
Towards A Hybrid Approach to

Software Verification (Extended Abstract)

Dario Della Monica1 and Adrian Francalanza2

1 ICE-TCS, Reykjavik University, Iceland
dario@ru.is

2 CS, ICT, University of Malta, Malta
adrian.francalanza@um.edu.mt

Model checking (MC) [6] is a widely accepted pre-deployment verification technique that
checks whether a system satisfies or violates a property by potentially analysing all the possible
system behaviours. By contrast, runtime verification (RV) [10, 14] is a lightweight verification
technique aimed at mitigating scalability issues such state explosion problems, typically asso-
ciated with traditional verification techniques like MC. RV attempts to infer the satisfaction
(or violation) of a correctness property from the analysis of the current execution of the system
under scrutiny. It is thus performed post-deployment (on actual system execution), which is
appealing for component-based applications (parts of which may not be available for analysis
pre-deployment), as well as for dynamic settings such as mobile computing (where components
are downloaded and installed at runtime). The technique has fostered a number of verification
tools, e.g., [2, 3, 8, 9, 12, 13, 16], and has proved effective in various scenarios [4, 7, 17].

Despite its advantages, RV is limited when compared to MC because certain correctness
properties cannot be verified at runtime [5, 10, 15]. For instance, MC makes it possible to
check for both safety and liveness properties, by providing either a positive or a negative answer,
according to whether the system conforms with the specifications; RV, on the other hand, can
only return a positive verdict for certain liveness properties (called co-safety properties [5]) or a
negative one for safety conditions. Moreover, RV induces a runtime overhead over the execution
of a monitored system, which should ideally be kept to a minimum [14].

RV’s limits in terms of verifiable properties is evidenced more for branching-time logics, that
are able to express properties describing behaviour over multiple system executions. In recent
work [11], one such branching-time logic called µHML [1] is studied from an RV perspective.
Figure 1 outlines the logic µHML used and its semantics, defined over a Labelled Transition
System (LTS), consisting of a set of states s, r ∈ Sta, sets of actions α ∈ Act, and a transition

relation between states labelled by actions, s
α−→ r; as in [1], the semantic definition employs

an environment from µHML logical variables, Vars, to sets of states, ρ ∈ (Vars ⇀ P(Sta)).
One of the main contributions of [11] is the identification of an expressively maximal, runtime-
verifiable subset of the logic, reported in Figure 1 as the grammar for sHML and cHML; in
[11] they show how these classes provide an easy syntactic check for determining whether a
property satisfaction (or violation) can be determined using the RV technique.

We building on the findings of [11], with the aim of extending the applicability of RV to
a larger class of µHML properties other than sHML ∪ cHML from Figure 1. Specifically,
we propose a hybrid approach that permits automated formal verification to be spread across
the pre- and post-deployment phases of a system development, with the aim of calibrating the
management of the verification burden while combining the strengths of MC with those of RV.
As an illustrative example, consider the µHML property (1) below, describing systems that
can perform action a, prefix 〈a〉(. . .), and reach a state from where it can either perform action

1

Towards A Hybrid Approach to Software Verification Della Monica and Francalanza

Syntax

ϕ, φ ∈ µHML ::= tt (truth) | ff (falsehood)

| ϕ∨φ (disjunction) | ϕ∧φ (conjunction)

| 〈α〉ϕ (possibility) | [α]ϕ (necessity)

| minX.ϕ (min. fixpoint) | maxX.ϕ (max. fixpoint)

| X (rec. variable)

Semantics

Jtt, ρK def
= Sta Jff, ρK def

= ∅
Jϕ1∨ϕ2, ρK

def
= Jϕ1, ρK ∪ Jϕ2, ρK Jϕ1∧ϕ2, ρK

def
= Jϕ1, ρK ∩ Jϕ2, ρK

J〈α〉ϕ, ρK def
=

{
s | ∃r.s α−→ r and r ∈ Jϕ, ρK

}
J[α]ϕ, ρK def

=
{
s | ∀r.s α−→ r implies r ∈ Jϕ, ρK

}
JminX.ϕ, ρK def

=
⋂
{S ∈ Sta | Jϕ, ρ[X 7→ S]K ⊆ S} JmaxX.ϕ, ρK def

=
⋃
{S ∈ Sta | S ⊆ Jϕ, ρ[X 7→ S]K}

JX, ρK def
= ρ(X)

Monitorable Fragments

θ, ϑ ∈ sHML ::= tt | ff | [α]θ | θ∧ϑ | maxX.θ | X
π,$ ∈ cHML ::= tt | ff | 〈α〉π | π∨$ | minX.π | X

Figure 1: µHML Syntax and Semantics

b, subformula 〈b〉tt, or else can never perform action c, subformula [c]ff.

〈a〉(〈b〉tt∨ [c]ff) (1)

According to Figure 1, (1) turns out not to be runtime-verifiable because of the subformula
[c]ff; intuitively, whereas a system execution exhibiting action a followed by action b suffices
to prove that the system satisfies (1), an RV monitor cannot determine whether a system can
never produce action c after performing action a from the observation of only a single system
execution [11]. However, property (1) can be expressed as the (logically equivalent) formula

(〈a〉〈b〉tt) ∨ (〈a〉[c]ff) (2)

whereby we note that the subformula 〈a〉〈b〉tt is runtime verifiable, according to [11]. We argue
that reformulations such as (2) allow for a hybrid compositional approach to verification, where
part of the property, e.g., the subformula 〈a〉[c]ff, can be checked prior system deployment
using MC, and the remaining part of the property, e.g., 〈a〉〈b〉tt, can be runtime-verified during
system execution.

Preliminary investigations indicate that this decomposition approach applies to arbitrary
µHML formulas. We therefore aim to devise general analysis techniques that reformulate
any µHML formula into either conjunctions or disjunctions, i.e., ϕRV ∧ ϕMC or ϕRV ∨ ϕMC,
where ϕRV and ϕMC denote the runtime-verifiable and model-checkable formula components,
respectively. From a software engineering perspective, we envisage at least two ways how this
decomposition between pre- and post-deployment verification can be fruitful:

1. The ensuing hybrid approach may be used as a means to minimise the verification ef-
fort required prior to the deployment of a system. E.g., in the case of (2), the model-
checked subformula ϕMC = 〈a〉[c]ff is smaller than the full formula (1), since we would
be offloading a degree of verification onto the runtime phase when runtime-verifying for

2

Towards A Hybrid Approach to Software Verification Della Monica and Francalanza

ϕRV = 〈a〉〈b〉tt. Moreover, for disjunction decompositions such as (2), the satisfaction of
ϕMC prior to deployment obviates the need for any runtime analysis, minimising runtime
overheads (a dual argument applies for conjunction decompositions and ϕMC violations).

2. In settings where software correctness is desirable but not essential, a hybrid approach can
be used as a means to circumvent full-blown MC. Specifically, instead of model-checking
for (1), a system may be runtime-verified for ϕRV = 〈a〉〈b〉tt during its pilot launch, acting
as a vetting phase: if ϕRV is satisfied during RV, this means that, by (2), (1) is satisfied
as well; if not, we then proceed to model-check the system offline wrt. ϕMC = 〈a〉[c]ff.

References

[1] L. Aceto, A. Ingólfsdóttir, K. G. Larsen, and J. Srba. Reactive Systems: Modelling, Specification
and Verification. Cambridge Univ. Press, 2007.

[2] H. Barringer, Y. Falcone, K. Havelund, G. Reger, and D. E. Rydeheard. Quantified event au-
tomata: Towards expressive and efficient runtime monitors. In D. Giannakopoulou and D. Mry,
editors, FM, volume 7436 of Lecture Notes in Computer Science, pages 68–84. Springer, 2012.

[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based runtime verification. In B. Steffen
and G. Levi, editors, Verification, Model Checking, and Abstract Interpretation, volume 2937 of
LNCS, pages 44–57. Springer Berlin Heidelberg, 2004.

[4] G. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg, K. Havelund, M. Lowry, C. Pasareanu,
A. Venet, W. Visser, and R. Washington. Experimental evaluation of verification and validation
tools on Martian rover software. FMSD, 25(2-3):167–198, 2004.

[5] E. Chang, Z. Manna, and A. Pnueli. Characterization of temporal property classes. In ALP,
volume 623 of LNCS, pages 474–486. Springer-Verlag, 1992.

[6] E. M. Clarke, Jr., O. Grumberg, and D. A. Peled. Model Checking. MIT Press, 1999.

[7] C. Colombo and G. J. Pace. Fast-forward runtime monitoring - an industrial case study. In
Runtime Verification, volume 7687 of LNCS, pages 214–228. Springer, 2012.

[8] B. D’Angelo, S. Sankaranarayanan, C. Sánchez, W. Robinson, B. Finkbeiner, H. B. Sipma,
S. Mehrotra, and Z. Manna. Lola: Runtime monitoring of synchronous systems. In TIME,
pages 166–174. IEEE, June 2005.

[9] N. Decker, M. Leucker, and D. Thoma. jUnitRV - Adding Runtime Verification to jUnit. In NASA
Formal Methods, volume 7871 of LNCS, pages 459–464. Springer, 2013.

[10] Y. Falcone, J.-C. Fernandez, and L. Mounier. What can you verify and enforce at runtime? STTT,
14(3):349–382, 2012.

[11] A. Francalanza, L. Aceto, and A. Ingolfsdottir. On verifying Hennessy-Milner logic with recursion
at runtime. In Runtime Verification. Springer, 2015. (to appear).

[12] A. Francalanza and A. Seychell. Synthesising Correct Concurrent Runtime Monitors. FMSD,
pages 1–36, 2014.

[13] M. Kim, M. Viswanathan, S. Kannan, I. Lee, and O. Sokolsky. Java-MaC: A Run-Time Assurance
Approach for Java Programs. FMSD, 24(2):129–155, 2004.

[14] M. Leucker and C. Schallhart. A brief account of Runtime Verification. JLAP, 78(5):293–303,
2009.

[15] Z. Manna and A. Pnueli. Completing the Temporal Picture. TCS, 83(1):97–130, 1991.

[16] P. O. Meredith, D. Jin, D. Griffith, F. Chen, and G. Roşu. An overview of the MOP runtime
verification framework. STTT, 14(3):249–289, 2012.

[17] S. Varvaressos, D. Vaillancourt, S. Gaboury, A. Blondin Mass, and S. Hall. Runtime monitoring
of temporal logic properties in a platform game. In Runtime Verification, volume 8174 of LNCS,
pages 346–351. Springer, 2013.

3

View publication statsView publication stats

https://www.researchgate.net/publication/282023264

