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Abstract. To avoid large overheads induced by runtime monitoring, the use of
asynchronous log-based monitoring is sometimes adopted — even ttidagh
implies that the system may proceed further despite having reached ks
state. Any actions performed by the system after the error occurringrattesir-
able, since for instance, an unchecked malicious user may perfauathorized
actions. Since stopping such actions is not feasible, in this paper we imtestig
the use of compensations to enable the undoing of actions, thus enriglyimg a
chronous monitoring with the ability to restore the system to the original state
in which the anomaly occurred. Furthermore, we show how allowing th&-mo
tor to adaptively synchronise and desynchronise with the system is asibleo

and report on the use of the approach on an industrial case studyrzfreifl
transaction system.

1 Introduction

The need for correctness of systems has driven researchienedit validation and ver-
ification techniques. One of the more attractive approaéhéise use of monitors on
systems to verify their correctness at runtime. The maimathge in the use of runtime
verification over other approaches, is that it is a relagivglhtweight approach and
scales up to large systems — guaranteeing the observatebmnofmal behaviour.

Even though monitoring of properties is usually computaity cheap when com-
pared to the actual computation taking place, the monitmade an additional over-
head, which is not always desirable in real-time, reactjgtesns. In transaction pro-
cessing systems, the additional overhead induced by emtdeirtion can limit through-
put and can cripple the user-experience at peak times ofiggac One approach usu-
ally adopted in such circumstances, is that of evaluatiegnionitors asynchronously
with the system, possibly on a separate address space. €heead is reduced to the
cost of logging events of the system, which will be procegsethe monitors. How-
ever, by the time the monitor has identified a problem, théesysnay have proceeded
further.

The problem is closely related to one found in long-livesh&actions [14] — trans-
actions which may last for too long a period to allow for laudiof resources, but which
could lead to an inconsistent internal state if the resauare released. To solve the

* The research work disclosed in this publication is partially funded by the Ni&tmnal Re-
search and Innovation (R&I) Programme 2008 project number 052.
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problem, typically one definesompensationgo undo partially executed transactions
if discovered to be infeasible half way through. In the cdsesgnchronous monitoring,
allowing the system to proceed before the monitor has camypliés checks may lead
to situations where the system should have been terminatédreAs with long-lived
transactions, we allow this run-ahead computation. We att@puse of compensa-
tions in our setting to enable the undoing of system behavidien an asynchronous
monitor discovers a problem late, thus enabling the systernliback to a sane state.
Furthermore, in a setting such as transaction-procesygstgras, one canfiord most
of the time to run the monitors in synchrony with the systealljrfg back to asyn-
chrony only when required due to high system load. Thus, wegse an architecture
to enable loosely-coupled execution of monitors with thetey, typically running syn-
chronously, but allowing for de-synchronisation when iieggiand re-synchronisation
when desired.

In this paper, we present a framework to enable compensati@ne monitoring
— and prove that the compensation triggering mechanismswaslexpected, resulting
in similar behaviour as though we had run the monitor synobusly. Furthermore,
we show that enabling the monitor to synchronise (and désgnise) at will with
the system does not change the behaviour. We have investitja¢ use of this ap-
proach on an industrial case study — dealing with financaigactions, and for which
a compensation-based implementation was already in place.

The paper is organised as follows — in section 2 we preserkigbagnd necessary
to reason about compensations, which we use to formallyactenise compensation-
aware monitoring in section 3. An architecture implementinis mode of monitoring
is presented in section 4, and we illustrate its use on arsindlicase study in section
5. Finally we discuss related work in section 6.

2 Compensations

Two major changes occurred which rendered traditionabdestas inadequate in certain
circumstances [14, 13]: on the one hand there was the ad¥ehe dnternet, facili-
tating the participation of heterogeneous systems in adesitignsaction, and on the
other hand, transactions became longer in terms of durétiequently, the latter being
a consequence of the former). These changes meant that posagle for a travel
agency to automatically book a flight and a hotel on behalf aistomer without any
human intervention — a process which may take time (mainky tducommunication
with third parties and payment confirmation) and which maly Tdese issues rendered
the traditional mechanism of resource locking for the withleation of the transaction
impractical since it may cause severe availability proldeamd motivated the need for
a more flexible way of handling transactions amongst he&@regus systems while at
the same time ensuring correctness. A possible solutiomeisise of compensations
[14,13] which are able to deal with partially committed lelinged transactions with
relative ease. Taking again the example of the flight and boigking, if the customer
payment fails, the agency might need to reverse the booKirgs can be done by first
cancelling the hotel reservation followed by the flight catation, giving the impres-
sion that the bookings never occurred. Although severaltimots supporting compen-
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sations have been proposed [5, 4, 3, 15, 21], little work][528 been done to provide
a mathematical basis for compensations. For simplicitghéncase of compensating
CSP (cCSP) [5], to study thefect of the use of compensations, it is assumed that they
are perfect cancellations of particular actions. This $etadthe idea that executing an
action followed by the execution of its compensation, isghee as if no action has
been performed at all. In practice, it is rarely the case tilvatoperations are perfect
inverses of each other and that after their execution ne isleft. However, the notion
of cancellation is useful as a check to the correctness dbtingalism.

In this section we present the necessary background nadifocancellation com-
pensations, based on [5].

2.1 Notation

To enable reasoning about system behaviour and compeamsatie will be talking
about finite strings of events. Given an alphabetve will write 2* to represent the
set of all finite strings ovek, with & denoting the empty string. We will use variables
a, b to range over’, andv, w to range ove*. We will also assume actionindicat-
ing internal system behaviour, which will be ignored whevestigating the externally
visible behaviour. We will writeZ to refer to the alphabet consisting iU {7}.

Definition 1. Given a string w oveg, its external manifestatigrwritten w, is the
same string but dropping instancesrof

Two strings v and w are said to externally equalwritten v =, w, if their external
manifestation is identical: V. = w7. This notion is extended to sets of strings.

External equivalence is an equivalence relation, and arcenge up to string catena-
tion.

2.2 Compensations

For every event that happens in the system, we will assunevéaaan automatically
deduce a compensation which, in some sense, corresponds txtion to be taken
to make up for the original event. Note that executing the twsequence will not
necessarily leave the state of the system unchanged — akyiample being that of
a person withdrawing a sum of money from a bank ATM, with iteypensation being
that of returning the sum but less bank charges.

Definition 2. Corresponding to every event a in alphabigtits compensation will be
denoted bya. We will writeX to denote the set of all compensation actions. For simplic-
ity of presentation, we will assume that the set of eventdtzaitdf their compensations
are disjoinf. Extending compensations to an alphabet enriched withifeernial action

T, we assume that=r.

3 One may argue that the two could contain common elements —depgsitcan either be done
during the normal forward execution of a system, or to compensata fathdraw action.
However, one usually would like to distinguish between actions taken durengaimal for-
ward behaviour and ones performed to compensate for errorsyamgbuld thus much rather
useredeposits the name of the compensatiomathdraw, even if it behaves just likdeposit
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We also overload the compensation operator to strings ayein such a way that
the individual events are individually compensated, buteiverse orderz = & and
aw = wa. For exampleabc = tha.

To check for consistency of use of compensations, the aphrigaypically to con-
sider an ideal setting in which executiagimmediately followed bya will be just like
doing nothing to the original state. Although not typicalte case, this approach checks
for sanity of the triggering of compensations.

Definition 3. The compensation cancellation of a string simplifies itsrape by (i)
dropping all internal actiong; and (ii) removing actions followed immediately by their
compensation. We define can@élto be the shortest string for which there are no
further reductions of the form candehaaw,) = cance{wiw,).

Since the sets of normal and compensation events are djgjoings may change
under cancellation only if they contain symbols from bdthndX'. Cancellation reduc-
tion is confluent and terminates.

Definition 4. Two strings w and fare said to becancellation-equivalentritten w=,

w, if they reduce via compensation cancellation to the sanmgstance(w) = cance(w).
A set of strings W is said to becluded in setV’ up-to-cancellationwritten W<, W,

if for every string in W, there is a cancellation-equivalstring in W':

WS W EvweW-Iw e W - w =, W

Two sets are said to begqual up-to-cancellatigrwritten W = W/, if the inclusion
relation holds in both directions.

Cancellation equivalence is an equivalence relation, sactongruence up to string
(and language) catenation. Furthermore, a string follolyeidls compensation cancels
to the empty string:

Proposition 1. The catenation of a string with its compensation is cantielteequiv-
alent to the empty stringdw - WWw = &.

3 Compensations and Asynchronous Monitoring

We start by characterising synchronous and asynchronoungariag strategies. In the
synchronous version, it is assumed that the system and ongo@tform a handshake
to synchronise upon each event. In contrast, in the asynohisapproach, the events
the system produces are stored in &é&y and consumed independently by the monitor,
which may thus lag behind the system. Based on the asynals@amantics, we then
define a compensation-aware monitoring strategy, whichitmerasynchronously, but
makes sure to undo any system behaviour which has taken gftec¢he event which
led to failure. Finally we show how enabling synchronisatismd desynchronisation at
will leaves the results intact.
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3.1 Synchronous and Asynchronous Monitoring

We will assume a labelled transition system semantics dpaahet> for both systems
and monitors. Given a class of system st&@es/e will assume the semanties»sys C

S x 2 x S, and similarly a relation— o, Over the set of monitor stateéd. We also
assume a distined € S identifying a stopped system, aigde M denoting a monitor
which has detected failure. Bothand® are assumed to have no outgoing transitions.

Using standard notation, we will write isys o’ (resp.m —a>mon nt) as shorthand
for (o, a,07) € —sys(resp. M a,NT) € —men). FOr any transition reIationa—>x (ae
2), we will write _ﬂ>x (w € 2*) to denote its reflexive transitive closure.

Definition 5. The transition system semantics of the synchronous cotigposf a sys-
tem and monitor is defined over>8M using the rules given in Fig 1. The rufyc
defines how the system and monitor can take a step togethés, SyRcErr handles
the case when the monitor discovers an anomaly. A $tgte) is said to be (i)sus-
pendedf o = @ (ii) faulty if m = ®; and (iii) saneif it is not suspended unless faulty
(c=0 = m=g).

The set of traces generated through the synchronous cotigposf systena- and
monitor m, writtentraces; (o, m) is defined as follows:

traces)(o, m) = (w | I(o’, ) - (oo m) = (o', M)}

Example 1.For example consider a simple systerover alphabeta, b} and a monitor
A which consumes an alternation afand b events starting witta i.e. abab. .. but
breaks for any other input. The synchronous compositioruchi system and monitor
takes a step if both the system and the monitor can take arstepéndently on the

given input. Therefore, if the system performs evantP, A) im (P, A). If systemP
performs & instead, the system would break, {) i>|| (0,®).

Proposition 2. A sequence of actions is accepted by the synchronous cdiopadia
system and a monitor, if and only if it is accepted by both tlaitor and the system

acting independently. Provided that ;| ®, (o, m) _£>” (o7, m), if and only ifo- %Sys
o’ and mémon nm.

In contrast to synchronous monitoring, asynchronous radng enables the system
and the monitor to take steps independently of each other.stdte of asynchronous
monitoring also includes an intermediatefilen between the system and the monitor
S0 as not to lose messages emitted by the system which arencoysumed by the
monitor.

Definition 6. The asynchronous composition of a system and a monitorfirsedieover
S x 2 x M, in terms of the three rules given in Fig. 1. Rélexncs allows progress of
the system adding the events to the intermediafebuvhile rule Asyncy, allows the
monitor to consume events from thgfbu Finally rule AsyncErr suspends the system
once the monitor detects an anomaly. Suspended, faultyaralstates are defined as
in the case of synchronous monitoring by ignoring thgeu
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The set of traces accepted by the asynchronous compodisgateny- and monitor
m, writtentraces (o, m) is defined as follows:

traces) (o, m) = {w| (e, W', ) - (o,&,m) =W>m (o7, W', )}

Example 2.Taking the same example as before, upon each step of thesystevent

. . . b

is added to the lter — if the system starts with an eveamt(P, &, A) — (P’,b, A).
Subsequently, the system may either continue further,eortbnitor can consume the

event from the bffer and fail: @,b, A) —; (P, &, ®). At this stage the system can
still progress further until it is stopped by the rulevAcErr.

Proposition 3. The system can always proceed independently when asyocisign
monitored, adding events to theffiar, while the monitor can also proceed indepen-

dently, consuming events from theffeu (i) if o =W>Sys o’, then (o, W, m) =W>H|
(o, ww, m); and (i) if m :W»mon nt, then(o, ww, m) ém (o, W', ).

[
Synchronous Monitoring

Asynchronous Monitoring

a , a
0 —sysO M —>mon M’
Asyncg 3 ASYNCm =
(o, w, m) — (o7, wa, m) (o, aw, m) — (o, w, )
AsyNncErr o#0O

(O', w, ®) —T>”| (@, w, ®)

Compensation-Aware Monitoring

Cowmp -
(©,wa,®) —¢ (O,W,®)

Adaptive Monitoring

ReSync = DEeSync -
(o,e,m) —p (o, M) (o, m) —p (0, &,m)

Fig. 1. Semantics of dferent monitoring schemas
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3.2 Compensation-Aware Monitoring

The main problem with asynchronous monitoring is that thetesy can proceed beyond
an anomaly before the monitor detects the problem and shepsytstem. We enrich
asynchronous monitoring with compensation handling smaartdo’ actions which
the system has performed after an error is detected.

Definition 7. Compensation-aware monitoring uses the asynchronousaning rules,
together with an additional on€omp which performs a compensation action of actions
still lying in the byfer once the monitor detects an anomaly. The rule is showngn Fi
1.

The set of traces generated through the compensation-asean@osition of system
o and monitor m, writtertraces ¢ (o, M), is defined as follows:

tracesc(o,m) = {w| Ao, M) - (0,8,m) ==¢ (07, & M)}
Sane, suspended and faulty states are defined as in asyocdisraronitoring.

Example 3.Consider the previous example with:
(P.e.A) =5 (P.b,A) —5¢ (P7.bb A) s (P, b,8) ¢ (P7.ba.8) ~c (0.ba.®)

At this stage, compensation actions are executed for thenactemaining in the
buffer in reverse order:

(©.ba,®) ¢ (0.5.8) ¢ (0.6.8)

Proposition 4. States reachable (under synchronous, asynchronous angkestsation-
aware monitoring) from a sane state are themselves sanda8imfor suspended and
faulty states.

Strings accepted by compensation-aware monitoring follaegular pattern.

Lemma 1. For an unsuspended state, £, m), if (o, &, m) =W>C (0,v,®), then there
exist some ww, € 2* such that the following three properties hold: (i) w;vWoWo;
(i) M = on ®; (iil) Fo" - 0 = gys 0"

Similarly, for an unsuspended stdte, ¢, m), if (o, &, m) _ﬂ>c (o7, v,m) (witho’ #
©), then there existswe 2* such that the following three properties hold: (i) wyv;

.. W WwWpV
(il) M = mon MY; (iil) 0 =>gys0”.

Proof. The proof of the lemma is by induction on the derivation gtfn
For the base case, with w &, we consider the two possible cases separately:

— Given that(o, &,m) =c (0,v,®), it follows immediately that- = ©, v = &£ and
m = Q. By taking w = W, = &, all three statements follow immediately.

— Alternatively, if(o, €, m) _i>c (o7, v, m), it follows immediately thad- = o/, v=¢
and m= . By taking w = &, all three statements follow immediately.

Assume the property holds for a string w, we proceed to phoaeit holds for a string
wa.

By analysis of the transition rules, there are four possilég/s in which the final tran-
sition can be produced:



8 Christian Colombo, Gordon J. Pace, and Patrick Abela

() Using the ruleAsyncERR: (0, &, M) =s¢ (07, V, ®) —¢ (@, V, ®).
(b) Using the ruleComeB: (0, &, M) ==¢ (0, Va, ®) —c (0, V, ®).

(c) Using the ruleAsyncs: (o, &,m) =W>c (o, v, ) i (o, va n).
(d) Using the ruleAsysey: (0, &, M) =¢ (07, av, M) —¢ (o7, v, m).

The proofs of the four possibilities proceed similarly. Gioler the possibility (b):

(0, &,m) =5 (0,Va,®) —¢ (0, V,®)
By the inductive hypothesis, it follows that there exiStand w, such that (i) w=;
WVAWSTEY; (i) M s mon ® (i) Jo7 - & s eys”.
We require to prove that there existand w, such that: (i) v =, wivweWy; (ii)
M = mon ®; (i) F07 - 0 = 5ys 0.
Taking w = w; and w = aw, statement (i) can be proved as follows:

wa

=, { by statement (i) of the inductive hypothesis
W, vaww,a

= { by definition of compensation of strings
w,vaw,aw,

= { by choice of wand w }
Wi VWL W,

Statement (i) follows immediately from the statementafiijhe inductive hypothesis

and the fact that w = w;. Similarly, from statement (iii) of the inductive hypotises

wivaw, . _
o = &s0”, if follows by definition of wand w, thato wsysa-’.

The proofs of the other possibilities follow in a similar nan

We can now prove that synchronous monitoring is equivalerntampensation-
aware monitoring with perfect compensations. This resuduees the sanity of com-
pensation triggering as defined in the semantics.

Theorem 1. Given a sane system and monitor p@it m), the set of traces produced by
synchronous monitoring is cancellation-equivalent togbeof traces produced through
compensation-aware monitoringaces; (o, m) = tracesc(c, m).

Proof. To prove thatraces)(o, m) <. tracesc(o, m), we note that every synchronous
transition (7, m) i>“ (o7, m"), can be emulated in two steps by the compensation-
aware transitiongo”, v, m) gc (o, v, m"), leaving the byfer intact. Using this fact,
and induction on string w, one can show tha(f m) :W>” (o7, m), then(o, &, m) =V>C

(o7, &,m'), with w= v~*. Hence traces|(o, m) . traces (o, m).

Proving it in the opposite directiortraces c(o, m) C¢ traces; (o, m)) is more intricate.

By definition, if we traces (o, m), then(c, &,m) =>¢ (o, &, M). We separately con-
sider the two cases of (§’ = @ and (ii) o’ # ©.

— When the final state is suspended € ©):
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(o, 6,m) =>¢ (0. &)
= { by sanity of initial state and proposition}4
(o, e,m) %C (0,&,0)
= {bylemma 1
Awg, Wo - W=, WiWoWo A M gmon & ANdo” - o gsys a”
— { by proposition 2
Awg, Wo - W=, WWoW, A do7”7 - (0’, m) gu (0’”,@)
= { by definition oftraces; }
AW, Wo - W=, WiWoW, A Wy € fraces (o, m)
= { by proposition 1}
Iwg - W=¢c Wy AW, € traces)(o, m)
— When the final state is not suspended £ ©):

(o, &,m) :W>c (o7, &)
= {bylemma 1
Wi Wy
AWy - W= Wi AM=on M A 0 = gy50”
= { by proposition 2
w; - W=, Wy A (o, m) g” (o7, m)
= { by definition oftraces, }
Awy, - W=, Wy AW € traces(o, m)
= { by the alphabet of synchronous monitoring
Iw; - W=¢ Wy AW; € traces)(o, m)

Hence, in both cases it follows that:
W e tracesc(o,m) = 3wy - W=¢c Wy AW € traces)(c, M)
From which we can conclude that:
traces c(o, m) Cc traces;(o, M)

3.3 Desynchronising and Resynchronising

Despite compensation-awareness, in some systems it magsbalde to run monitor-
ing synchronously with the system during critical sectiohghe code, only to desyn-
chronise the system from the monitor again once controEle#he critical code section.
In this section, we investigate a monitoring strategy whiah run both synchronously
or asynchronously in a non-deterministic manner. Any letigrised to decide when to
switch between modes corresponds to a refinement of thi@agipr

Definition 8. The adaptive monitoring of a system, is defined in terms ditheaddi-
tional (over and above synchronous and asynchronous nmrargorules given in Fig.
1. RuleReSync allows the system to synchronise once thgdouis empty, while rule
DeSync allows the monitor to be released asynchronously. By alsluding the com-
pensation ruleComp, we obtain adaptive compensation-aware monitorirgfc).

The set of traces generated through the adaptive composifisystena- and mon-
itor m, writtentraces (o, m), is defined as follows:

traces a(c, M) £ (w| Ao’ W, M) - (o, M) =24 (o7, W, M) V (0, M) =>4 (0, 1)}
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The traces for compensation-aware adaptive composttiaces ac(o, m) can be
similarly defined.

Theorem 2. Asynchronous and adaptive monitoring are indistinguidaaip to traces:
traces a(o, m) = traces) (o, m). Compensation-aware adaptive monitoring is also in-
distinguishable from compensation-aware monitoring uprages: traces ac(o, m) =
traces c(o, m).

The theorems can be easily proved based on transitionereliatclusion. An im-
mediate corollary of this last result, is that compensatiamare adaptive monitoring is
cancellation-equivalent to synchronous monitoring.

It is important to note that the results hold about trace \egence. In the case
of adaptive monitoring, we are increasing the set of diveggionfigurations — since
every state can diverge through repeatedly desynchrgnisid resynchronising. One
would be required to enforce fairness constraints on déspnésing and resynchronis-
ing rules to ensure achieving progress in the monitorecayst

4 A Compensation-Aware Monitoring Architecture

Larva [9] is a synchronous runtime verification architecture sufipg DATES [8] as
a specification language. A user wishing to monitor a systsimgu_arva must supply
a system (a Java program) and a set of specifications in the dbra Larva script
— a textual representation of DATEs. Using therka compiler, the specification is
transformed into the equivalent monitoring code togethith v number of aspects
which extract events from the system. Aspects are genematédpect], an aspect-
oriented implementation for Java, enabling automatic dopetion without directly
altering the actual code of the system. When a system is nteditny Larva generated
code, the system waits for the monitor before continuintherexecution.

We propose an asynchronous compensation-aware monismghdecturegL Arva,
with a controlled synchronous element.dinarva, control is continually under the ju-
risdiction of the system — never of the monitor. However, fiystem exposes two
interfaces to the monitor: (i) an interface for the monimicommunicate the fact that
a problem has been detected and the system should stop;aad ifiterface for the
monitor to indicate which actions should be compensatede M@t these correspond
directly to rules AyncErr and Gomp respectively. Therefore, the actual time of stop-
ping and how the indicated actions are compensated ar®tdfié system to decide.

Fig. 2 shows the four componentsaifarva and the communication links between
them. The monitor receives system events through the eglaytsr from the log, while
the system can continue unhindered. If the monitor detdetsl it communicates with
the system so that the latter stops. Depending on the adtiersystem carried out since
the actual occurrence of the fault, the monitor indicates#actions for compensation.
It is important to point out that the monitor can only compardor actions of which
it is aware — the monitor can never alert the system to congieractions which have
not been logged.

To support switching between synchrony and asynchrosynahronisation man-
ager component is added as shown in Fig. 3. All connectors in tagrdm are syn-
chronous with the system not proceeding after relaying antawntil it receives control
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Fig. 2. The asynchronous architecture with compensatitnasva.

Events | Events |
System Manager Monitor
Stop/Cont Stop/Cont
Compensate
Des Syn

Fig. 3. The asynchronous architecture with synchronisation and desynsation controls.

from the manager. The following code snippet shows the lofithe synchronisation
manager:
c = ok ;set default control to ok

while (c !'= stop)
if (synch_mode)

e = in_event() ;read event from system
c = out_event(e) ;forward to monitor and get its resulting state
out_control(c) ;relay control to system
else
par ;parallel execution
el = in_event() ;read from system
addToBuffer(el) ;store in buffer
out_control(c) ;return control to system
with
e2 = readFromBuffer() ;read from buffer
c = out_event(e2) ;forward to monitor and get its resulting state
end

The behaviour in which this architecturefeérs fromcL arva is that it can operate in
both synchronous and asynchronous modes and can switckdretnodes. Switching
from synchronous to asynchronous is trivial. The oppostpuires that the manager
waits for the monitor to consume all the events in théfdmuand then allowing the sys-
tem to proceed further. So far this has not been implemebtedye aim to implement
it in the future as an improvement oh arva.

In real-life scenarios it is usually undesirable to stop alehsystem if an error
is found. However, in many cases it is noffiult to delineate parts of the system to
ensure that only the relevant parts of the system are stopfmecexample, consider
the case where a transaction is carried out without negeggats. In such a case, the
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operation
activate

login

Logged
B B —

unfreeze logout

Fig. 4. The lifecycle property.

transaction should be stopped and compensated. Howewersér has managed to
illegally login and start a session, then user operationmgéduhat session should be
stopped and compensated.

5 Case Study

We have appliedLarva on Entropay, an online prepaid payment servifiered by
Ixaris Systems Lt Entropay users deposit funds through funding instrumgsutsh
as their own personal credit card or through a bank transéehamism) and spend such
funds through spending instruments (such as a virtual VI&#& or a Plastic Master-
card). The service is used worldwide and thousands of tctinga are processed on a
daily basis.

The advantage of applying the proposed architecture twPair is that the latter
already incorporates compensations in its implementafitie case study is further
simplified by the fact that properties are not monitored gligtbut rather on a per user
or per credit card basis. Therefore, when a problem is fouitld avparticular user or
card, only the compensations for that particular entitydrieebe triggered.

The case study implementation closely follows the architecdescribed above
with two control connections: one with an interface for §tioyg EntroPay with respect
to a particular user and another to the compensation icenfd EntroPay, through
which the monitor can cause the system to execute compensati

In what follows, we give a classification of properties whighre monitored suc-
cessfully and how these are compensated in case of a violdgiction.

Life cycle A lot of properties in Entropay depend on which phase of tfeedycle an
entity is in. Fig. 4 is an illustration of the user life-cyckarting with registration
and activation, allowing the user to login and logout (pblystarrying out a series
of operations in between), and finally, the possibility @&fdzingunfreezingdelet-
ing a user in case of inactivity.

Implicitly, such a property checks that for a user to perfarparticular operation
and reach a particular state, the user must be in an appptate. If a life cycle
property is violated, the user actions carried out aftevibkation is compensated

4 www.ixaris.com
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and the user state is corrected. For example, if a user dibgiotand managed to
carry out a transfer, then as soon as the monitor detectddtaion, any ongoing
user operations are stopped and the illegal transfer is enggted.

Real-time Several properties in Entropay, have a real-time elemeantekample, a
user account which is inactive for more than six months izdro If freezing does
not take place, then, upon detection, the monitor issuesrgensation for any
actions carried out after the expected freezing and fretheegser account.

Rights User rights are a very important aspect of Entropay’s sgcuki number of
transactions require the user to have the appropriatesrlgtfore a transaction is
permitted. If a transaction is carried out without the neeegrights, it is compen-
sated.

Amounts There are various limits (for security reasons) on the feeqy of certain
transactions and the total amount of money which theseacdiosis constitute. If
a user is found to have carried out more transactions thawedl, then the excess
transactions are compensated. Similarly, transactioruatsavhich go beyond the
allowed threshold are compensated for.

The case study was successfully executed on a database ©6080@sers with
around a million credit cards. A number of issues have betecti through the moni-
toring system: (i) certain logs were missing; (ii) some aseere found to be in a wrong
state, eg. should be in a frozen state but still active;ttig)limit of the amount of money
a user can spend was in some cases exceeded. Monitoringlofthperformed asyn-
chronously ensured the identification of issues, and thrdhg compensation mecha-
nism, identification of actions to be taken to rollback theteyn to the point where the
violation occurred. At that point, one can then either ryatife operator of the issue, or
trigger the system’s own exception handling mechanism.

Although the current properties being monitored on Entyogi@ relatively light-
weight and monitoring can be done relatively seamlesskytdsecurity issues, running
the monitor synchronously is not an option — avoiding changethe architecture of
Entropay. The monitors are linked to the database of loge=ntiv enable asynchronous
monitoring, but giving feedback and compensation actigrenudiscovering issues.

6 Related Work

In principle, any algorithm used for synchronous monitgrcan be used for asyn-
chronous monitoring as long as all the information avadatilruntime is still available
asynchronously to the monitor through some form offéau The inverse, however, is
not always true because monitoring algorithms such as g@jire that the complete
trace is available at the time of checking. In our case, this mot an option since our
monitor has to support desynchronisation and resynchatoisat any time during the
processing of the trace.

There are numerous algorithms and tools [2, 7,1, 19, 206,2,11 which support
asynchronous monitoring — sometimes also known as tracekictgeor afline moni-
toring. A number of these tools and algorithms [2, 7, 1, 1@jmart only asynchrony un-
like our approach which supports both synchronous and &sgnous approaches. Fur-
thermore, although a number of approaches [12, 16, 20, Jostiboth synchronous
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and asynchronous monitoring, no monitoring approach o€lhie are aware is able to
switch between synchronous and asynchronous monitoringgia single execution.

Although the idea of using rollbacks (or perfect compemses) as a means of syn-
chronisation might be new in the area of runtime verificatibis is not the case in the
area of distributed games [17, 18, 10]. The problem of dlisteéd games is to minimise
the dfects on the playing experience due to network latencies.gemeral approaches
taken are pessimistic and optimistic synchronisation raeisdms. The former waits for
all parties to be ready before anyone can progress whileatter lallows each party to
progress and resolve any conflicts later through rollbacks.

The problem which we have addressed in this work is a simglifersion of the
distributed game problem with only two players: the systachthe monitor. In a similar
fashion to game synchronisation algorithms, the systets-balck (or compensates) to
revert to a state which is consistent with the monitor.

7 Conclusions and Future Work

In this paper, we have presented an adaptive compensatiareaonitoring architec-
ture, and an implementati@h arva. Combined with the notion of compensations where
actions of a system can be ‘undone’ to somewhat restore @peestate, we reduce the
effect of errors detected late (due to asynchronous monitpliggcompensating for
additional events which the system may have performed imtbantime. We have
demonstrated the use of this approach on a financial traosdwndling software. The
advantage of this case study is that compensations wesagleewell-defined concept
from the developers perspective.

At the moment we are investigating the use of heuristics éxydchronisation and
resynchronisation of the system and monitor. At the simipde®l, one can simply trig-
ger asynchronous monitoring when the system load reachesaarclevel, and switch
back to synchronous monitoring when it falls below the thadg. It would be interest-
ing to explore further the development of smarter heusdiie this purpose — taking
into account other issues, such as the trust in (or lack dfleparties involved in the
transaction and its monetary value.

A significant limitation of our work is the assumption thatgeensations are asso-
ciated to individual actions. Apart from the fact that thigght not always be the case,
this approach is highly inflexible as one cannot simultasBocompensate for several
actions, or commit a series of actions such that they canaaompensated. In the
future, we aim to lift this limitation by introducing a striuced approach to compensa-
tions.
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