3
 R, all other 5-HTRs are GPCRs ( Di Giovanni 

et al., 2011b ). 

 5-HTR modulation of GABA inhibition has been 

extensively studied because of the involvement of these 

receptors in many neurological diseases that affect 

GABAergic systems, including schizophrenia, depression, 

drug abuse, sleep disorders, and epilepsy ( Di Giovanni 

et  al., 2001 ;  Bankson and Yamamoto, 2004 ;  Invernizzi 

et al., 2007 ;  Nikolaus et al., 2010 ). 

 5-HT enhances the frequency of GABA 
A
  mIPSCs in a 

population of VTA and SNc dopaminergic neurons ( Pessia 

et  al., 1994 ;  Theile et  al., 2009 ), nucleus raphe magnus 

serotonergic neurons ( Inyushkin et  al., 2010 ), dorsal 

horn neurons ( Inyushkin et  al., 2010 ), and suprachias-

matic nucleus neurons ( Bramley et al., 2005 ) but reduces 

evoked IPSCs in the rat dorsolateral septal nucleus ( Mat-

suoka et al., 2004 ). Since the amplitude of mIPSCs is not 

affected by 5-HT or its ligands, it is highly likely that 5-HT 
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augments GABAergic synaptic transmission via presynap-

tic mechanisms. Indeed, an enhanced Ca 2 +   release from 

intracellular stores by 5-HT 
2C

 R activation is believed to be 

involved in the ethanol-induced enhancement of GABA 

release onto dopaminergic VTA neurons ( Theile et  al., 

2009 ). 

 There is also evidence for a postsynaptic interaction 

between 5-HTRs and GABA 
A
 Rs. 5-HT 

2C
 R inhibit GABA 

A
  cur-

rents in  Xenopus  oocytes coexpressing both receptors via 

an action that requires elevated intracellular Ca 2 +   levels 

( Huidobro-Toro et al., 1996 ) but does not involve changes 

in GABA 
A
 Rs phosphorylation ( Huidobro-Toro et al., 1996 ). 

On the contrary, some evidence shows that PKA and 

protein kinase C (PKC) are involved in mediating the effects 

of 5-HT on GABA 
A
 R function. Thus, activation of postsyn-

aptic 5-HT 
2
 Rs in prefrontal cortex pyramidal neurons can 

inhibit GABA 
A
  currents via a PKC-induced phosphoryla-

tion of the GABA 
A
   γ 2 subunit, which in turn is dependent 

on RACK1-anchored PKC ( Feng et  al., 2001 ). Moreover, 

5-HT 
4
 R activation modulates GABA 

A
  currents bidirection-

ally: thus, elevated PKA levels due to increased neuronal 

activity have been shown to reverse the enhancing effect 

Control
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100 pA

20 s
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100 µM mCPP +
10 µM SB24208450 µM m-CPP 

50 µM 5-HT 100 µM 8-OHDPAT

 Figure 3      Monaminergic modulation of tonic GABA 
A
  current in the dLGN. 

 (A) Focal application of gabazine (GBZ; 100  μ  m ; gray bar) reveals different magnitude of tonic current. Representative current traces from 

different TC neurons of the dLGN of Wistar rats under control conditions (top left) and in the continuing presence of DA (50  μ  m ; middle) and 

NA (50  μ  m ; right). (B) Representative current traces from different TC neurons in dLGN slices from Wistar rats under control conditions (left) 

and in the continuing presence of 5-HT (50  μ  m ), 8-OH-DPAT (100  μ  m ), and  α -m-5-HT (100  μ  m ; top traces) and  α -m-5-HT (100  μ  m ) + Ketanserine 

(50  μ  m ),  α -m-5-HT (100  μ  m ) + SB242084 (10  μ  m ), and mCPP (50  μ  m ) and mCPP (100  μ  m ) + SB242084 (10  μ  m ; bottom traces).    
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of 5-HT 
4
 R activation into depression of neuronal excitabil-

ity ( Cai et al., 2002 ). 

  dLGN of the thalamus 

 5-HT 
2A

 Rs and 5-HT 
2C

 Rs are present in TC neurons of the 

rodent dLGN ( Li et al., 2004 ;  Coulon et al., 2010 ). A recent 

study has shown a preferential immunohistochemi-

cal staining for 5-HT 
2C

 Rs vs. 5-HT 
2A

 Rs in mice dLGN TC 

neurons, although these receptors are not somatically 

expressed ( Coulon et  al., 2010 ). 5-HT 
2
 R mRNA has also 

been detected in GABAergic interneurons of the dLGN, 

with similar pattern of expression for the 2A and 2C sub-

types ( Munsch et al., 2003 ). 

 As other brainstem neurotransmitters, 5-HT depolar-

izes TC neurons of the dLGN, eliciting a shift from rhyth-

mic bursting to tonic firing activity ( McCormick, 1992b ). 

This depolarization is caused both by inhibition of a leak 

K  +   conductance ( Meuth et  al., 2006 ) and by modulation 

of the hyperpolarization-activated current I 
h
  ( Pape and 

McCormick, 1989 ;  Chapin and Andrade, 2001 ). 5-HT and 

activation of 5-HT 
2C

 Rs produce similar membrane depo-

larizations, which depend on Gq-coupled intracellular 

signaling cascades ( Coulon et al., 2010 ). The intracellular 

pathways that couple 5-HT 
2
 Rs to the Ca 2 +   influx mecha-

nism seems to depend on the PLC system. This does not 

involve intracellular Ca 2 +   release or voltage-gated Ca 2 +   

channels but is critically dependent on a transient recep-

tor potential (TRP) protein, the transient receptor poten-

tial channel 4 (TRPC4) ( Munsch et al., 2003 ). 

 5-HTR modulation has complex effects on phasic 

and tonic GABA 
A
  currents in dLGN TC neurons. Interest-

ingly, 5-HT itself does not affect the tonic GABA 
A
  current in 

dLGN TC neurons but increases sIPSC frequency ( Di Gio-

vanni et al., 2008 ). Similarly, application of the 5-HT 
1A/7

 R 

agonist 8-OH-DPAT does not change the tonic current 

but increases the weighted decay time constant and the 

frequency of mIPSCs. The 5-HT 
2A/2C

 R agonist  α -methyl-

5-hydroxytryptamine ( α -m-5-HT) strongly increases the 

tonic current as well as the amplitude and frequency of 

mIPSCs. These effects are mediated by 5-HT 
2A

 Rs since 

they are blocked by ketanserin, an antagonist with 

higher selectivity for 5-HT 
2A

 Rs than 5-HT 
2C

 Rs, but not by 

SB 242084, a selective 5-HT 
2C

 R antagonist. Moreover, con-

comitant application of 5-HT and ketanserin decreases 

the tonic GABA 
A
  current and increases the decay time 

constant and charge transfer of mIPSCs. Finally, the unse-

lective 5-HT 
2C

 R agonist  m -chlorophenylpiperazine (mCPP) 

markedly reduces the tonic current, whereas all mIPSC 

properties are unchanged with the exception of a decrease 

in amplitude. These effects of mCPP are probably medi-

ated by 5-HT 
2C

 Rs since they are blocked by coapplication 

of SB 242084 (Figure 3) ( Di Giovanni et al., 2008 ).  

  VB nucleus of the thalamus 

 5-HT is able to modulate the firing VB TC neurons directly 

( McCormick, 1992b ), although early evidence indicated 

that it plays more of a modulatory role by facilitating the 

response of these neurons to excitatory amino acids ( Eaton 

and Salt, 1989 ) or by inhibiting acetylcholine-induced 

excitation ( Andersen and Curtis, 1964 ). Exogenous appli-

cation of 5-HT in VB slices was reported to have no effect 

on sIPSC ( Munsch et al., 2003 ). We recently have started 

evaluating the effects of 5-HT 
2A

 R and 5-HT 
2C

 R ligands on 

phasic GABA 
A
  inhibition in VB TC neurons of Wistar rats 

( Cavaccini et al., 2012 ). Similarly to the dLGN, 5-HT 
2A

 R acti-

vation enhances while 5-HT 
2C

 R ligands decrease the tonic 

GABA 
A
  current: this opposite effects may result from dif-

ferent signal transduction pathways. Alternatively, they 

could be due to a different receptor distribution, that is, 

a preferential postsynaptic location of 5-HT 
2C

 Rs on VB TC 

neurons, while 5-HT 
2A

 Rs might be expressed mostly pre-

synaptically on GABAergic NRT neurons or their axon ter-

minals, which are both preserved in our slices. 

 A similar scenario with an opposite role for 5-HT 
2A 

 and 

5-HT 
2C

 Rs in the modulation of this type of GABA 
A 

 inhibition 

is also present in GAERS rats ( Cavaccini et al., 2012 ). Our 

preliminary data are in agreement with previous results 

suggesting an impairment of the serotonergic system in 

absence epilepsy; indeed, 5-HT depletion has been shown 

in Long Evans rats, another strain that expresses sponta-

neous absence seizures ( Bercovici et al., 2006 ).  

  Other thalamic nuclei 

 5-HT 
1A

 Rs and 5-HT 
2A

 Rs are relatively highly expressed in 

the GABAergic neurons of the NRT ( Li et al., 2004 ;  Bonnin 

et  al., 2006 ;  Rodriguez et  al., 2011 ). 5-HT 
1A

 Rs are mainly 

present on the soma and proximal dendrites of these 

neurons, whereas 5-HT 
2A

 R are less abundant and moder-

ately expressed on cell bodies and more abundant on fine 

and medium-sized dendrite ( Rodriguez et al., 2011 ). 

 The highest expression of 5-HT 
7
 Rs in the rat brain 

occurs in the intralaminar and midline thalamic nuclei, 

where they strongly modulates neuronal excitability by 

inhibiting the calcium-activated potassium conduct-

ance that is responsible for the slow after-hyperpolariza-

tion ( Goaillard and Vincent, 2002 ). In contrast, 5-HT 
7
 Rs 

Authenticated | giuseppe.digiovanni@um.edu.mt author's copy
Download Date | 1/28/14 4:53 PM



8      V. Crunelli and G. Di Giovanni: Monoamines and GABA
 A
  tonic current

depolarize neurons of the anterodorsal thalamic nucleus 

primarily by increasing I 
h
  through a cyclic AMP (cAMP)-

dependent and PKA-independent mechanism ( Chapin 

and Andrade, 2001 ). 

 Surprisingly, no study has investigated 5-HTR modu-

lation of the GABAergic function in NRT neurons or cells 

in the intralaminar, midline, or anterior thalamic nuclei.   

  Conclusions 
 It is now well established that the amplitude of the 

eGABA 
A
 R-mediated tonic current changes in relation to 

the ambient GABA concentration ( Pavlov et al., 2009 ) is 

modulated by exogenous agents including neuroster-

oids, alcohol, and anesthetics ( Belelli et  al., 2009 ) and 

that eGABA 
A
 Rs show plasticity in response to changes in 

sGABA 
A
 Rs activity ( Nani et  al., 2013 ). As reviewed here, 

eGABA 
A
 Rs are also subject to modulatory actions by 

the monoamines that can act presynaptically, modulat-

ing GABA release, or postsynaptically, directly altering 

eGABA 
A
 R activity (see also the recent findings of post-

synaptic GABA 
B
 Rs interaction with eGABA 

A
 Rs ( Connelly 

et  al., 2013b ;  Tao et  al., 2013 ). Since these modulations 

of eGABA 
A
 R are both nucleus selective and neuronal 

type selective, the functional interactions of GABA with 

other neurotransmitters are more complex than previ-

ously envisioned. Moreover, while activation of GABA 
B
 , 

D2, and 5-HT 
2A/2C

 Rs preferentially modulates eGABA 
A
 R 

over sGABA 
A
 R-mediated conductance in the thalamic VB 

nucleus ( Di Giovanni et al., 2008 ;  Cavaccini et al., 2012 ; 

 Connelly et al., 2013b ;  Yague et al., 2013 ), mGlu, D2, and 

different 5-HTRs do affect both phasic and tonic inhibition 

in the dLGN ( Munsch et al., 2005 ;  Di Giovanni et al., 2008 ; 

 Errington et  al., 2011b ). The monoamine modulation of 

eGABA 
A
 R could be due to the different synaptic localiza-

tion of the associated GPCRs between dLGN and VB or to 

different direct protein-protein interaction. 

 Nevertheless, it is clear that the diverse modulations 

of eGABA 
A
 Rs by monoamines provide a powerful route for 

the fine-tuning of single neuron and network excitability 

in physiological conditions as well as in neurological dis-

eases. Thus, since PD symptoms result from an imbalance 

in the two striatal pathways ( Mallet et al., 2006 ;  Esposito 

et al., 2007 ;  Obeso et al., 2008 ) and Huntington ’ s disease 

from a selective loss of D2  +   MSNs ( Estrada Sanchez et al., 

2008 ), the differential expression of the tonic GABA 
A
  

currents in D1  +   and D2  +   MSNs does offer novel potential 

targets for the treatment of these diseases. 

 The ability of some monoamines to selectively mod-

ulate only one type of GABA 
A
 R-mediated inhibition may 

also have important therapeutic relevance in patholo-

gies such as absence epilepsy, where there is an aberrant 

increase in thalamic eGABA 
A
 R function but an unchanged 

phasic inhibition ( Cope et al., 2009 ). Since this enhanced 

thalamic tonic GABA 
A 

 current is a necessary and sufficient 

condition for the expression of typical absence epilepsy 

( Cope et  al., 2005 ;  Di Giovanni et  al., 2011a ;  Errington 

et al., 2011c ), it is conceivable that the anti-absence action 

of systemically injected 5-HT and DA ligands ( Danober 

et al., 1998 ;  Isaac, 2005 ;  Bagdy et al., 2007 ) occur in part 

via a modulation of the thalamic tonic GABA 
A
  inhibi-

tion. Indeed, since there are no specific antagonists for 

 δ -subunit-containing eGABA 
A
 Rs, the possibility of modu-

lating the tonic GABA 
A
  current by the monoamine receptor 

activation/inhibition offers an interesting novel therapeu-

tic target for this type of generalized epilepsy ( Errington 

et al., 2011a ) and other disorders for which an impairment 

of eGABA 
A
 Rs has been reported. Indeed, the cross-talk 

between GPCRs and eGABA 
A
 Rs might be the target under-

lying the pharmacological actions of some of the mono-

amine receptor ligands that are currently marketed for 

this and other neurological diseases.   
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