
WICT PROCEEDINGS, DECEMBER 2008 1

A Practical Approach to Runtime Verification
of Real-Time Properties for Java Programs

Christian Colombo
Dept. of Computer Science

University of Malta
ccol002@um.edu.mt

Gordon J. Pace
Dept. of Computer Science

University of Malta
gordon.pace@um.edu.mt

Gerardo Schneider
Dept. of Informatics

University of Oslo, Norway
gerardo@ifi.uio.no

Abstract

Given the intractability of exhaustively verifying soft-
ware, the use of runtime-verification to verify single
execution paths at runtime, is becoming increasingly
popular in industrial settings. In this paper we present
dynamic communicating automata with timers and
events to describe properties of systems, implemented
in LARVA, an event-based runtime verification tool for
monitoring temporal and contextual properties of Java
programs. We give the mathematical framework behind
LARVAand show how real time logics can be trans-
lated into LARVAproviding additional benefits to the
runtime monitoring framework. These benefits include
guarantees on the memory upperbound required for
the monitoring system and guarantees on the effect of
varying the execution speed of the system with regards
to real-time properties.

Index Terms

runtime verification, real-time properties, duration cal-
culus

1. Introduction

As computer systems become increasingly present in
all the aspects of our lives, be it in avionics, medical
equipment, on-line billing systems, etc, it is becoming
increasingly important to provide reliable and robust
software. Faults in security- and safety-critical systems
can be financially costly or even cause the loss of
human lives.
Until recently, testing was the main, if not the only
tool to improve software reliability. Despite the effec-
tiveness of proper testing, it is extremely difficult to
test huge software products in a sufficiently thorough

manner so as to ensure their correctness due to lack of
coverage. Since a system does not work in a vacuum,
but in an environment which can be difficult to predict
and practically impossible to simulate all possible vari-
ations, exhaustively or even effective testing with high
coverage a complex system is practically impossible.
Another approach to provide safe and secure software,
which has been gaining ground since the 90s, is that
of model checking, in which one verifies all execution
traces which the system can possibly run into. How-
ever, model checking fails to scale up easily on large
systems, and is thus usually impractical without strong
abstraction techniques using which the model verified
and the system may be far removed.
Runtime verification has built upon model checking
techniques to verify the correctness of a property over
a system, but restricting the coverage of the verification
to a single path at a time, just as in testing. However,
unlike testing, the verification along the execution path
is performed at runtime, ensuring that the system is
never allowed to follow undesirable paths. In this way
one can guarantee that whatever the system environ-
ment and input, the behaviour is still correct. In the
case of a property violation, the verifying system can
either raise an alarm or take some action to correct the
state of the verified system. The underlying assumption
of runtime verification, is that arresting the system’s
execution upon discovery of a problem is sufficient
to ensure the correctness of the system. If prefixes of
such execution paths necessarily lead to problems, then
it is up to the designer or developer to identify these
undesirable prefixes which may then be stopped using
runtime verification.
In order to provide a description of the specification,
one requires a precise notation appropriate to describe
typical properties in a clear and succint manner. A
number of logics have been developed some of which
are more appropriate in particular domains. It is also

2 WICT PROCEEDINGS, DECEMBER 2008

important for the logic to be automatically transformed
into monitoring code, to ensure that what you write is
what you verify.
One also needs to consider the problem that upon in-
jecting monitoring code, the environment of the target
system is also being effectively changed. The overhead
of the monitoring code effectively slows down the
system, leading to different sampling or reaction time
in concurrent and real-time systems. Increased memory
overheads are another issue one has to tackle. In this
paper, we outline how we tackle the issues in two
different ways (i) by guaranteeing an upperbound on
time and memory resource requirements for runtime
verification; and (ii) by characterising real-time prop-
erties which would not cause new violations upon
speeding up (or slowing down, depending on whether
one looks at adding or removing a monitor) the verified
system. This guarantees that one would not introduce
errors while eliminating others.

2. LARVA

The expressivity of the logic in which to express
properties is crucial — on one hand, the logic should
be expressive enough to be able to handle certain
features in a practical setting, such as temporal aspects
and contextual aspects, but it should also enable the
automatic generation of effective and efficient mon-
itors. In this section, we briefly present a theory of
communicating automata with events and timers used
to express properties, and the construction of monitors
from such properties — the basis of our tool LARVA.
A more complete presentation can be found in [3].

2.1. Dynamic Automata with Events and
Timers (DATEs)

The underlying logic we will use to define the spec-
ification properties of the system will be based on
communicating symbolic automata with timers, whose
transitions are triggered by events — referred to as
dynamic automata with events and timers (DATEs).
Events are built as a combination of visible system
actions (such as method calls or exception handling),
timer events and channel synchronisation (through
which different automata may synchronise).
Definition 2.1: Given a set systemevent of events
which are generated by the underlying system and may
be captured by the runtime monitors, a set of timer
variables timer, and a set of channels, a composite
event made up of system events, channel synchroni-
sation, a timeout on a timer, a choice between two
composite events (written e1 + e2) or the complement

of a composite event (written e), is syntactically de-
fined as follows:

event ::= systemevent | channel? | timer @ δ
| event + event | event

We say that a basic event x (which can be a system
event, a channel synchronisation or a timeout event)
will fire a composite event expression e (written x ² e)
if either (i) x matches exactly event e; or (ii) e =
e1 + e2 and either x ² e1 or x ² e2; or (iii) x is a
system event and e = e1, and x 6² e1.
The notion of firing of events can be extended to work
on sets of events. Given a set of basic events X , a
composite event e will fire (written X ² e) if either
(i) e is a basic event expression, and for some event
x ∈ X , x ² e; or (ii) e = e1 +e2 and either X ² e1 or
X ² e2; or (iii) X contains at least one system event
and e = e1, and for all x ∈ X , x 6² e1.
The semantics of the complement of an event is
constrained to fire when at least one system event
fires, so as to avoid triggering whenever a timer event
or channel communication happens, thus making such
events to necessarily depend on the underlying system.
This constraint can be relaxed without effecting the
results in this paper.
Since we require real-time properties, we will intro-
duce timers (ranging over non-negative real numbers),
whose running may be paused or reset. The configura-
tion of a finite set of timers determines the value and
state of these timers.
Definition 2.2: The configuration of the system timers
(written CT) is a function from timers to (i) the value
time recorded on the timer; and (ii) the state of the
timer (running or paused). Timer resets, pauses and
resumes are functions from a timer’s configuration to
another — changing only the value of one timer to zero
(in the case of a reset), or the state of one timer (in
the case of pause or resume). A timer action (written
TA) is the composition of a finite number of resets,
pauses and resumes.
Based on events and timers, we define symbolic timed-
automata — similar to integration automata [1], but
more expressive than Alur and Dill’s Timed Automata
[2] (since we enable reset, pause and resume actions
on timers). Unlike integration automata, the automata
we introduce have access to read and modify the
underlying system state. In practice this can be used
to access and modify variables making the transitions
more symbolic and enumerative in nature.
Definition 2.3: A symbolic timed-automaton running
over a system with state of type Θ is a quadruple
〈Q, q0, →, B〉 with set of states Q, initial state

COLOMBO et al.: RUNTIME VERIFICATION OF REAL-TIME PROPERTIES 3

q0 ∈ Q, transition relation →, and bad states B ⊆ Q.
Transitions will be labelled by (i) an event expression
which triggers them; (ii) a condition on the system state
and timer configuration which will enable the transition
to be taken; (iii) a timer action to perform when taking
the transition; (iv) a set of channels upon which to
signal an event; and (v) code which may change the
state of the underlying system:
〈Q× event × (Θ× CT → Bool)× TA

×2channel × (Θ → Θ)×Q〉
We will assume that a total ordering < exists on the
transitions to ensure determinism.
The behaviour of an automaton M upon receiving a set
of events consists of (i) choosing the highest priority
transition which fires with the set of events and whose
condition is satisfied; (ii) performing the transition
(possibly triggering a new set of events); and (iii)
repeating until no further events are generated, upon
which the automaton waits for a system or timeout
event.
The notions of symbolic timed-automata can be lifted
to work on dynamic networks of symbolic timed-
automata, in which we enable the creation of new
automata during execution in a structured manner —
referred to as Dynamic Automata with Events and
Timers (DATE) in the rest of the paper.
Definition 2.4: A DATE M is a pair (M̄0, ν) consist-
ing of (i) an initial set of automata M̄0; and (ii) a set
of automaton constructors ν of the form:
event × (Θ× CT → Bool)× (Θ× CT → Automaton)
Each triple (e, c, a) ∈ ν triggers upon the detection
of event e, with the state and timer configurations
satisfying condition c, and creating an automaton using
function a.
Finally, the events created by the transition can them-
selves trigger new transitions. Upon receiving a set of
system actions, a DATE performs a full-step by, not
only triggering transitions, but also propagating new
events along in the DATE until no more transitions
occur. A full definition is given in [3].
Example 2.1: Consider a system where one needs to
monitor the number of successive bad logins and the
activity of a logged in user. By having access to
badlogin, goodlogin and interact events, one can keep
a successive bad-login counter and a clock to measure
the time a user is inactive. Fig. 1(a) shows the property
that allows for no more than two successive bad logins
and 30 minutes of inactivity when logged in, expressed
as a DATE. Upon the third bad login or 30 minutes
of inactivity, the system reverts to a bad state. In the
figure, transitions are labelled with events, conditions
and actions, separated by a backslash. It is assumed
that the bad login counter is initialised to zero.

interact\\t.reset();

goodlogin

\\t.reset();

t@30*60

logged out

bad logins

badlogin\\c++;

badlogin

\c>=2

logged in

inactive

logout\\c=0;

interact\\t.reset();

goodlogin

\\t.reset();

logged out

badlogin\\c++;
badlogin\c>=2

\c=0;blockUser();

logged in

logout\\c=0;

t@30*60\\logout();c=0;

Figure 1. (a) An automaton monitoring the bad
logins occurring in a system; (b) The same au-
tomaton with recovery actions.

Fig. 1(b) shows how actions can be used to remedy
the situation when possible, instead of going to a bad
state. For example, after too many bad logins, one can
block the user from logging in for a period of time,
and upon 30 minutes of inactivity, the user may be
forced to logout.

3. LARVA by Example

Dynamic automata with events and timers can be
used to express properties, and can then be directly
and automatically implemented as runtime-monitors
for an underlying system. We will present the system
LARVA which embodies the implementation of this
architecture.
System Events. As the underlying system events
LARVA uses method calls, invocation of exception
handlers, exception throws and object initialisations.
Actions. Actions which are performed on the system
state upon each transition are essentially programs
which can access code and data from the original pro-
gram. Note that the model we have used performs the
action without triggering any other transition directly.
In LARVA this is emulated by ensuring that system
events (eg. method calls) are masked from the au-
tomaton triggers when called as actions. Furthermore,
as shown in the example from the previous section,
unless mitigating a problem which arose, it is usually
sufficient to constrain actions to access only data local
to the automaton. For this purpose, LARVA provides
the means to have code local to an automaton.
Dynamic triggers. Dynamic triggers are used in LARVA
to enable multiple instances of a property. The prop-
erty shown in Fig. 2 must be replicated for each
bank branch object , in order to make it useful. For
this purpose, LARVA enables properties to be repli-
cated for multiple instances of an object — written
foreach object { property }. Upon captur-
ing events in the property, the system checks whether

4 WICT PROCEEDINGS, DECEMBER 2008

it is a new object (using object equality, or a user pro-
vided mechanism) and if so creates a new automaton.
Context information. Various properties use nesting
of the replicating mechanism — each bank client
may have a number of accounts, upon which a num-
ber of transactions may take place. Properties about
transactions must thus be created for each and every
transaction created, but each must have access to its
context — the account and client it belongs to. Giving
replicated properties access to these inherited values,
enables concise and clear properties to be expressed.
Invariants. Furthermore, various objects in the system
are expected to satisfy invariants — once set, the ID of
a transaction may not change throughout its lifetime.
To enable this, LARVA also enables such properties to
be expressed, and which are checked upon the arrival
of each event. Internally, this is done by creating an
implicit transition from each state which sends the
automaton to a bad state should the condition not be
satisfied.
Real-time. LARVA provides a clock/stopwatch con-
struct that can trigger events after particular time
intervals, implemented as Java threads using wait op-
erations. The main drawback of this approach is that
it may not be totally accurate due to the Java thread
scheduling mechanism.
LARVA uses aspect-oriented programming techniques
[7] to capture events. Upon running the monitored
system, the underlying automata are created and ini-
tialised. Through the use of aspect-oriented program-
ming techniques, whenever an event is captured, con-
trol is passed back onto the DATE structure, which
performs a full-step, performing any timer actions
and new timer events scheduled as necessary before
returning control to the system to proceed. If the
system reaches a bad state in any of the properties,
appropriate action is taken to terminate or remedy the
situation as specified by the user.
Example 3.1: To illustrate the use of LARVA, consider
the monitoring of a simplified banking system, in
which we would want to monitor that there should
never be more than five users in the bank and that
a deletion does not occur when there are no users.
By identifying the system events, corresponding to the
method calls in the target system.

Furthermore, one may have properties which must hold
for every user in a bank, or possibly properties which
should hold for each account owned by each user.
FOREACH (User u) {
...
FOREACH (Account a) {
INVARIANTS
{ String accID = a.getID(); }

(3) allUsers (3) deleteUser

\userCnt==1

\userCnt--;

(2) deleteUser

ok

too many

(2) addUser\\userCnt++;

(4) deleteUser\\userCnt--;

(5) allUsers

(1) addUser

\userCnt>5

start

bad delete

(1) addUser

\\userCnt++;

\\userCnt=0;

GLOBAL {
VARIABLES {
int userCnt = 0;

}
EVENTS {
addUser() = {*.addUser()}
delUser() = {*.deleteUser()}
allUsers() = {User u.*()}

}
PROPERTY users {
STATES {

BAD { toomany baddel }
NORMAL { ok }
STARTING { start }

}
TRANSITIONS {

start -> ok [addUser()\\userCnt++;]
start -> baddel [delUser()\\]
...
ok -> ok [delUser()\\userCnt--;]
ok -> ok [allUsers()]

}
}
}

Figure 2. The automaton and LARVA code of
Example 3.1.

PROPERTY
{ ... }

}
}

4. Case Study

During its development, LARVA was used on an real-
life system handling credit card transactions. The com-
plexity of this system lies not only in the size of
the underlying code, which although not exceptionally
large, has over 26,000 lines of code, but also in
the strong security implications and communication
required among various components (including third
party systems, such as banks). The system is designed
to hold sensitive information of thousands of people —
a single leak of sensitive information could undermine
the confidence of the users in the system, leading to
drastic financial losses. Furthermore, the system has
real-time issues and is required to be able to handle
over 1000 transactions per minute.
The system is composed of two parts, one handling the
transactions and their database and the other handles

COLOMBO et al.: RUNTIME VERIFICATION OF REAL-TIME PROPERTIES 5

the communication to the respective bank or entity
which is involved in the transaction. These will be
referred to as the transaction handling system and
the processor communication system respectively. The
whole system will be referred to as the transaction
system.
A number of different classes of properties, as de-
scribed below, were verified at runtime using LARVA
on the system.
Logging of credit card numbers. During the develop-
ment of the original transaction system, credit card
numbers were logged for testing purposes. This is how-
ever, not in line with standard practice of secure han-
dling of credit card numbers. These logging instances
were manually removed from the code. However, to
ensure that no instances escaped the developers’ atten-
tion, a simple verification check to ensure that no data
resembling a credit card number is ever logged.
Transaction execution. Transactions are processed by
going through a number of stages, including authorisa-
tion, communication with the user interface, insertion
of the transaction in the database and communication
with the commercial entity involved in the transaction,
the stages taken depend on which classification the
transaction falls under. Designing properties to ensure
that during its lifetime, all transaction go through the
proper stages was straightforward, especially since the
automata-based property language we use corresponds
closely to the concept of stages, or modes in which a
transaction resides.
Authorisation transactions. Authorisation transactions
have to be checked to ensure that all the stages are
processed in the correct order, keeping certain values
unchanged — for instance, one must make sure that
the ID of the transaction is never accidentally changed.
Furthermore, other checks such as ensuring that trans-
action amounts are not changed after being set were
also necessary.
Backlog. A particular feature of the system under
scrutiny, is that if communication with a bank or a
commercial entity fails, the request is retried a number
of times after a given delay. This process is called
backlogging. The transaction handling system with
backlogs can become rather complex — and properties
were identified to ensure that the backlog process is
performed for the expected number of times or until
the transaction is approved. Timeout mechanisms were
used to check for failures and retries within a given
interval of time, giving warnings and errors if the
property is not satisfied.
Given the nature of the system, with different com-
ponents and transactions communicating and synchro-
nising their behaviour, it was difficult to measure the

overhead of the monitoring system for the case study.
The case study, however, was essential to identify
features necessary for the use of runtime verification on
real-life case studies. The need for context-information
and invariants arose directly from this experience.

5. Ongoing Work

We are currently exploring various avenues of extend-
ing our initial work on LARVA. Three strands we are
currently exploring are briefly outlined below:
Supported Logics: Duration calculus [10] is a highly
expressive dense-time logic, based on intervals rather
than points in time. For runtime verification this has
a significant advantage that there is no distinction
between past and future. For this reason and its sound
mathematical background, duration calculus is ideal to
represent certain real-time software properties. Dura-
tion calculus is too expressive to be fully implemented,
but a useful subset providing enough expressive power
for commonly known practical applications has been
identified in [8], [9]. This subset can be converted into
phase event automata [6] and we are currently working
on the conversion of phase event automata into LARVA.
Memory Upperbound Guarantees: If a security crit-
ical application has limited resources, for instance in
embedded systems, runtime verification has to provide
guarantees on the overhead induced through the moni-
toring. The synchronous language Lustre [5] designed
specifically for reactive systems, provides an excellent
constrained intermediate language which enables cal-
culation of the memory and execution time required at
compile time. Lustre programs are symbolic automata
which can be easily converted into LARVA. Thus, prop-
erties written in Lustre, can be used to monitor Java
programs using LARVA, guaranteeing memory and
execution time upperbounds. Furthermore, Gonnord et
al. [4] have recently shown how QDDC (a subset of
duration calculus) can be converted into Lustre, provid-
ing an more abstract notation for property specification
which still guarantees bounded overheads.
Truth of Properties under System Retiming: Since
adding or removing a monitor changes the speed of the
underlying system, we are exploring the characterisa-
tion of real-time properties which preserve correctness
despite slowing down (or speeding up) the system.
We have identified subsets of duration calculus which
satisfies these desirable properties. Slowdown truth
preserving properties remain true under a slowing
down of the inputs — adding a monitor to check such a
property guarantees that any problems identified by the
monitor were already there in the original system, in
other words, no new bugs may be introduced by adding

6 WICT PROCEEDINGS, DECEMBER 2008

a monitor. Analogously, with speedup truth preserving
properties, we know that it is not the monitor slowing
down the system which is circumventing bugs. This
characterisation of real-time properties gives important
information enabling smarter runtime-verification ap-
proaches.

6. Conclusions

Runtime verification has been widely used in various
different contexts and for a wide variety of systems.
The need for a sufficiently expressive logic to be able
to specify the system properties succinctly and clearly
is essential for confidence in the overall monitoring
process. In this paper, we have introduced dynamic
automata with timers and events (DATEs) to describe
properties of systems which need to be checked for
different instances of a class. We have also presented
LARVA, a runtime verification implementation of this
logic. The combination of timers with dynamic au-
tomata enables the straightforward expression of var-
ious properties, as illustrated in the use of LARVA
for the runtime monitoring of a real-life transaction
system.
Using different subsets of duration calculus we have
shown how we can exploit various advantages. Starting
from the QDDC subset, one can go through Lustre
to LARVA guaranteeing memory and exeuction time
upperbounds for the monitoring system. Starting from
the subset of implementable duration calculus, one can
translate down into LARVA by going through phase
event automata. In both cases, one can analyse the
properties to ensure whether they are truth preserving
when the system is slowed down (or sped up). This
framework of theory and implemented translations
should help to make more practical the monitoring of
challenging properties such as real-time and memory-
restricted properties.
We see LARVA useful in bridging the implementation
with requirements — in a software development en-
vironment, the requirements of the software can be
expressed in a formal notation very early in the de-
velopment life cycle. If these are written using LARVA
during the actual implementation, the requirements can
be directly related to concrete system events such
as method calls and exception throws. With little
extra overhead, the monitoring of system requirements
comes with no additional human intervention.

References

[1] A. Bouajjani, Y. Lakhnech, and R. Robbana. From
duration calculus to linear hybrid automata. In P.

Wolper, editor, Proceedings of the 7th International
Conference On Computer Aided Verification, volume
939, pages 196–210, Liege, Belgium, 1995. Springer
Verlag.

[2] R. Alur and D. L. Dill. A theory of timed automata.
Theoretical Computer Science, 126(2):183–235, 1994.

[3] C. Colombo, G. J. Pace, and G. Schneider. Dynamic
event-based runtime monitoring of real-time and con-
textual properties. In 13th International Workshop
on Formal Methods for Industrial Critical Systems
(FMICS 2008), Italy, 2008. To be published by Springer
Verlag in Lecture Notes in Computer Science.

[4] L. Gonnord, N. Halbwachs, and P. Raymond. From
discrete duration calculus to symbolic automata. Electr.
Notes Theor. Comput. Sci., 153(4):3–18, 2006.

[5] N. Halbwachs, P. Caspi, P. Raymond, and D. Pilaud.
The synchronous dataflow programming language lus-
tre. Proceedings of the IEEE, 79(9):1305–1320, 1991.

[6] J. Hoenicke. Combination of Processes, Data, and
Time. PhD thesis, University of Oldenburg, July 2006.

[7] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda,
C. Lopes, J. Loingtier, and J. Irwin. Aspect-oriented
programming. In ECOOP’97—Object-Oriented Pro-
gramming, 11th European Conference, LNCS 1241,
1997.

[8] A. P. Ravn. Design of Embedded Real-Time Computing
Systems. PhD thesis, Technical University of Denmark,
October 1995.

[9] M. Schenke and E.-R. Olderog. Transformational
design of real-time systems part i: From requirements
to program specifications. Acta Inf., 36(1):1–65, 1999.

[10] Z. ChaoChen, C.A.R. Hoare, and A.P. Ravn. A cal-
culus of durations. Information Processing Letters,
40(5):269–276, 1991.

Acknowledgements

The research work disclosed in this publication is
partially funded by Malta Government Scholarship
Scheme grant number ME 367/07/29.

View publication statsView publication stats

https://www.researchgate.net/publication/241314623

