
Global Search for Occlusion Minimisation
in Virtual Camera Control

Paolo Burelli, Student Member, IEEE and Georgios N. Yannakakis, Member, IEEE

Abstract— This paper presents a fast and reliable global-
search approach to the problem of virtual camera positioning
when multiple objects that need to be within the reach of the
camera are fully occluded. For this purpose, a comparative anal-
ysis of global-search algorithms is presented for the problem of
maximising camera visibility across different tasks of varying
complexity and within different real-time windows. A custom-
designed genetic algorithm is compared to octree-based search
and random search and results showcase the advantages of the
genetic algorithm proposed with respect to efficiency, robustness
and computational effort.

I. INTRODUCTION

Camera control is a vital component of player experience
and enjoyability in games [23]. A camera in games provides
the player with a means for exploring the game world, getting
feedback on her actions, and updating the state of the game.
Given its critical importance in 3D virtual environments
camera control may provide means of challenge for and
justifiability of artificial intelligence. Camera settings for
games are usually predefined by designers and potential
camera visibility problems (e.g. in the case of occluded
objects) are tackled via simple, nevertheless, unjustifiable and
unrealistic solutions — i.e. the camera rapidly jumps to a
selected non-occluded position towards the closest object of
interest.

In this paper we propose a top-down global search ap-
proach to the problem of finding a non-occluded point when
in-game objects of interest are fully occluded. Occlusion oc-
curs when points (or objects) of interest that the camera needs
to look at are fully, or partially, hidden by objects or walls
of the designed scene geometry. Under these circumstances,
the camera controller is required to find a path towards
an occlusion-free point (ideally a fully non-occluded point)
within a realistic time frame. If the controller is unsuccessful
within a short time window (e.g. 200ms maximum), the
reliability of game camera control is challenged and any
immersion emerged by cinematographic game experience is
lost.

The problem of camera visibility is challenging because
(a) visibility heuristics are computationally expensive to cal-
culate in real-time, and (b) the generated visibility function
terrains are very rough for a search algorithm to explore.
In particular, in order to evaluate the visibility “goodness”
of a camera position, rays need to be casted towards the
object(s) of interest; the designer often has to sacrifice

Authors are with the Center for Computer Games Research, IT University
of Copenhagen, Rued Langgaards Vej 7, DK-2300 Copenhagen S, Denmark.
Emails: {pabu, yannakakis}@itu.dk

visibility accuracy due to the computational cost of visi-
bility estimation in real-time. Moreover, in the majority of
occlusion situations met in computer games the objects of
interest are much smaller than scene geometry features. This
suggests that objects are either occluded or non-occluded;
the situations where objects are partially occluded are rare.
On that basis, visibility fitness generates rough search spaces
the vast majority of which is covered by multimodal fitness
plateaus of near-zero gradient.

Gradient search [7] and local search (e.g. artificial potential
fields [9]) are bound to fail in such problems. Instead, robust
and efficient global search algorithms are required to allocate
fully, or partially, un-occluded camera positions. This paper
introduces a comparative study of search algorithms for solv-
ing the problem of visibility occlusion in camera control. A
custom-designed genetic algorithm (GA) for the investigated
problem, octree-based search [1] (best-first and depth-first)
and random search are evaluated in occlusion problems of
increasing complexity and their speed is evaluated across
different time windows. Algorithm performance is accessed
via the amount of object visibility of the generated solutions,
the number of times a global maximum is found and the time
it took the algorithm to find the maximum.

Results show that the GA proposed demonstrates robust-
ness and real-time efficiency across four dissimilar occlusion
case studies containing three objects of interest and varying
in complexity. It is also apparent that the GA approach
performs well consistently with respect to real-time perfor-
mance in all case studies examined. Random search performs
well in complex problems but it performs poorly in simpler
problems. Finally, octree-based search is outperformed by
the aforementioned algorithms and performs well in simple
problems only.

This paper is innovative in that it introduces an efficient
and reliable GA solution to the problem of full occlusion in
camera control; it examines complex case studies of multiple
(three) objects of interest; and it provides a comparative
analysis of search algorithms (including genetic and random
search) with respect to problem complexity and real-time
performance.

II. BACKGROUND

The problem of automatically controlling the camera in
virtual 3D environments has recently received significant
attention from the research community [11]. The majority
of the earliest approaches to camera control [24], [6], [13]
focus on the mapping between user input and the degrees
of freedom (DOF) of the camera in the 3D space. Direct

WCCI 2010 IEEE World Congress on Computational Intelligence
July, 18-23, 2010 - CCIB, Barcelona, Spain CEC IEEE

978-1-4244-8126-2/10/$26.00 c©2010 IEEE 2718

control of the several DOFs of the camera showed to often
be problematic for the user [12] so researchers started to
investigate how to automatically place and configure the
camera.

One of the first examples of automatic camera control, was
developed by Blinn already in 1988; it was an automatic
camera control system for planet visualization in a space
simulation at NASA [6]. Blinn’s work has inspired many
other researchers trying to produce more flexible autonomous
camera systems and attempting to integrate aspects like
camera motion and frame composition [2].

More generic approaches model camera control as a
constraint satisfaction or optimisation problem. These ap-
proaches require the designer to define a set of required frame
properties which are then modelled either as an objective
function to be maximised by the solver or as a set of
constraints that the camera configuration must satisfy. These
properties describe how the frame should look like in terms
of object size, visibility and positioning. Bares et al. [3] first
introduced a detailed definition of these constraints.

Global optimisation based systems (see Halper’s and
Olivier’s CAMPLAN [15] approach among others) model
these requirements as a fitness function (a weighted sum
of each required frame property) and search the space for
the camera configuration generating the maximum fitness
value. These approaches guarantee to find a result but their
computational cost is high. On that basis, constraint satis-
faction systems [17] are much more efficient but may not
return any result if there is no configuration satisfying all the
frame requirements at the same time. Bares and Lester [4]
addressed the issue by identifying conflicting constraints and
producing multiple camera configurations corresponding to
the minimum number of non-conflicting subsets. Bourne and
Sattar [7] extended Bares’ and Lester’s solution by adding
a weight property to each constraint to define a relaxation
priority. Another set of approaches [22], [10], [8], combines
constraint satisfaction to select feasible volumes (therefore
reduce the size of the search space) and optimisation to find
the best camera configuration within these spaces.

Due to the complexity of evaluating a proper objective
(fitness) function for camera control the aforementioned
approaches have proven to be unsuitable for real-time inter-
active applications since their required computational time
is too high to keep the camera updated at a reasonable rate
(from 20 to 60 times per second). Moreover, in several cases
the best camera configuration might not correspond to the
global optimum of the fitness function, since the camera
needs to maintain frame coherence (continuity between suc-
cessive frames) [16].

Beckhaus et al. [5] investigated first the application of
local search algorithms to camera control. Their system used
Artificial Potential Fields (APFs) to guide the camera through
a museum and generate smooth virtual tours. Bourne and
Sattar [7] proposed a system that employed sliding octrees to
guide the camera to the optimal camera configuration. Burelli
and Jhala [9] extended these two approaches to include frame

composition and support multiple-object visibility.
Local search approaches offer reasonable real-time perfor-

mance and handle well frame coherence but often converge
prematurely to local minima. This characteristic becomes
critical when the camera control system has to optimise
visibility of objects of interest since the visibility heuristic
consists of many local minima areas with almost no gradient
information available to guide local search (see Section IV).

A. Occlusion

Successfully handling object occlusion constitutes a vital
component of an efficient camera controller [11]. Object
visibility plays a key role in frame composition. For instance,
an object satisfying all frame conditions (e.g. position in
frame and projection size) does not provide any of the
required visual information if it is completely invisible due
to an occlusion.

The object occlusion problem can be separated in two
dissimilar yet dependent tasks: occlusion evaluation/detection
and occlusion minimisation/avoidance. Occlusion happens
when the object of interest is hidden fully or partially by
another object. A common technique to detect occlusion
consists of casting a series of rays between the object of
interest and the camera [8], [7]. A similar approach [21]
generates a bounding volume containing both the camera
and the object of interest and checks whether other objects
intersect this volume. A third approach [16] exploits the
graphic hardware by rendering the scene at a low resolution
with a color associated to each object and checking the
presence of the color associated to the object of interest.
These techniques have been used for occlusion avoidance
(i.e. maintaining an object visible in the frame) by reacting to
incoming occluders [7], and via particle swarm optimisation
[8]. Pickering [22] proposed a shadow-volume occlusion
avoidance algorithm where the object of interest is modelled
as a light emitter and all the shadow-volumes generated
are considered occluded areas. However, the aforementioned
approaches are not suitable for dynamic environments like
games due to their high computational cost. Bourne and
Sattar [7] devised an escape mechanism from occluded
camera positions which forces the camera to jump to the first
non-occluded position between its current position and the
position of the object of interest. Their approach, however,
generates undesired camera jumping behaviours within a
game environment and considers just one object of interest.

B. The Camera Control System Utilized

We have developed CamOn [9], an autonomous camera
system capable of generating smooth camera animations
and solving camera composition tasks. Artificial Potential
Fields (APFs) [19] are used to model camera constraints;
each constraint is translated into a force vector attracting or
repulsing the camera position, gradient search is then applied
to animate the camera towards an optimal configuration.
The APF camera system guarantees real-time performance
and frame-coherence during camera animation. The CamOn
occlusion avoidance system, inspired by [7], uses occlusion

2719

information to modify the APF which, in turn, drives the
camera out of the occluded position. Although this technique
is very efficient, being a local search approach it is unable to
escape local visibility optima (i.e. when the object of interest
is fully covered by another object).

This paper is the first to propose an efficient yet cost-
effective global search solution for minimising occlusion.
The approach is also innovative in that it is able to handle
visibility requirements for multiple targets rather than just
one. Furthermore the paper introduces a comparative study
of efficiency, robustness and effort cost of dissimilar global
search algorithms for occlusion minimisation. The custom-
designed genetic algorithm is found to be the most reliable
approach for the problem.

III. SEARCH ALGORITHMS

We employed four different global search algorithms to
search for optimal un-occluded camera positions in dissimilar
three dimensional scenes: a custom-designed genetic search
algorithm, octree-based best first and depth first search and
random search. In order to make a fair comparison among
them, all implemented algorithms share the same search
space, the same fitness evaluation method and the same
termination conditions.

We assess the quality of a three dimensional camera
position via the following fitness function, f :

f =
N∑

i=0

viwi (1)

where, vi, is the visible fraction of the i-th object of interest
in the frame; wi, is the object’s importance expressed as a
weight value [9]; and, N , is the number of objects considered
and need to co-exist within the camera’s view-frame. In the
experiments presented here, N equals 3 and w contains equal
values (1/N = 0.33) for all three objects examined. On that
basis, f values lie between 0 (no visibility of objects) and 1
(maximum visibility of all objects).

Visibility, v, is calculated by casting 9 rays from the
camera’s current position to the bounding box of each object.
Eight rays are casted towards the corners and 1 towards the
centre of the object. We chose ray-casting among other occlu-
sion detection techniques due to their implementation ease,
platform independency and hardware acceleration potential.

The search space that all four mechanisms consider is
defined as a cube that surrounds the objects of interest. The
size s of this cube is calculated as follows:

s = max
i
{�Pi − �C} (2)

where, �Pi, is the position of the i-th object in the frame
and, �C, is the centre of positions of all N objects considered
which also defines the centre of the search cube; i.e. �C =∑N

i=0
�Pi/N .

All algorithms are terminated if a camera position found
generates an optimal fitness value (f = 1.0) or when a
predefined time window is elapsed.

A. Genetic Algorithm

We implemented a modified version of a generational
Genetic Algorithm (GA)[14] with custom crossover and
mutation operators. Each chromosome, consisting of three
real values, represents the location of the camera in the 3D
space. The population, containing 120 individuals, is ran-
domly placed into the search space via a uniform distribution
and evaluated via (1) at each generation.

We use an elitism selection scheme where the 30 best
chromosomes of each generation are selected for reproduc-
tion. Mating of parents is based on their ranking within the
30 best chromosomes; the first mates with the second, the
third mates with the forth and so on. Ninety offspring are
generated by applying a custom-designed crossover operator
(with 100% probability) to each pair of selected parents. The
crossover operator applied is a fitness-based weighted sum
of the parents’ position. The generated offspring �O is defined
as follows:

�O =
�Pafa + �Pbfb

fa + fb
(3)

where �Pa and �Pb are the two selected parents; and fa and
fb are their corresponding fitness values.

Mutation is applied to all genes of the chromosome with a
probability of 50%. The custom mutation operator applies a
vector translation to the chromosome by adding a uniformly-
distributed random vector to it. The maximum value of the
dimensions of the translation vector equals 10% the size of
the search space (i.e. 0.1s). Generated offspring replace the
90 worst chromosomes of the current population.

B. Octree-based search

Octree generation [1] is a very popular technique of search
within 3D virtual environments which makes it ideal for
comparison against genetic and random search.

Fig. 1: Octree space subdivision

Specifically, we utilize octree spatial subdivision (see
Fig. 1) and apply both best-first and depth-first search on
the generated tree. Each node of the octree corresponds to a
cubic subspace. During the octree exploration a fitness value
is assigned at each subspace corresponding to the fitness
value of its centre point.

The best-first algorithm picks the node of the octree with
the highest fitness at each iteration and recursively subdivides
its corresponding cube and searches within. Breadth-first

2720

search operates a full search through all nodes of the octree:
at each iteration all nodes are evaluated and ranked by fitness.
Children nodes are generated and evaluated following the
fitness ranking. In both search algorithms a node is selected
randomly if two or more nodes have equal best fitness values.

C. Random Search

Random search generates a sequence of uniformly-
distributed random points which are evaluated via (1). The
algorithm stops if the termination conditions are satisfied
(maximum expected fitness is reached) and the camera
position with best fitness value is returned. Random search
can be very efficient in very rough fitness landscapes and
it is expected to work well in maximising camera visibility
due to the morphology of the fitness terrains generated. This
search mechanism is used as a control baseline.

IV. OBJECT OCCLUSION CASE STUDIES

This section presents the four test-bed scenes designed
to test the efficiency and robustness of the four search
algorithms; the complexity generated by each case study is
also discussed.

The four scenes, namely, Forest, Building, City, and Tun-
nels, are illustrated in Fig. 2a, Fig. 2b, Fig. 2c and Fig. 2d,
respectively. There are three objects (i.e. virtual characters)
that need to be within the camera’s viewpoint named Athos,
Porthos and Aramis. We believe that those four case studies
cover a wide range of scene geometry met in computer
games; furthermore they provide a palette of testbeds that
diversify the complexity of search.

(a) Forest (b) Building

(c) City (d) Tunnels

Fig. 2: The four test-bed scenes examined

The first test-bed scene (Fig. 2a) represents a forest-like
environment, in which objects are surrounded by trees which
act as occluders. Due to the narrow shape of the trees the
areas where the camera is fully occluded are very few. Figure
3a shows also that the portion of space where all the three
objects are visible is predominant. The second test-bed (Fig.
2b) consists of a house-like environment with walls separat-
ing the space into rooms and the objects placed in different
rooms. The fitness landscape illustrated in Fig. 3b shows
that the walls act as large occluders drastically reducing the

portions of space where all the objects are visible at the
same time. In the Building scene, there is one small area
from where all three objects are fully visible.

(a) Forest

(b) Building

(c) City

(d) Tunnels

Fig. 3: Top-down view of the fitness landscapes of the four
testbeds. The sample is calculated setting the camera position
at a height of one meter from the ground level of the maps,
This corresponds to half the height of the virtual character.

The third test-bed scene (Fig. 2c) is a city model with
large buildings and narrow streets and the last test-bed (Fig.
2d) represents a three-tunnel crossing. The three objects are
placed on the streets and in the tunnels of the City and the
Tunnels scenes, respectively. It is worth noticing that there
is no area from which all objects are visible in the City
scene. That scene, however, has three local optima areas from
where only two of the three objects are fully visible. In the
Tunnels scene all objects are visible from the area of the

2721

tunnel crossing.
The fitness landscapes of all scenes reveal some common

characteristics. Due to the nature of the visibility problem
and the way the fitness function is calculated, the landscape
is split into several sub-areas with constant visibility values
(plateaus) while the borders between these areas are very
steep. This results to a search space with limited areas in
which the gradient is non-zero. It is worth noting that the
steepness of the areas between fitness plateaus is dependent
on the size of the objects and the occluders. The three
objects selected for the experiments presented here are virtual
characters of realistic human-like dimensions. Each object is
a cylinder 2 meters tall and 50 cm wide while all scenes
are designed in an area of 17m × 17m (the ceiling in the
Building scene is 4 meters tall). These scene types (small
objects; large occluders) increase the complexity of the
visibility problem and the need of global search algorithms
to find an un-occluded camera position in the search space;
local search is very likely to fail in such fitness terrains.
The particular morphology of the fitness landscapes is an
evident sign of high problem difficulty as confirmed by the
Fitness Distance Correlation (FDC) [18] calculated for all
four scenes which approximates zero values for all four
testbeds (Forest: −1.9 · 10−6, Building: −5.9 · 10−6, City:
−2.5 · 10−6, Tunnels: −5.4 · 10−7).

The above poses the question of whether the performance
(fitness) function selected is appropriate for our problem.
More rays toward an object would probably provide more
information about the level of visibility and would assist
in approximating visibility more accurately. However, ray-
casting is computationally expensive and a designer has
to maintain the right balance between computational time
of fitness evaluation and approximation of fitness in the
demanding task of camera control. Given that 200 ms is the
largest acceptable time window available more rays would
have an negative impact on the performance of all search
algorithms.

A. Complexity Measure

To assess the difficulty of each case study a measure of
complexity is required. While FDC can be a reliable measure
of problem complexity we argue that it is inappropriate
for the problem of object visibility since the fitness maps
reveal that there is no sufficient fitness variation with respect
to distance from the global optimum resulting in near-
zero FDCs. Thus, alternatively, we propose the following
measures of problem complexity: optimal space size, feasible
space size, and fitness-based complexity.

• The optimal space size is calculated as the percentage
of the global optima subspace over the total search
space. This measure approximates the probability to
hit a global optimum by chance; however, it does not
consider the other partial solutions. The optimal space
size value for the Forest, Building, City and Tunnel map
is 40%, 0.5%, 0.1% and 0.1%, respectively.

• The feasible space size is calculated as the percentage of
the subspace containing positions with non-zero fitness

over the total search space. This measure approximates
the probability of hitting any feasible solution by chance
but it considers global optima solutions as feasible
solutions. The feasible space size value for the Forest,
Building, City and Tunnel map is 93%, 36%, 23% and
4%, respectively.

• The fitness-based complexity measure considers the av-
erage fitness value of a sufficient number of camera
positions. Thus, scene complexity, c, is calculated as

c = 1−
∑n

i=0 fi

n
(4)

where fi is the fitness value of the i-th position, and
n is the number of camera positions considered for
the calculation of c; n equals 105 in this paper and it
is obtained by uniformly discretising the search space
(100, 100 and 10 samples along the x, z, and y axis,
respectively). The c value for the Forest, Building,
City and Tunnel scenes is 0.4, 0.85, 0.89, and 0.91,
respectively.

All above measures indicate that complexity increases
from the Forest scene to the Building scene, and further to the
City scene reaching a maximum value at the Tunnels scene.
The difference of the complexity in between the scenes is
dependent on the complexity measure considered. However,
all three provide the same ranking of scenes with respect to
complexity; in that sense all of them are appropriate measures
for our scope. We pick the fitness-based value as a measure
of complexity since it incorporates fitness information of
the whole search space including both partial and global
visibility areas.

V. RESULTS

In this section we test the performance of the search
algorithms with respect to the complexity of the task to
be solved and the time taken for the algorithm to reach
a solution. All experiments run on a Intel MacBook Pro,
with a 2.0 GHz Core 2 CPU (the implemented algorithms
use only one core) and 4 GB of RAM at 1067 MHz. The
machine is capable of computing a maximum a 4000 fitness
evaluations per second, but the average value (due to the
system scheduler) is around 3750 evaluations per second.

A. Algorithm Performance Measures

Each test has been carried out 100 times for each case-
study and each time window investigated. The average and
standard deviation of the generated fitness values are calcu-
lated at the end of each test and used to assess the perfor-
mance of each algorithm. Other measures of performance
considered include the number of times the algorithm finds
a global optimum and the time required to find the global
optimum. The average fitness, f , and the number of times
the global maximum was found, g, provide measures of
algorithm efficiency. The standard deviation of fitness defines
a measure of algorithm robustness while the average time
required to find a global maximum is suggested as a measure
of computational effort.

2722

(a) Genetic Algorithm (b) Random Search

Fig. 4: Average fitness versus complexity, c, and time, t (in ms).

B. Time Windows

To examine how performance evolves over time all algo-
rithms are terminated after some predefined time elapses. The
real-time window values, t, selected in the experiments re-
ported in this paper are 15, 30, 40, 100 and 200 milliseconds
corresponding, respectively, to 60, 30, 25, 10 and 5 potential
algorithm executions per second. These time-windows are
important to evaluate how camera movement synchronises
with the game rendering cycle, which is commonly executed
between 20 and 60 Hz.

Camera positioning occurs in real-time and in response
to users’ actions; thereby the camera controller has to act
rapidly so that the user does not perceive any delay between
action and response. We believe that 200 ms is the maximum
allowed time window in which the player does not perceive
any camera positioning delay in a game. The time windows
investigated here have been chosen to reflect this assumption.

C. Analysis

Table I contains the performance measures of average
fitness and fitness standard deviation (within parentheses)
for all four algorithms tested. Table columns present results
obtained on the different testbeds ordered by complexity.

As a general observation all algorithms appear to perform
equally or better when given more computational time.
Another clear observation is that algorithms perform better at
the easier tasks (e.g. Forest scene) than at the more complex
tasks (e.g. Tunnels). The exception from this observation
is the random search and the GA which both appear to
perform better at the Tunnels scene than at the City scene.
This exception is discussed at the dedicated GA and random
search section that follows.

1) Octree-based Search: It appears that both octree-based
search (OBS) algorithms (see Table I) generate high per-
formances in low complexity testbeds, but their average
fitness drops drastically as problem complexity increases.
Both OBS algorithms perform poorly in complex scenes due

to the high number of misleading local optima existent in the
search space which guide the algorithm far from the global
maximum. Despite of the deterministic nature of spatial
subdivision, both algorithms show a little standard deviation
within the experiment, this happens because the algorithms
order randomly the nodes with equivalent fitness.

TABLE I: Average fitness

t Forest Building City Tunnels

Octree best-first search

15ms 0.96 (0.01) 0.00 (0.00) 0.33 (0.00) 0.00 (0.00)

30ms 0.96 (0.01) 0.66 (0.11) 0.33 (0.00) 0.00 (0.00)

40ms 0.99 (0.01) 0.66 (0.00) 0.33 (0.00) 0.00 (0.00)

100ms 1 (0.00) 0.66 (0.00) 0.33 (0.00) 0.00 (0.00)

200ms 1 (0.00) 0.66 (0.00) 0.33 (0.00) 0.00 (0.00)

Octree breadth-first search

15ms 0.96 (0.01) 0.00 (0.00) 0.33 (0.00) 0.00 (0.00)

30ms 0.96 (0.01) 0.49 (0.29) 0.33 (0.00) 0.00 (0.00)

40ms 0.99 (0.01) 0.66 (0.00) 0.33 (0.00) 0.00 (0.00)

100ms 1 (0.00) 0.66 (0.00) 0.33 (0.00) 0.00 (0.00)

200ms 1 (0.00) 0.66 (0.00) 0.33 (0.00) 0.00 (0.00)

Random search

15ms 0.78 (0.13) 0.64 (0.09) 0.37 (0.08) 0.33 (0.23)

30ms 0.88 (0.10) 0.67 (0.04) 0.41 (0.08) 0.64 (0.14)

40ms 0.90 (0.08) 0.67 (0.05) 0.40 (0.10) 0.65 (0.14)

100ms 0.96 (0.04) 0.71 (0.09) 0.48 (0.07) 0.74 (0.13)

200ms 0.97 (0.02) 0.71 (0.09) 0.51 (0.06) 0.81 (0.15)

Genetic algorithm

15ms 0.86 (0.10) 0.68 (0.08) 0.42 (0.09) 0.63 (0.15)

30ms 0.92 (0.07) 0.69 (0.08) 0.46 (0.08) 0.70 (0.14)

40ms 0.95 (0.04) 0.73 (0.11) 0.45 (0.08) 0.78 (0.14)

100ms 0.98 (0.02) 0.76 (0.12) 0.50 (0.06) 0.82 (0.15)

200ms 0.99 (0.02) 0.76 (0.12) 0.50 (0.07) 0.87 (0.14)

Results indicate that OBS algorithms are useful when a
solution needs to be found rapidly in simple tasks (i.e. Forest
scene) since the fitness they generate is significantly better

2723

than the genetic and random search within the time-window
of 15ms.

A t-test between OBS and random search (best-first p-
value = 0.0; breadth-first p-value = 0.0) and between OBS
and GA (best-first p-value = 2.7 × 10−11; breadth-first p-
value = 2.7 × 10−11) reveal those statistically significant
differences.

While performing well on fast and simple tasks, OBS
algorithms perform poorly on typical occlusion minimisation
problems like Building and City. Subsequently, our analysis
will concentrate on the GA and random search approaches
and their relationship since both appear to be more appro-
priate for the problem we investigate (see Table I).

2) GA versus Random Search: Figure 4 depicts the
impact of time limit and the scene complexity on the average
fitness of the GA and random search mechanisms. It appears
that random search (see also Table I) reveals good perfor-
mance in all scenes; however, as already mentioned, random
search does not reach the performance of OBS approaches
in the simple Forest scene. This result is somewhat expected
since random search does not exploit any fitness information
to identify the best areas to search within. The algorithm is
performing very well in highly complex scenes such as City
and Tunnels. On the contrary, the standard deviation of the
fitness is the highest among all algorithms examined due to
the stochastic nature of the algorithm.

The GA (see Fig. 4 and Table I) demonstrates efficiency
(via average fitness performance) and robustness (via stan-
dard deviation of fitness) in all four testbeds and for all
five time windows. It performs similarly to the octree-
based algorithms (the standard deviation is higher due to
the stochastic nature of the GA) in the Forest scene but it
achieves consistently better performance in the other test-bed
scenes for all the time limits.

Compared to random search, the GA performs signifi-
cantly better (both in terms of average fitness and standard
deviation) in the vast majority of scenarios independently
of time window and problem complexity. The difference in
terms of performance is more evident in the least complex
test-bed while the performance of the two algorithms con-
verges as complexity increases. A t-test between the two
mechanisms shows a statistically significant difference of
average fitness as the p-values calculated for the Forest,
Building, and Tunnel scenes within the 200ms time window
are, respectively 0.01, 0.01, and 0.0003. While the GA
performs better than random search in the City scene given
short time windows (i.e. 15ms – 40ms) the two mechanisms
appear to perform similarly as time goes by (e.g. p-value for
200ms is 0.06).

It is also worth noticing that both mechanisms generate
lower performance for the City scene than that of the Tunnels
scene which is inconsistent with the complexity measures
proposed. This suggests that other complexity measures that
embed notions of multimodality could be more appropriate
to classify scenes such as City. However, it should be noted
that the c measure of complexity is consistent with OBS

TABLE II: Average time taken to find optimum (in ms)

t Forest Building City Tunnels

Random search

15ms 10 15 13 6

30ms 19 25 19 12

40ms 14 40 29 15

100ms 38 62 47 63

200ms 124 82 72 103

Genetic algorithm

15ms 11 7 8 7

30ms 18 22 15 11

40ms 13 21 18 21

100ms 42 60 28 65

200ms 126 68 32 77

algorithm performance (see Table I).
By observing the number of times the algorithms manage

to find the global maximum (Fig. 5) and the average time it
took them (Table II) it is clear that the GA is more efficient
and faster in all scenarios examined while, in the City scene,
it performs equally well with random search. As already
mentioned, the City scene constitutes a rather hard problem
for global search consisting of three global maxima and no
area that provides full visibility of the three objects to the
camera.

The performance obtained for the random search and the
GA proposed reveals that both algorithms could be successful
in camera positioning when objects are occluded. However,
the GA is significantly better in low complexity case studies
and showcases higher robustness and speed independently
of complexity and time constraints. Such properties make it
the most preferred algorithm among those examined in this
study.

VI. CONCLUSIONS

This paper investigates search-based approaches for cam-
era positioning in dynamic virtual environments. In particular
we examine the problem of finding a non-occluded camera
position for viewing multiple objects appearing in a 3D game
environment. In game virtual words local search algorithms
(e.g. artificial potential fields) fail evidently due to the
complex search space landscapes generated by camera visi-
bility measures. Fitness landscapes are generally multimodal
consisting of zero gradient plateaus whose fitness distance
correlation approximates zero.

Stochastic global search is expected to perform better in
such fitness terrains and results obtained from this paper
confirm our hypothesis. Four search algorithms (octree-based
best-first, octree-based depth-first, random search and genetic
search) are assessed in the comparative analysis presented.
Algorithm performance is evaluated across dissimilar tasks
varying in complexity and real-time taken to achieve the cor-
responding performance. Results suggest that the proposed
genetic algorithm is significantly better than octree search in
all case studies examined. Moreover, the GA outperforms

2724

(a) Genetic algorithm (b) Random search

Fig. 5: Number of times the global maximum was found, g, versus complexity, c, and time, t (in ms).

random search in problems of low complexity; however,
the two algorithms generate similar performances in some
tasks of high complication. The GA proposed is consistently
the fastest, most robust and effective approach, from those
investigated, to the problem of maximising object visibility.

As a future research step, alternative genetic search al-
gorithms, suitable for constraint satisfaction problems, will
be examined and compared with the proposed GA; the
Feasible Infeasible Two-Population (FI 2-Pop) genetic algo-
rithm [20] is a sensible choice to make with that regard.
Another obvious future step of this research is the design of
algorithms that will efficiently generate the shortest and/or
most scenic path to the non-occluded position found by the
search algorithm. Intelligent camera occlusion detection and
avoidance will collectively advance the current state-of-the-
art in camera control systems in games and enhance player
experience during gameplay.

ACKNOWLEDGEMENTS

The authors would like to thank Julian Togelius for insight-
ful discussions. The research was supported in part by the
Danish Research Agency, Ministry of Science, Technology
and Innovation; project name: AGameComIn; project num-
ber: 274-09-0083.

REFERENCES

[1] Tomas Akenine-Möller, Eric Haines, and Natty Hoffman. Real-Time
Rendering 3rd Edition. A. K. Peters, Ltd., Natick, MA, USA, 2008.

[2] Daniel Arijon. Grammar of the Film Language. Silman-James Press
LA, 1991.

[3] William Bares, Scott McDermott, Christina Boudreaux, and Somying
Thainimit. Virtual 3d camera composition from frame constraints. In
MULTIMEDIA ’00, pages 177–186. ACM, 2000.

[4] William H. Bares and James C. Lester. Intelligent multi-shot visual-
ization interfaces for dynamic 3d worlds. In IUI ’99, pages 119–126.
ACM, 1999.

[5] Steffi Beckhaus, Felix Ritter, and Thomas Strothotte. Cubicalpath -
dynamic potential fields for guided exploration in virtual environments.
In PG ’00. IEEE Computer Society, 2000.

[6] James Blinn. Where am i? what am i looking at? IEEE Comput.
Graph. Appl., 8(4):76–81, 1988.

[7] Owen Bourne, Abdul Sattar, and Scott Goodwin. A constraint-based
autonomous 3d camera system. Constraints, 13(1-2):180–205, 2008.

[8] Paolo Burelli, Luca Di Gaspero, Andrea Ermetici, and Roberto Ranon.
Virtual camera composition with particle swarm optimization. In Smart
Graphics, pages 130–141. Springer-Verlag, 2008.

[9] Paolo Burelli and Arnav Jhala. Dynamic artificial potential fields for
autonomous camera control. In Artificial Intelligence and Interactive
Digital Entertainment, 2009.

[10] Marc Christie and Jean-Marie Normand. A semantic space partitioning
approach to virtual camera composition. Computer Graphics Forum,
24(3):247–256, 2005.

[11] Marc Christie and Patrick Olivier. Camera Control in Computer
Graphics. pages 89–113. Eurographics Association, 2006.

[12] Steven M. Drucker and David Zeltzer. Intelligent camera control in a
virtual environment. In Graphics Interface 94, pages 190–199, 1994.

[13] Michael Gleicher and Andrew Witkin. Through-the-lens camera
control. In Computer Graphics, pages 331–340, 1992.

[14] D. E. Goldberg. Genetic Algorithms in Search, Optimization and
Machine Learning. Addison-Wesley, Reading, MA, 1989.

[15] Nick Halper and Patrick Olivier. Camplan: A camera planning agent.
In Smart Graphics 2000 AAAI Spring Symposium, pages 92–100, 2000.

[16] Nicolas Halper, Ralf Helbing, and Thomas Strothotte. A camera
engine for computer games: Managing the trade-off between constraint
satisfaction and frame coherence, 2001.

[17] Frank Jardillier and Eric Languènou. Screen-space constraints for
camera movements: the virtual cameraman. Computer Graphics
Forum, 17(3):175–186, 1998.

[18] Terry Jones and Stephanie Forrest. Fitness distance correlation as a
measure of problem difficulty for genetic algorithms. In Proceedings
of the Sixth International Conference on Genetic Algorithms, pages
184–192. Morgan Kaufmann, 1995.

[19] O Khatib. Real-time obstacle avoidance for manipulators and mobile
robots. Int. J. Rob. Res., 5(1):90–98, 1986.

[20] Orla Kimbrough, David Harlan Wood, D.H. Wood, and Ming Lu.
Introducing distance tracing of evolutionary dynamics in a feasible-
infeasible two-population (fi-2pop) genetic algorithm for constrained
optimization, 2004.

[21] Erik Marchand and Nicolas Courty. Controlling a camera in a virtual
environment. The Visual Computer Journal, 18:1–19, 2002.

[22] Jonathan Pickering. Intelligent Camera Planning for Computer Graph-
ics. PhD thesis, University of York, 2002.

[23] D. Pinelle and N. Wong. Heuristic evaluation for games: usability
principles for video game design. In CHI’08: Proceedings of the
twenty-sixth annual SIGCHI conference on Human factors in com-
puting systems, pages 1453–1462, New York, NY, USA, 2008. ACM.

[24] Colin Ware and Steven Osborne. Exploration and virtual camera
control in virtual three dimensional environments. SIGGRAPH,
24(2):175–183, 1990.

2725
View publication statsView publication stats

https://www.researchgate.net/publication/224178053

