
Formal Fault-Tolerance Proofs for Distributed
Algorithms

Mandy Zammit Adrian Francalanza
Department of Computer Science

Faculty of ICT
University of Malta

mzam0041@um.edu.mt adrian.francalanza@um.edu.mt

Distributed Algorithms express problems as concurrent failing processes which co-
operate and interact towards a common goal [1, 2]. Such algorithms arise in a wide range
of applications, including distributed information processing, banking systems and airline
reservation systems amongst others. It is desirable that distributed algorithms are well be-
haved both in a failure free environment and even in the presence of failure (i.e. fault
tolerant). To ensure well behavedness for all executions of distributed algorithms formal
correctness proofs are needed. This is due to the concurrent nature of such algorithms,
where executions of the algorithms result in different interleavings amongst parallel pro-
cesses (i.e. there is a large number of possible execution paths).

However distributed algorithms are often described in semi-formal pseudo code and their
correctness criteria1 in natural language. The current status quo has a number of shortcom-
ings. First is, the discrepancy between the semi-formal description of the algorithm and the
actual implementation which is expressed in a formal language. This discrepancy is often a
principal source of errors in the deployment of these algorithms. Second, due to the expo-
nential interleaving amongst parallel processes and the subtle forms of process interference
at these interleavings, becomes rather subtle and delicate.

Unfortunately formalisation tends to increase complexity because formal analysis forces
you to consider every possible interleaving. At the same time the use of proof mechaniza-
tions still does not yield a clearly expressed proof that is easy to construct or understand;
rather, it yields monolithic mechanical proofs that are very hard to digest.

In our work we address the complexity problem introduced by formalisation. We formalise
and prove the correctness of three Broadcast Protocols, namely; Best Effort Broadcast, Reg-
ular Reliable Broadcast, and Uniform Reliable Broadcast. We use an asynchronous PI-
calculus together with fail-stop processes and perfect failure detectors to encode the proto-
cols and their correctness criteria, and bisimulation (≈, a notion of coinductive equivalence)
for the correctness proofs. In order to alleviate complexity, we extend the work conducted
by Francalanza et. al. [3] where we make use of the concept of Harnesses, and a novel ap-
proach to correctness proofs whereby proofs for basic correctness (correctness in a failure
free setting) and for fault tolerance (correctness in a setting were failures can be induced)
are disjoint. We extend their methodology to produce inductive proofs containing coinduc-
tive techniques at each inductive step rather than having one large coinductive proof. This
would allow us to move away from the large monolithic proofs.

References

[1] Lynch, Nancy A. , Distributed Algorithms, Morgan Kaufmann (1st edition), 2007.

1correctness criteria specify the well behavedness of an algorithm24



[2] Tel, Gerard, Introduction to Distributed Algorithms, Cambridge University Press (2nd
edition), 2001.

[3] Francalanza, Adrian and Hennessy, Matthew, A fault tolerance bisimulation proof for
consensus, Proceedings of the 16th European conference on Programming, Springer-
Verlag, 2007.

[4] Kühnrich, Morten and Nestmann, Uwe, On Process-Algebraic Proof Methods for
Fault Tolerant Distributed Systems, Proceedings of the Joint 11th IFIP WG 6.1 Inter-
national Conference FMOODS ’09 and 29th IFIP WG 6.1 International Conference
FORTE ’09 on Formal Techniques for Distributed Systems, Springer-Verlag, 2009.

25


