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ABSTRACT
We present a computational framework capable of inferring
the existence of group identities, built upon social networks
of reciprocal friendship, in Complex Adaptive Artificial So-
cieties (CAAS) by solely observing the flow of interactions
occurring among the agents. Our modelling framework in-
fers the group identities by following two steps: first, it aims
to learn the ongoing levels of cooperation among the agents
and, second, it applies evolutionary computation, based on
the learned cooperation values, to partition the agents into
groups and assign group identities to the agents.

Experimental investigations, based on CAAS of agents
who interact with each other by means of the Ultimatum
(or Bargain) Social Dilemma Game, show that a cooperation
learning phase, based on Reinforcement Learning, can pro-
vide highly promising results for minimising the mismatch
between the existing and the inferred group identities. The
proposed method appears to be robust independently of the
size and the ongoing social dynamics of the societies.

Categories and Subject Descriptors
I.2.m [Computing Methodologies]: Artificial Intelligence—
Miscellaneous

General Terms
Algorithms

Keywords
Group Identity Detection; Adaptive Artificial Societies; Ul-
timatum Game; Reinforcement Learning; Evolutionary Com-
putation.

1. INTRODUCTION
A Complex Adaptive System (CAS) [18] is a set of in-

terconnected parts or units which interact repeatedly with
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each other and are equipped with self-organisation proper-
ties which allow them to form global patterns. These pat-
terns hold a higher level of complexity than the one inside
each single unit. Moreover, some CAS have a recurrent
structure, meaning that the global patterns influence the be-
haviour and the self-organisation properties of the parts. As
a consequence, the understanding of how the global struc-
tures emerge from the interactions of the units cannot be
obtained by merely summing the properties of each single
part [18]. In fact, within CAS research, the formation of
global patterns is also referred to as Emergence of Complex-
ity ; this clearly states that the modelling of the transition
from the local perspective — i.e. the units and their in-
teractions — to the global perspective — i.e. the emergent
complex patterns — is far from being trivial, due to many
factors including the number of units composing the CAS,
the volume of interactions, the units’ own behavioural mech-
anisms (which could constitute a CAS itself), and the noise
present in the environment.

As an example of a CAS, consider human societies [2]: the
interactions among the individuals together with the indi-
viduals’ inner characteristics lead to social phenomena such
as friendship [31] and culture [27]. These, in turn, clearly
have an impact on how the individuals interact with each
other. For instance, they may lead to the spontaneous for-
mation of groups. These groups may lead the formation
of group identities — i.e. the ability of the individuals to
identify themselves as belonging to a group [4]. Ultimately,
such group identities have an influence on the level of co-
operation or altruism [11] and collaboration (i.e. reciprocal
altruism [18]) of the interactions.

The research presented in this paper aims to define a com-
putational framework — hereafter called Group Modelling
(GM) Framework — capable of inferring the presence of
group structures, built upon social networks of reciprocal
friendship, and assign relative group identities, to Complex
Adaptive Artificial Societies (CAAS). The agents forming
the CAAS manifest relational-based social preferences [24]
when interacting with each other by means of the Ultima-
tum (or Bargain) Social Dilemma Game [15]. The friendship
social networks are generated at a global level and are sub-
sequently communicated to the agents, which react to them
and adapt their behaviours. In other words, the CAS’ phe-
nomena under investigation define the mechanism by which
the global structures influence the agents.

Our modelling approach leverages on the concept that in-
dividuals belonging to the same group (in-group) tend to be
more cooperative with each other than when they interact
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Figure 1: The structure of our Group Modelling
Framework.

with individuals belonging to other groups (out-group) [4].
The framework is composed of two interconnected modules,
as depicted in Figure 1: the first module, called Cooperation
Learning Module (CL), is in charge of learning the ongoing
levels of cooperation existing among the artificial agents;
the second module, called Group Identity Detection Mod-
ule (GID), partitions the agents into community structure-
based groups [19], based on the learnt cooperation values,
and assigns a group identity to each one of the identified
structures. The main focus of this paper is the investigation
of appropriate and efficient techniques to be used for the CL
module, being its computation the fundamental feature for
the correct computation of the GID module. In particular,
we consider three different learning rules for the CL module:
(1) Reinforcement Learning’s (RL) α-constant Monte Carlo
(α -cMC) update rule, (2) Temporal-Difference (TD) update
rule [28], and (3) pheromone evaporation update rule used
in Ant Colony Optimisation [5]. For the GID module we rely
on a Evolutionary Algorithm (EA) following the principles
introduced in [9].

In this paper we conduct experimental studies on two so-
ciety sizes, i.e. 20 and 50 agents. The results obtained
showcase that α-cMC, combined with the stochastic search
GID module, lead to the highest performing outcomes (i.e.
lowest misclassification error between the inferred and the
true group identities) across the two population sizes and
against the ongoing dynamics of the adaptive agents.

To the best of the authors’ knowledge, there has not been
any attempt to infer the existence of group structures in
Complex Adaptive Artificial Societies (CAAS) of agents ca-
pable of manifesting relational-based social preferences. The
main finding of this paper is the demonstration that RL is
a sound technique for cooperation learning. Moreover, we
also highlight that its combination with the EA-based GID
module — that is a framework which had already proven its
efficacy with respect to the detection of group identities in
Complex Static Artificial Societies [9] — also offers reliable
methods for the detection of group identities in CAAS.

Our modelling framework has several possible real-life ap-
plications. It can be used as a data mining tool not only for
the detection of community structures in given networks —
i.e. the sole application of GM’s GID module — [10]; it can
also be used to infer underlying complex social networks
of users, in complex interactive environments e.g. multi-
player collaborative games [30], indirectly and in real-time
by means of gameplay data analysis; as a consequence, our
framework can easily be used within — and as a further ex-
tension of — Experience-Driven Procedural Content Gener-
ation [33], for the creation of adaptive multiplayer games [34].
Furthermore, providing that the interaction protocol is kept
the same across human-based (in-vivo), and agent-base sce-
narios (in-vitro), our framework can be used to compare the
two emergent global patterns in order to further increase the

level of realism of the in-vitro simulations, and hence to con-
tribute to the research field of evolution of cooperation [12].

2. RELATED WORK
There are a number of studies investigating groups of

agents and their behaviours in artificial societies. Nowak et
al. [25], among others, focus on the evolution of collaboration
by evolving the policies of artificial agents. The approach,
however, neglects the impact of collaboration on group for-
mation. Similar research was conducted by Hammond and
Axelrod [13], though it was focused on the evolution of eth-
nocentrism. Among the studies on collective behaviour, Ler-
man and Galstyan [20] create mathematical models (through
differential equations) of the collective behaviour of simple
multi-agent systems, such as social insects. Their approach
differs from ours in that they aim to build a generic model of
an agent, based on observations, and then devise a mathe-
matical model of it. Martinez et al. [23] investigated the use
of rule-learning algorithms to predict group behaviours in
artificial societies. Their method is based on historical data
and even though we share a common goal (i.e. modelling of
group dynamics), that study does not aim to model group
identities in real time. The use of social networks in Agent-
Based Modelling is not novel [14]. For instance, Xianyu [32]
utilises spatial networks in order to regulate the interac-
tions among the agents and allow them to manifest inequity
aversion-based social preferences [15]. Similar approaches to
the use of complex networks can also be seen, among others,
in the work of Liu et al. [21]. Our work differs in that our
agents are spatially close to each other and interact with any
of the other agents in the society; moreover, we use the so-
cial network to represent the agent’s social relationships, i.e.
friendship. Evolutionary algorithms (EAs) have been used
for the detection of community structures, such as in the
studies on Pizzuti [26] and Tasgin [29], and Liu et al.[22],
who propose multi-objective evolutionary computation for
the detection of overlapping community structures. Never-
theless, their work did not examine directed weighted net-
works. Farmer and Fotheringham [6], on the other hand, aim
to identify community structures in such complex networks.
While we are inspired by that study, we use principles of
evolutionary computation (instead of spectral partitioning)
for identifying group structures.

3. INTERACTION PROTOCOL
Our choice to use the Ultimatum (or Bargain) Social

Dilemma Game (UG) for our research is motivated by its
extensive application in many akin studies, among which we
remark those which put an emphasis on social preferences
(see [7, 8, 15, 24, 32] among others). In the simplest UG
version [15], an individual, called the provider p, receives
an endowment e. p has the duty to bargain e with another
individual, called the receiver, r, by making an offer 0 ≤ o ≤
e. r has the possibility to either accept the offer (in which
case r will gain o and p will gain e − o) or dismiss it (in
which case both parts will gain zero).

In our study, the UG is implemented as follows: within a
society S = {a0, a1, . . . , an−1} of n agents, for each iteration
(Episode) t, each agent ai interacts with the remaining n−1
agents by playing two rounds of the UG: one in which ai
plays the role of the provider agent, and one in which it
plays the role of the receiver agent. We will hereafter refer



to the offer made by ai to aj as oi,j , whilst the decision made
by aj with respect to oi,j will be dj,i = 1 for “accept” and
dj,i = 0 for “dismiss”.

4. GLOBAL SOCIETAL PATTERNS
The complex global pattern under investigation is the ex-

istence of group structures, based on the notion of reciprocal
friendship, perceived by the adaptive agents of the society
at any Episode t of our experiments. We define FNrec as
the society’s well-structured reciprocal friendship network:

FNrec = (S,Frec) (1)

where the n agents of S are the nodes of the network, and
Frec = {(ai, aj), (aj , ak), . . .} represents the set of reciprocal
friendship edges (or links) among the agents. For each ex-
periment, Frec is initialised by containing only one friendship
link between two agents ai and aj uniformly sampled within
S. The evolution of friendship is implemented as follows: at
regular intervals of T Episodes, a new edge is added to Frec

by applying the well-established Barabási-Albert algorithm
for the creation of scale-free networks [1]. When all agents
have at least one friendship link, the process ends.

As soon as a new edge is added to Frec, the two involved
agents are notified, their behaviour is affected (i.e. they
start behaving more altruistically with each other), and the
social perception towards each other moves towards friend-
ship (see Section 5). However, the agent’s adaptation is not
immediate, meaning that at each episode t, within S, there
exists the following actual friendship network:

FNdirect = (S, Fdirect)

which differs from FNrec by Fdirect = {(ai, aj), (aj , ak), . . .}
which is the set of directed friendship links among the agents
in S. For instance, (ai, aj) ∈ Fdirect represents the percep-
tion of friendship of agent ai towards aj only. FNdirect is
built at the end of each episode t by querying each agent
about their social perception of friendship towards each other
agent in the society. The actual reciprocal friendship matrix,
FNrec, approximation of FNrec, is obtained from FNdirect

by extracting the (ai, aj) and (aj , ai) edges from Fdirect):

FNrec(S, Frec) ⊆ FNdirect (2)

Subsequently, FNrec is partitioned into community struc-
tures by means of the well-established Clauset-Newman-
Moore algorithm [3]. The number of detected communities,
together with the number of agents with no friendship links,
will constitute the existing number of group structures. The
agents belonging to the same community structure will be
assigned to the same group identity, whilst the agents with
no friends will have their own unique group identity. As an
illustrative example, Figure 4(a) depicts the scale-free FNrec

network of n = 50 agents and the 49 edges obtained at the
end of one experimental run. The agents’ group identities
are represented by different colours summing up to six group
structures in that example.

5. SOCIALLY-DRIVEN AGENT POLICIES
We define a socially-driven agent ai ∈ S which is capa-

ble of manifesting different levels of altruistic behaviours —

when playing the provider role in the UG [24] — depending
on which other agent aj ∈ S it interacts with.

Each agent considers each other agent as either a stranger
(S), acquaintance (A), or friend (F). This is implemented
by allowing each agent to keep the following vector of social
perceptions:

~si = (si,0, . . . si,i−1, si,i+1, . . . si,n−1) (3)

where si,j ∈ [0, 1] represents ai’s social perception towards
aj . The classification of the perceptions into S, A and F is
done as follows:

Fdirect(ai, aj) =

 S if 0 ≤ si,j < τi,A
A if τi,A ≤ si,j < τi,F
F if τi,F ≤ si,j ≤ 1

(4)

where τi,A and τi,F , 0 < τA < τi,F < 1, represent, respec-
tively ai’s acquaintanceship and friendship thresholds. Each
agent’s ~si vector is initialised with values uniformly sampled
within the [0, τi,A) interval. Only the two agents ai and aj ,
which are chosen to initialise Frec, have the values for si,j
and sj,i initialised by uniform sampling within the [τi,F , 1]
and [τj,F , 1] intervals, respectively.

5.1 Offer and Decision Making Policy
Each agent ai maintains a parameter, ôi ∈ [0, 1], which

represents the (normalised) maximum portion of e it is will-
ing to share with any other agents in S. At each Episode
t, and for each agent aj , ai will formulate the offer oi,j as
follows:

oi,j =

{
e ôi si,j + δi,o if u ≤ 0.5
e ôi si,j − δi,o otherwise

(5)

where δi,o is an offset representing the noise in the envi-
ronment and u is uniformly sampled. Agent ai will decide
whether to accept or dismiss aj ’s offer as follows:

di,j =

{
1 if oj,i ≥ e si,j
0 otherwise

(6)

5.2 Adaptation Mechanism
Eq. (5) states that, on average, the higher si,j is, the

higher oi,j will be. As long as ai has no friendship link,
no agent adaptation occurs. However, when ai is notified
to become friend with aj (i.e. (ai, aj) ∈ Frec) starting from
episode t+ 1, and for each remaining episode, agent ai will
adapt its social perception towards aj as follows:

si,j ← min (si,j + δi,s, 1) (7)

where δi,s is an offset regulating the adaptation step. At
the beginning of each experimental run, each agent gener-
ates its values for params = {ô, δo, δs, τA, τF } by uniformly
sampling them within their own intervals [xmin, xmax], 0 <
xmin < xmax < 1, ∀x ∈ params. Clearly, depending on
the values δi,s, δj,s, τi,F and τj,F , the agents will move to-
wards the perception of friendship in a more-or-less delayed
manner with respect to the representation kept by FN rec.
Moreover, the different ôi boundaries will allow for the gen-
eration of different levels of altruism within the society.



6. GROUP MODELLING FRAMEWORK
As already mentioned, the Group Modelling (GM) frame-

work proposed is composed of two pipelined modules: the
first one, called Cooperation Learning Module (CL), aims to
learn the ongoing levels of cooperation existing among the
agents by leveraging on the concept that individuals belong-
ing to the same group (in-group) tend to cooperate more
with each other than when they interact with individuals
belonging to other groups (out-group) [4]; the second mod-
ule, called Group Identity Detection Module (GID), aims to
partition the agents in order to have high in-group and low
out-group cooperation [4, 6, 19].

This study focuses on evaluating three different techniques
for CL, two of them based on reinforcement learning [28]
(see Subsection 6.1) and one inspired by the concept of
pheromone evaporation adopted in Ant Colony Optimisa-
tion (ACO) [5] (see Subsection 6.2). The result of CL is a
cooperation matrix, C = n× n, where C(i, j) represents the
cooperation value of agent ai towards agent aj updated at
the end of episode t. Subsequently, C is processed by the
GID module, which utilises an evolutionary algorithm in or-
der to partition the society into community structures and
assign group identities to the agents [9] (see Subsection 6.3).

6.1 Cooperation Learning
via Reinforcement Learning

The assumption made by this approach is that the agents
have the Markov property [28], that is, they perform actions
based on their current internal state, in order to reach an en-
visaged goal state. Therefore, CL aims to learn the Society’s
true state — represented by the set of the n vectors {~si};
see Eq. (3) — by processing the actions of the agents (see
Eq. (5) and Eq. (6)) which represent S’s observations about
the true state. CL assumes that the goal state of the society
is to have as many friendship links as possible. Assuming
that friendship influences altruism or cooperation [11, 24],
CL’s reward function is defined so that observed altruistic
behaviours would lead to high reward values.

Two are the reward functions used and examined in this
study, namely the probabilistic Agent Preference (IAP) and
the Entropy-Agent Preference (IHAP) Interaction Classifier
functions [11], hereby described. Let

Oi = {oi,0, . . . oi,i−1, oi,i+1, . . . oi,n−1} (8)

define the whole set of offers made by ai at Episode t;
pAP(ai, aj) calculates the probability that an agent ai is in-
group with aj as follows:

pAP(ai, aj) =
oi,j −min(Oi)

max(Oi)−min(Oi)
(9)

whilst pHAP (ai, aj) is obtained as the linear combination of
pAP and the normalised entropy [11] of the offers:

pHAP (ai, aj) = −pAP (ai, aj)

ln(n− 1)

n∑
j=1,j 6=i

oi,j
Oi

ln

(
oi,j
Oi

)
(10)

The two reward functions return either in-group (I = 1)
or out-group (I = 0) as follows:

IAP(i, j) =

{
1 if u ≤ pAP(ai, aj)
0 otherwise

(11)

IHAP(i, j) =

{
1 if u ≤ pHAP(i, j)
0 otherwise

(12)

where u is sampled uniformly. We consider two learning
rules in this study: the α-constant Monte Carlo (α-cMC)
update rule for non-stationary environments [28]:

C(i, j)← C(i, j) + α [IAP(i, j)− C(i, j)] (13)

where α is a parameter regulating the learning step, and the
Temporal-Difference learning’s TD(0) rule [28]:

C(i, j)← C(i, j) + β [IHAP(i, j) + γ C(j, i)− C(i, j)] (14)

where β is a parameter regulating the learning step and γ is
the discount factor giving more/less importance of the the
reciprocal cooperation value, C(j, i), for the update of C(i, j).

6.2 Cooperation Learning
via Pheromone Evaporation

Assuming that each agent represents an ant, and that the
offers made represent the pheromone deposited along the
edge (i, j) of a complete weighted network, the ACO-based
update rule for cooperation learning is defined as follows:

Ci,j ← (1− ρ) Ci,j + ρ oi,j (15)

where ρ is the pheromone evaporation coefficient. This up-
date rule, essentially, aims to learn the ongoing offers made
by each agent in the society.

6.3 Evolutionary Group Identity Detection
Matrix C can be interpreted as a complete, directed and

weighted network, CN = (S, C). The goal of the GID mod-
ule is the partitioning of CN into community structures [19].
However, the task of optimal network partitioning into com-
munity structures is known to be computationally hard
(NP-complete) over the set of all graphs of a given size [6, 19];
for these reasons, we rely upon the benefits of genetic search
for approximating a solution [9].

The EA we implemented considers a population ofm chro-
mosomes; each chromosome xi has n genes, each represent-
ing the group identity ck of agent ak ∈ S. The EA aims to
maximise the following modularity measure [6, 9]:

f(x) =
1

w

∑
i,j

[
C(i, j)−

win
i wout

j

w

]
δ(ci, cj) (16)

where w =
∑

i,j C(i, j) is the total sum of the up-to-date

C values, win
i is the in-degree of vertex i/agent ai, w

out
j

is the out-degree of vertex j/agent aj , ci is the label of
the community/group identity to which vertex i/agent ai
is assigned, and δ(ci, cj) is the Kronecker delta function, for
which δ(ci, cj) = 1 if ci = cj and δ(ci, cj) = 0 otherwise.

The possible gene values are taken from an alphabet G,
which holds the labels of possible group structures. The
set of different c ∈ G symbols in xi, Ĝi ⊆ G, represents
the group structures detected by xi. At the beginning of
each experimental setup, G is initialised as G = {0, 1} and
the chromosomes are initialised with gene values sampled
uniformly within G. In other words, our GM framework
initially assumes the existence of two groups within S.



At the end of episode t, once C has been updated, the
EA is reinitialised by following these five steps: (1) the EA
recalculates the fitness values of its genotypes, and sorts the
population by descending fitness, since the updates of C per-
formed by the CL module might have generated changes in
the chromosome ranking of the EA; (2) only the chromo-
somes with the highest possible fitness, {x0, . . . xj} remain
in the population, the remaining m − (j + 1) chromosomes
are discarded; (3) the EA calculates the average number of
group structures detected by the individuals who survived
the previous step, µĜ = (

∑j
i=0 Ĝi)/(j + 1); (4) the EA ini-

tialises G as G = {0, . . . µĜ/2}; (5) the EA fills its pop-
ulation by generating m − (j + 1) chromosomes which are
uniformly sampled within G = {0, . . . µĜ/2}. The fitness
of the m− (j − 1) chromosomes is calculated and the whole
population of m chromosomes is sorted by decreasing fitness.

At this point, the evolutionary process starts. Each evolu-
tionary generation includes the following key steps: (1) the
first half of the population remains in the current popula-
tion, the second half is replaced by m/2 offspring; (2) each
new offspring xh is generated as follows: first, two chro-
mosomes (xi and xj) are chosen via rank selection and are
recombined via uniform crossover; then, mutation is applied
to each gene with a mutation probability pmut. The gene
value under mutation is replaced by one of the symbols in
G which are picked via a uniform random distribution; (3)
the fitness of the m/2 offspring is calculated.

At the end of each evolutionary generation, the average
fitness value of the first fittest half of the population is cal-
culated. If the average is not improving for l consecutive
generations (local limit), G is updated by inserting a new
symbol. Alternatively, if the average is not improving for
g consecutive generations (global limit), the EA terminates
and the chromosome with the highest fitness, xGID, is the
one chosen by GID to represent the group structures and
identities of S.

7. RESULTS
In order to examine which of the CL three modules, com-

bined with the evolutionary GID module, would better in-
fer the existence of emergent group structures of reciprocal
friendship we have conducted experiments on two scenar-
ios: 20 and 50 agent societies. Each scenario was iterated
for 30 experimental runs; the three GM frameworks were
evaluated against the same experimental setup, in order to
grasp a better, more generic understanding of their perfor-
mance, and to limit random fluctuations introduced by the
interaction classifiers and the stochastic nature of the EA.

The performance measure we consider in this study is the
normalised mismatch error nme(CRF, xGID) [9], between the
community structures of FNrec (see Sec. 4), and the inferred
group identities with the highest obtained fitness function,
xGID (see Subsec. 6.3), calculated as follows:

nme(CRF, xGID) =
n− h(CRF, xGID)

n

where h(CRF, xGID) is the maximum assignment score ob-
tained by running Kuhn’s Hungarian algorithm [16].

The societies were instantiated by using the following pa-
rameters: ômin = 0.3, ômax = 0.5, δo,min = 0.01, δo,max =
0.03, δs,min = 0.02, δs,max = 0.05, τA,min = 0.5, τA,max =
0.6, τF,min = 0.5, τF,max = 0.7; T = 5 and 150 episodes

were considered for n = 20, whilst T = 12 and 700 episodes
were considered for n = 50. These parameters allow for the
instantiation of societies of heterogeneous agents, which are
capable of manifesting different levels of relational-based so-
cial preferences [24], yet by avoiding the generation of overly
chaotic dynamics. The following parameters were used for
the three CL modules: α = 0.1, β = 0.25, γ = 0.25, ρ = 0.3.
Finally, all frameworks shared the same parameters for the
GID Module: m = 50, g = 50, l = 5 and pmut = 0.8. These
parameters were retrieved after a preliminary — though not
exhaustive — fine tuning phase of the framework modules.

7.1 20-Agent Societies
Figure 2(a) depicts the average performance, and rela-

tive standard deviations, of the three GM frameworks based
on α-constant Monte Carlo (α-cMC; see Eq. 13), Temporal
Difference (TD0, see Eq. 14) and pheromone evaporation
update rules (Pheromone; see Eq. 15) for the 20-agent soci-
ety scenario, across 30 iterations. The grey vertical bar at
t = 119 indicates the Episode beyond which no new recipro-
cal friendship links are perceived by the agents. Figure 2(b)
depicts, in detail, the lowest scored nme, for the three frame-
works, across those 30 iterations.

As it can be clearly understood, a CL module based on
RL manages to better infer the existing global structures,
as TD0 reaches a score of nme = 0 for 57% of the iter-
ations and α-cMC scores nme = 0 for 50% of the runs,
whereas Pheromone obtains the same performance only 20%
of the runs. Remarkably, TD0 manages to score the smallest
average nme across all experiments: 51%, 41% and 8% of
the Episodes for TD0, α-cMC and Pheromone, respectively;
moreover, TD0 registers the lowest average nme from the
early stages up to t = 109, that is, when the agents’ social
perceptions are nearly consolidated; then, from there un-
til the second to last Episode, α-cMC registers the lowest
average nme.

With respect to this study, hence, it appears that the
combination of IHAP with TD0 is a more suitable technique
for cooperation/collaboration learning during the emergence
of global patterns, though α-cMC seems to better perform
when the global dynamics slow down and tend to reach an
equilibrium.

7.2 50-Agent Societies
Figure 3(a) depicts the average performance, and relative

standard deviations, of the three GM frameworks, for the 50-
agent society scenario, across 30 iterations; the grey vertical
bar at t = 602 indicates the Episode beyond which no new
reciprocal friendship links are perceived by the agents. In
addition, Figure 3(b) depicts the lowest scored nme for the
three frameworks across the 30 iterations.

Although none of the three framework manages to reach
nme = 0, α-cMC and TD0 outperform Pheromone in terms
of minimum nme scored (see Figure 3(b)). Pheromone’s
best score is nme = 0.26 (i.e. 13 misclassified agents) whilst
both α-cMC and TD0 score nme = 0.12 (i.e. 6 misclassified
agents). Moreover, for 57% and 40% of the runs, α-cMC
and TD0, respectively, obtain a minimum nme < 0.26.

The evidence that both RL-based frameworks perform
better than Pheromone throughout the whole experiment
duration is observed in Figure 3(a). On average, Pheromone
never manages to perform better than neither α-cMC nor
TD0. Moreover, we observe that α-cMC performs better
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Figure 2: 20-Agent Societies

than TD0 for 71% of the experiment’s episodes. Further-
more, α-cMC consolidates its role of best framework start-
ing from Episode 450, i.e. when the number of reciprocal
friendship links is still far from reaching an equilibrium.

With respect to this study we conclude that the combi-
nation of IAP with α-constant Monte Carlo update rule is
a more suitable technique for cooperation learning during
both the emergence and consolidation of global patterns.

7.2.1 Analysis via Network Visualisation
Despite the fact that α-cMC has proven to be the best

GM framework, it never reached nme = 0 for the 50-agent
scenario. Moreover, in both 20 and 50-agent scenarios, the
framework seems to converge, on average, to a suboptimal
nme of about 0.20 and 0.36 respectively. Arguably, two
might be the possible reasons: either (1) the GID module
cannot explore well the search space of group identity com-
binations, or (2) CL provides misleading information, within
C, about the existing friendship links.

In order to identify what caused the performance drop
in the 50-agent scenario, we focus on the experimental run
for which α-cMC scored the lowest misclassification error,
nme = 0.2, at the end of the simulation (i.e. Episode 700).
Within this experimental run, the emphasis is given to t =
677 and t = 678, i.e. the Episodes in which α-cMC scores
its lowest misclassification error nme = 0.16.

Figure 4(a) depicts a graphical representation of FNrec at
t ∈ [599, 700]; the network’s consolidated true group identi-
ties are represented by the network’s node colours. Similarly,
Figures 4(b) and 4(c) depict the inferred group identities,
detected by α-cMC, at t = 677 and t = 678. At t = 677,
the α-cMC misclassifies five single agents — i.e. a20, a27,
a34, a44 and a47 — and a subgroup composed of agents a25,
a39 and a40. At t = 678, instead, the GM changes the
group identities of only a34 and a47. At t = 677, GID’s EA
algorithm executed 66 generations, whilst at t = 678 the
total number of generations was 123. The fittest member
of the population increases its fitness from f(x) = 0.0877 at
t = 677 to f(x) = 0.0897 at t = 678. Remarkably, at the
end of the computation for both Episodes, the first half of
EA’s genetic population, i.e. the candidate parents, scored
the same highest f(x) values meaning that, the population
converged prematurely, the uniform crossover operation be-

came meaningless and the only way to explore the search
space was through the mutation operation. This suggests
that the GM framework would need further modifications
for increasing and maintain genetic diversity (such as fitness
sharing and niching [10]) if we desire lower nme values in the
more complex agent scenarios. Nevertheless, the modularity
measure Eq. (16), based on the learned C matrix at t = 677
and t = 678, with respect to the true group identities, re-
turns f(x) = 0.0771 and f(x) = 0.0781, respectively; in
other words, GID manages to detect group identities which
have a higher modularity measure than the true ones.

8. DISCUSSION AND FUTURE WORK
The combination of the Agent Preference Interaction Clas-

sifier (IAP) with α-constant Monte Carlo (αcMC) update
rule for the cooperation learning module, together with the
EA approach adopted by the group identity detection mod-
ule, allows for the construction of a GM framework which
managed to reach a zero misclassification error for 20-agent
societies. Although it could not reach optimal performance
in the experiments with the 50-agent societies, the GM frame-
work provided the best misclassification error — among the
different framework configurations we have considered in
this study — of emergent and consolidated group structures
and group identities.

In general, a RL-based update rule appears to be a key
component for the indirect inference of group structures by
solely observing the flow of interactions among the agents.
In fact, the Pheromone evaporation technique, which merely
attempts to keep track of the ongoing offers made by the
agents, provided the worst results for both 20 and 50-agent
societies. The rationale behind the success of α-cMC, and
in part TD0, is their ability to perform the transition from
the raw interactions to the two in/out-group classes. This
was achieved via the one-to-many interaction classifiers IAP

and IHAP [11]. These classifiers measure altruism as a more
general property of the agents, which cannot be successfully
estimated by isolating each single agent interaction.

Although the considerations made in subsection 7.2.1 may
suggest that CL could potentially lead to a misleading rep-
resentation of the ongoing dynamics occurring within the
society, we rather argue that CL provides an augmented rep-
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Figure 4: Differences in Group Identity Assignment between the True and the inferred community structures.

resentation of FNrec, by transforming the dichotomy“friend-
vs-non friend”into a continuous one. This opens to a plethora
of improvement possibilities, two of which are proposed here:
(1) a new module could be embedded between CL and GID;
its purpose would be to refine the C matrix by e.g. identi-
fying possible in/out-group thresholds and then apply some
form of saturation of the C(i, j) values; (2) given that the
C(i, j) values range within the [0, 1] interval, GM could be
enriched by a new interactive component, giving the pos-
sibility to the agents to self-report, at any time, their own
perceptions of friendship, and thus directly affect C.

Although the EA algorithm used for the GID module man-
aged to reach a zero error misclassification for the 20-agent
scenario, it showed partial inefficacy for the 50-agent sce-
nario; the reason is most likely due to the fact that it seems
incapable of maintaining a sufficient genetic diversity in its
chromosomes. Therefore, we are confident that our EA ap-
proach, being generic in terms of genetic representations and
operations, and being capable of automatically augmenting
its alphabet size and terminate its computation, is a robust
technique against the scaling of the society size. Ongoing
work aimed to overcome the genetic diversity drawback are
being conducted; more specifically, we are currently focusing
on the use of automatic niche shifting [10].

The choice of using the Ultimatum Game as interaction
protocol opens for immediate applications of our GM frame-
work to new experimental scenarios based on both arti-
ficial societies and on humans; the interactions protocols

can either be canonical Social Dilemmas, e.g. the Dictator
Game [7], or complex scenarios such as collaborative mul-
tiplayer games [30]. In accordance with the latter, ongoing
work are focused on the application of our framework to the
analysis of the Glitch gameplay data [17], in order to detect
and further analyse eventual discrepancies between inferred
groups and the game’s social networks of friendship among
the players. Finally, the GM’s fundamental characteristic of
indirect modelling can be combined with Procedural Con-
tent Generation (PCG) to extend the field of Experience-
Driven PCG to adaptive multiplayer games [33].

Beyond future application of our modelling framework, we
will also embark a thorough fine-tuning phase of the GM’s
parameters; more specifically, we are considering the use of
meta-EAs for the artificial evolution of genetic populations
of GM frameworks.

9. CONCLUSIONS
We proposed a computational framework capable of infer-

ring the existence of group structures based on social net-
works of reciprocal friendship. This framework assigns rela-
tive group identities to complex adaptive artificial societies
of social agents which interact with each other through the
ultimatum (or bargain) social dilemma game. In contrast
to some other approaches, our modelling framework per-
forms the inference based only on the flow of interactions
occurring within the society. On that basis, it combines a



reinforcement learning-based cooperation learning module
(CL) and an evolutionary algorithm-based group identity
detection module (GID). Experimental setups conducted on
adaptive societies of two different sizes showed the effective-
ness of our framework in minimising the misclassification
error between the true and inferred group identities.
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