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ABSTRACT
Automatic feature selection is a critical step towards the gen-
eration of successful computational models of affect. This
paper presents a genetic search-based feature selection me-
thod which is developed as a global-search algorithm for
improving the accuracy of the affective models built. The
method is tested and compared against sequential forward
feature selection and random search in a dataset derived
from a game survey experiment which contains bimodal in-
put features (physiological and gameplay) and expressed
pairwise preferences of affect. Results suggest that the pro-
posed method is capable of picking subsets of features that
generate more accurate affective models.

Categories and Subject Descriptors
H.1.2 [Information Systems]: User/Machine Systems—
Human factors; I.2.1 [Artificial Intelligence]: Applica-
tions and Expert Systems—Games

General Terms
Algorithms, Experimentation, Human Factors

Keywords
Affective modeling, feature selection, genetic search, prefer-
ence learning

1. INTRODUCTION
There is a growing interest for computer systems that can

provide personalized affective experiences to the users. This
is especially true for virtual worlds and video games given
that the advances in game technology have made these envi-
ronments capable of eliciting a plethora of emotional states
[7] the inter-relationship of which is not trivial to be re-
vealed. The first step towards developing affect-adaptive
user experiences in game worlds (and beyond) is to create
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models that recognize the emotional state of the user based
on the interaction with the system.

Human-machine interaction may provide access to large
amounts of data from multiple modalities. The physiological
state of the user, measured through different input biofeed-
back devices, contains useful information about the emo-
tional state of the user [2, 10, 16] but the physical inputs
introduced to the system, the actions performed on the vir-
tual environment and their consequences (i.e. the interac-
tion with the virtual environment) can also help in the pre-
diction of ones emotional state [13, 11]. Given the large-scale
streams of data that may be obtained via the interaction of
the user with the system it is inappropiate to create com-
putational models of emotion that exploit every single bit
of such information. Hence, the information data sources
are often reduced to a set of extracted statistical features
(see [5] among others). Those indexes provide a represen-
tation of different characteristics of the user’s input signals.
Even thought the dimensionality is reduced via the extrac-
tion of statistical features not all the information embedded
in them is necessarily relevant for building affective mod-
els of the user. Some studies have revealed that omitting
unnecessary inputs improves the accuracy of the predictors
(see [19, 17] among others). Additionally, it is desirable to
keep the size of the model as small as possible both to make
it real-time efficient and easier to analyze.

It is a rather complex task (if not impossible) to identify
a priori which features are relevant for the prediction of an
emotional state during a certain task. Exhaustive search is
able find the best features but this is often infeasible due
to the size of the solution space. Moreover, if the design of
the predictor relies upon stochastic initial conditions (e.g.
neuro-evolutionary learning), exhaustive search of the fea-
ture space does not guarantee that the best solution will be
found. Therefore, automatic feature selection (FS) meth-
ods are necessary for dimensionality reduction of the search
space if the designer of the model desires to maintain the
physical meaning of all features that are extracted. The
physical meaning of the parameters is particularly important
for the analysis and the expressiveness of the affective model.
Alternatively, one might use data pre-processing techniques
such as principal component analysis [1] and fisher projec-
tion [9]; but those will transpose the parameter space in their
effort to reduce it — thereby affecting any physical meaning
of the features considered.

The problem of feature selection has been investigated on
different research disciplines varying from statistics and data
mining to user modeling. Jain et al. [8] perform a compar-



ative study of several automatic feature selection methods
such as Sequential Backwards Selection (SBS) and Max-min.
In the field of Affective Computing, Yannakakis et al. [19]
apply two algorithms, n Best Individual feature Selection
(nBest) and Sequential Forward Selection (SFS), to select
the inputs of an entertainment predictor in a physical game
from game and player features. To find the most relevant
features from speech spectrograms to recognize emotions,
SFS has been applied in [18, 6]. Picard et al. [15] utilize Se-
quential Forward Floating Selection (SFFS) to chose a set of
physiological features to predict 8 different emotions. The
nBest, SFS, SFFS and Perceptron Feature Selection (PFS)
approaches are applied to select features for predictors of
player experience in [14].

All aforementioned studies utilize local search in the fea-
ture space. Our main hypothesis, instead, is that a global
search feature selector can find feature sets that will yield
more accurate computational models of user affect. For that
purpose we present a genetic search [4] based feature se-
lection method, namely Genetic Feature Selection (GFS),
and compare its performance against a random search based
method and a local search based method (SFS). The three
feature selection methods are assessed on game survey datasets
that contain self-reported pairwise preferences of affect and
features from two modalities of input: physiological and
gameplay. The features selected from the three methods
are used as inputs of an artificial neural network (ANN)
model that learns the mapping between the statistical fea-
tures (physiological or gameplay or both) and the pairwise
self-reported preferences of affect.

The paper is organized as follows. Section 2 presents the
three feature selection methods compared in this study and
the methodology applied to evaluate their results while Sec-
tion 3 provides details on the dataset used in this paper.
Experiments and conclusions derived are presented in Sec-
tion 4 and Section 5, respectively.

2. FEATURE SELECTION
This section describes the method proposed, genetic fea-

ture selection, and reviews briefly the alternative feature se-
lection algorithms used to compare against its performance:
sequential forward feature selection and random feature se-
lection (RFS). The three FS methods are tested for finding
the subset of features that can predict emotional preferences
more accurately (see Section 3); the method utilized to as-
sess the quality of the feature sets found, neuro-evolutionary
preference learning, is described in the first part of this sec-
tion.

2.1 Neuro-evolution for Affective Preference
Learning

We apply preference learning [3] to build affective models
that predict users’ self-reported emotional preferences based
on the subsets of features selected by the FS algorithms.

In this study, the models are implemented as single layer
perceptrons (SLPs) that are trained to map the selected fea-
tures to an affective predictor of the reported pairwise emo-
tional preferences, i.e. the pairwise preference relationship
of the training data (e.g. A and B) is known (e.g. A is pre-
ferred to B or, otherwise, B is preferred to A) but the value
of the target output is not (i.e. the magnitude of the prefer-
ence). Thus, any gradient-based optimization algorithm is
inapplicable to the training problem since the error function

under optimization is not differentiable. In this paper we
utilize the neuro-evolutionary preference learning apporach
presented in [20] for training the SLP to approximate the
function between the selected input features and the pair-
wise preferences.

2.2 Sequential Forward Feature Selection
Sequential forward feature selection is a bottom-up search

procedure where one feature is added at a time to the cur-
rent feature set. The feature to be added is selected from
the subset of the remaining features such that the new fea-
ture set generates the maximum value of the performance
function over all candidate features for addition. The search
stops when adding a new feature does not yield an increase
in performance.

This method has been successfully applied in dissimilar
studies [19, 14] to select minimal subsets of features for af-
fective preference prediction. In particular, SFS has been
successful in selecting minimal and high-performing feature
subsets on one of the two datasets used for the experiments
presented here [11], which makes SFS an appropriate bench-
mark feature selection mechanism for this paper. This study
extends experiments reported in [11] as it explores the use of
genetic search for feature selection and investigates its im-
pact on the learning process of reported preferences of affect
which are linked to multimodal input data.

2.3 Random Feature Selection
Random FS selects features from the input set with a

chance probability per feature. This method is used as a
feature selection performance baseline for comparison pur-
poses.

2.4 Genetic Feature Selection
The feature selection method proposed implements a gen-

erational genetic algorithm to search for the set of features
that yields the most accurate preference predictor for the
investigated affective state. According to the GFS mecha-
nism, the whole set of input features are encoded as a bit
string chromosome, c:

c = (g1, g2, ..., gNF ) (1)

where

gi =

{
1, if feature i is included

0, if feature i is not included
(2)

and NF is the total number of features existent in the input
dataset.

A population of Nc chromosomes is initialized with all bits
set to zero but one selected randomly; i.e. the first genera-
tion consists of sets of one randomly selected feature. The
reason for initializing chromosomes with only one feature is
because we desire to obtain minimal feature subsets which,
nevertheless, yield high performing artificial neural network
predictors of reported affect — serving as the input of the
ANN model. Then, at each generation:

1. All chromosomes of the population are evaluated. For
that purpose a preference model is trained via neuro-
evolutionary preference learning for each chromosome
and its performance is assessed via 3-fold cross valida-
tion. The fitness of each chromosome is the average
3-fold classification of the ANN trained on the feature
set presented by the chromosome.



Figure 1: A camera configuration of the computer
game MazeBall.

2. An elitism selection method chooses the best Np indi-
viduals to be the parents of the next generation.

3. Pairs of parents are selected using a rank selection
method that ranks the parents by their fitness and
then selects two of them with a probability propor-
tional to 1

2+n
where n is the position in the ranking.

A total of Nc − Np offspring are reproduced via uni-
form crossover with probability pc. If crossover is not
applied, the most-fit parent of the two is cloned to
generate an offspring.

4. For each offspring, mutation occurs at each gene with
probability pm. The mutation scheme used flips the
value of the selected gene which, in turn, suggests that
the corresponding feature is either added (1) or re-
moved (0) from the feature set. Finally, all offspring
are inserted to the population.

The algorithm terminates after Gmax generations are com-
pleted and the set of features corresponding to the highest
performing preference predictor found across all generations
is chosen. It is noteworthy that parent chromosomes are
cloned to the new generation but their performance is re-
evaluated, i.e. a new ANN is trained on that feature set.
Therefore, due to the non-deterministic nature of the neuro-
evolution, the fitness function of some individuals may fluc-
tuate significantly from one generation to the next.

3. DATA COLLECTION
The data set used in this study was collected via a user

survey experiment of 36 subjects playing the MazeBall game.
MazeBall is a 3D prey/predator game where the player guides
a ball through a maze. Golden tokens can be collected to
increase the player’s score, while red enemies that move
around the maze decrease the player’s score when they come
in contact with the ball (see Figure 1).

The game is designed to study the impact of the virtual
camera configuration on the players’ affective state. Hence,
each subject plays four pairs of 90 second-long games in-
corporating a different camera configuration/profile which
is dependent on three parameters: height and distance of
the camera from the player character and the speed between
subsequent camera state transitions (frame coherence). Dur-
ing the game, blood volume pulse (BVP) and skin conduc-
tance (SC) signals are recorded from bio feedback sensors

Figure 2: Subject playing Maze Ball. The game is
controlled only with the arrow keys leaving one hand
free to attach the biofeedback sensors.

attached to the subject’s left hand (see Figure 2). After
each pair of games is completed, players are questioned to
express their preferred game with regards to seven affective
states, anxiety, boredom, challenge, excitement, frustration,
fun and relaxation, via 4-alternative forced choice (4-AFC)
questionnaire items. The 4-AFC scheme allows subjects to
either express their clear pairwise preference — i.e. either
the first or the second game is preferred (pairwise preference
or 2-AFC); for instance, game A was more frustrating than
game B — or to express their preference for both games
equally (e.g. both games were equally frustrating) or nei-
ther game (e.g. neither game was frustrating). More details
about the experimental protocol and the self-reported data
can be found in [12].

3.1 Extracted Features
Blood Volume Pulse and Skin Conductance were collected

in real-time at 32 Hz. Heart rate (HR) is computed every
5 seconds by extrapolating the inter-beat time intervals de-
tected in the BVP signal. A total of 42 statistical features,
namely physiological features, are extracted from the signals
including, for example, average and standard deviation of
the three signals and heart rate variability measures such as
standard deviation of the inter-beat time intervals.

In addition, several game metrics are logged during play
including the elements of the game state and the player’s
inputs (keystrokes) and a total of 41 statistical features are
extracted such as distance measures to the closest pellet and
enemy, and reaction time measures. These features are re-
ferred as gameplay features in the remainder of this paper.
For a full description of the features extracted from both
modalities of input, the reader is referred to [12, 11].

4. EXPERIMENTS
Three datasets are generated to test our hypotheses, the

first includes only physiological features, the second only
gameplay, and the third is the complete dataset of both
modalities. The reported affective states contain a different
number of samples: 97, 83, 86, 92, 90, 90 and 54, respec-
tively, for challenge, excitement, anxiety, fun, relaxation,



frustration and boredom. Different sample sizes indicate
different numbers of self-reported clear preferences for the
various affective states.

The three feature selection methods presented in Section 2,
random, sequential forward and genetic, are applied to the
three datasets. Their performance in selecting appropriate
feature sets for each affective state and the size of the se-
lected subsets are compared.

This section presents comparative studies first with the
two single-modality datasets independently and then with
the bimodal inputs. The first comparison investigates the
impact of feature selection on dissimilar datasets whereas
the second comparative analysis explores the benefits of ge-
netic search on the training of preference models built on
bimodal inputs.

To minimize the effect of the random initialization of ge-
netic search, every algorithm is run three times and the high-
est performing set of features is chosen. The input data sam-
ples are distributed randomly into three folds (for the pur-
pose of performance cross-validation) before each run; note
that the same distribution is used for all three algorithms.

GFS uses a population of 50 individuals and 20% of them
are used as parents of the next generation (Np = 10); the
algorithm stops after 10 generations are completed. These
parameters have been assigned low values to reduce the
time required to perform the test. The probabilities that
crossover and mutation occur are 0.4 and 0.01 respectively.
These parameters have been selected after preliminary sensi-
tivity analysis experiments for maximizing GA performance.

4.1 Impact on preference learning
Figure 3illustrates the average performance of twelve runs

of RFS, SFS and GFS on physiological and gameplay feature
sets, respectively, and the average performance of 12 models
trained on the two complete datasets.

It is apparent that random search finds sets that, on av-
erage, perform significantly worse than the other two meth-
ods in both input sets and across all seven affective states
investigated. Moreover, the feature sets selected by genetic
search appear to outperform sequential feature selection in
all the case studies depicted in Figure 3(a) and Figure 3(b).
A two tailed paired t-test reveals that the difference in per-
formance between GFS and SFS is statistically significant
(significance is 5% in this paper) in 4 of the states in the
physiological input set (anxiety, p-value= 0.0005; excite-
ment, p-value= 0.0003; frustration, p-value= 0.00001; relax-
ation, p-value= 0.00004) and in challenge (p-value = 0.01)
and fun (p-value = 0.03) in the gameplay dataset. For all
affective states in both datasets, the models built on features
selected automatically outperform the models trained on all
the features (see NotFS in Figure 3(a) and Figure 3(b)).
The models generated via feature selection are more accu-
rate than NotFS even when features are selected randomly
(RFS).

Figure 4 shows the average number of features selected by
the three algorithms. RFS selects approximately half of the
available features which is expected given that all features
can be selected with chance probability. GFS selects small
subsets of features but slightly larger than SFS which selects
minimal sets by following bottom-up search.

By looking at the difference in the performance between
the models built on physiological and gameplay features,
it is clear that the gameplay features are better sources of

(a) Physiological signal data: 42 features in total

(b) Gameplay data: 41 features in total

Figure 3: Average performance and standard er-
ror of 12 runs of random feature selection (RFS),
sequential forward feature selection (SFS) and ge-
netic feature selection (GFS) and average perfor-
mance and standard error of 12 models trained on
all features (NotFS).

information for the prediction of the reported affective states
on the MazeBall datasets. Gameplay features appear to be
better predictors of affective states reported in a 3D game
environment like MazeBall in which distances to enemies
and pellets, time spent on various locations in the maze and
visible areas of the maze seem to yield better estimators
than heart rate or skin conductance signal features for all
emotional states investigated

4.2 Impact on bimodal input data
This section presents experiments for investigating the

impact of genetic search on bimodal feature sets and the
construction of computational models of reported affect on
both modalities of input. For that purpose the three FS
algorithms run 12 times on the complete input dataset, i.e.
both the physiological and the gameplay features are now
considered. Figure 5 shows the average performances ob-
tained across the affective states investigated and the aver-
age performance of 12 models trained on the complete set
of features.



(a) Physiological signal data: 42 features in total

(b) Gameplay data: 41 features in total

Figure 4: Average number of selected features and
standard error of 12 runs of random feature selection
(RFS), sequential forward feature selection (SFS)
and genetic feature selection (GFS).

Unsurprisingly, random search performs significantly worse
than both SFS and GFS in the construction of affective mod-
els for all seven affective states. More importantly, in the
comparison between GFS and SFS, the former finds, on aver-
age, feature sets that generate better-performing preference
models for all 7 affective states investigated. This differ-
ence is statistically significant for anxiety (p-value = 0.002),
boredom (p-value = 0.003), challenge (p-value = 0.05), ex-
citement (p-value = 0.01) and frustration (p-value = 0.02)
Models trained on features selected by SFS or GFS pre-
dict the affective preferences more accurately than models
trained on all the features (NotFS); even RFS yields higher
performance than NotFS in most cases.

The size of the subsets of features selected from the bi-
modal dataset follows the same trend observed earlier within
the unimodal sets: GFS, on average, selects more features
than SFS (see Figure 6).

Observing the average performances across the three in-
put datasets it is apparent that GFS is able to find better
subsets of features on the unified dataset of physiological and
gameplay features than on the two unimodal input sets. In
particular, the performance of GFS on the bimodal dataset
is significantly higher for all affective states when compared
to the corresponding GFS performance on the physiological
input dataset; challenge is the only affective state for which
such a performance improvement is not observed. More-
over, the predictions of reported relaxation and excitement,
supported by GFS, are significantly better when built on bi-
modal compared to the predictors built on gameplay data.

SFS, just as GFS, performs significantly better in the uni-
fied dataset than in the physiological dataset. On the other
hand, the difference of performance achieved with SFS be-
tween the bimodal and the gameplay set of features, al-
though not statistically significant, is negative for both anx-
iety and frustration.

Figure 5: Bimodal input data: average performance
and standard error of 12 runs of random feature se-
lection (RFS), sequential forward feature selection
(SFS) and genetic feature selection (GFS) on a set
of 83 features (42 physiological and 41 game play
features in total) and average performance and stan-
dard error of 12 models trained on all 83 features
(NotFS).

5. CONCLUSIONS AND DISCUSSION
In this paper we propose a feature selection method that

performs global search on the attribute/feature space of user
input data and selects feature subsets that guide preference
learning algorithms for the construction of accurate models
of affect. The impact of the genetic search feature selector
on the accuracy of the affective models is investigated both
in comparison to other feature selection mechanisms in dif-
ferent datasets but also with respect to the multimodality
of the input data. Thus, the performance of the GA-based
feature selection algorithm is assessed on three datasets con-
taining self-reported pairwise preferences of affect collected
via a game survey experiment: two unimodal data input
sets (physiological and gameplay) and one unified dataset
(bimodal). The genetic feature selection method is com-
pared against the random search and the sequential forward
feature selection methods.

Results obtained show that GFS is able to select feature
subsets that yield more accurate preference models than
RFS and SFS. Even though SFS has proved to be a rather ef-
fective hill-climbing method for constructing computational
models of affect trained on pairwise preference data, results
obtained in this paper are not entirely surprising given the
superiority of global genetic search over hill-climbing and
random search in rough search landscapes. In particular,
the performance improvement in this initial study is statis-
tically significant in 4 out of 7 affective states on models
built on physiological data, 2 out of 7 on gameplay models
and 5 out of 7 on models built on bimodal feature sets. We
expect that a more careful adjustment of the parameters of
the genetic search will provide higher improvements.

The experiments also reveal that the gameplay features
incorporate more relevant information for an affective pre-
dictor than the physiological features in the dataset used.
Moreover, on average, the subsets of features found by GFS



Figure 6: Average number of selected features and
standard error of 12 runs of random feature selection
(RFS), sequential forward feature selection (SFS)
and genetic feature selection (GFS) on a set of 83
features (42 physiological and 41 game play features
in total).

that combine the two modalities yield higher performances
than the unimodal sets.

This paper proposed a method for enhancing the perfor-
mance of affective preference models without reducing their
expressiveness. For that purpose, we focused on automatic
feature selection that reduces the size of the input models
while keeping the physical meaning of the input data. The
results presented here, in agreement with other studies (see
[11, 19, 17] among others), show that reducing the dimen-
sionality of the input by omitting the non-relevant features
improves substantially the performance of the affective pref-
erence models. A detailed analysis of the models found by
GFS will be reported in a future study.
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