
An Embedded Domain Specific Language to Model, Transform and Quality

Assure Business Processes in Business-Driven Development

Luana Micallef and Gordon J. Pace

Department of Computer Science, University of Malta

Abstract

In Business-Driven Development (BDD), business

process models are produced by business analysts. To

ensure that the business requirements are satisfied, the

IT solution is directly derived through a process of

model refinement. If models do not contain all the

required technical details or contain errors, the derived

implementation would be incorrect and the BDD

lifecycle would have to be repeated. In this project we

present a functional domain specific language

embedded in Haskell, with which: 1) models can

rapidly be produced in a concise and abstract manner,

2) enables focus on the specifications rather than the

implementation, 3) ensures that all the required details,

to generate the executable code, are specified, 4)

models can be transformed, analysed and interpreted in

various ways, 5) quality assures models by carrying out

three types of checks; by Haskell‟s type checker, at

construction-time and by functions that analyse the

soundness of models, 6) enables users to define quality

assured composite model transformations.

1. Introduction

Business process models are produced by business

analysts to graphically communicate the business

requirements to IT specialists. As business processes are

updated to meet the new demands in the competitive

market, the underlying IT solution is adapted, to reflect

precisely the current goals of the organisation. The

models should then act as an abstract representation of the

solution. It is essential to adapt to Business-Driven

Development (BDD) [14, 11] whereby models are refined

into the IT solution and implemented in a Service-

Oriented Architecture. This means that models must be

free from data and control-flow errors, such as deadlocks

(whereby a process waits indefinitely for some data or

operation to complete). If models are not quality assured

at the modelling phase, errors would be discovered later

and the entire BDD lifecycle would have to be repeated.

Combining model transformations with quality assurance

would help modellers to preserve the correctness of

models and rapidly carry out modifications [10].

Although various modelling languages have been

developed to assist modellers in the production of high

quality business process models, none of them adopted a

functional approach, based on higher-order logic. As

BDD is being adopted by most organisations, the need

for such a language is becoming more evident. Since

specialized functionality is required, a general-purpose

language is not really necessary. Instead, a domain

specific language, which provides the right abstraction

and captures precisely the semantics of the business

process modelling domain, must be developed. The

definitions of the models would be easy to comprehend

and reason about, by anyone who is not necessarily an IT

specialist. However, since programming languages are

made up of domain independent and dependent linguistic

components, it is more cost effective and feasible to

embed the new language in a general-purpose one. By

defining its terms and type system as a domain specific

library, the tools and features of the chosen host

language, would be inherited by the embedded language

[3, 4]. In this way, the language designers are able to

reuse the infrastructure of the host and thus focus more

on the semantics of the new language. Since the

limitations of the host are also inherited, then it is

important for the language designer to choose the

appropriate host to embed the required language for that

specific domain. Over the past years, Haskell [6] has

been chosen as the host to embed languages for domains

such as financial contracts [7] and hardware description

[1]. As illustrated in [5], Haskell results to be an

appropriate language to provide the right modularity and

abstraction to develop a language which is maintainable,

extendible, easy to design and easy to use even by non-

programmers.

In this project we present a domain specific language

embedded in Haskell, to model, transform and quality

assure business processes in BDD. By adopting a

functional approach, we developed a language: 1) with

which various models can rapidly be produced in a

concise and abstract manner, 2) allows users to focus on

the required behaviour rather than the implementation,

3) ensures that all the required details, to generate the

executable code, are specified, 4) the abstract

representation can be transformed, analysed and

Figure 1. A process to handle orders, constructed using IBM WebSphere Business Modeler Advanced v6.0.2

Once the order is taken and the customer record is retrieved, the record is updated and the ordered items are reduced from

the stock. The items are packaged and returned to the customer. The order is then discarded.

interpreted in various ways, 5) quality assures models

by carrying out three types of checks; by Haskell‟s type

checker, at construction-time through our embedded

type system, and by specialised functions that analyse

the soundness of models, 6) enables users to define new

quality assured composite model transformations. With

this language, we aim to capture the domain semantics

of IBM‟s WebSphere Business Modeler Advanced

v6.0.2
1
 (WSBM).

2. Business Process Modelling

In process modelling, a sequence of business

activities, with clearly defined inputs and outputs, is

specified in a particular order, with the aim of capturing

the business‟ requirements and objectives. Such models

can represent the current („as is‟) and the future („to be‟)

processes of the organisation. By analyzing these

models, the efficiency and the quality of the processes

can be improved before they are implemented.

As shown in Figure 1, in IBM‟s modelling tool, tasks

(activities) are represented as boxes, a decision as a

diamond shape, a merge as a triangle and a stop node as

a black circle. User-defined business items (e.g. „Order‟,

„Customer Record‟ or „Package‟), basic typed items

(e.g. String to represent the customer identification code)

or control (e.g. the input to task „Take Order‟) can flow

along the connectors between the elements.

3. Embedding Business Process Models

Our language is essentially a library of Haskell

modules, which provide the basic elements to construct

any model and carry out operations on them. Since,

based on some input, processes and modelling elements

carry out some specific behaviour and produce some

output, we kept with the style of the host and defined

them as functions.

Before defining a model such as Figure 1, the

business items specific to that business domain must be

1http://www.ibm.com/developerworks/websphere/zones/businessint

egration/roadmaps/modeler/roadmap_advanced.html

specified. Once done, it is then possible to define the

tasks, as shown below:

 tGetCustRec = task ”Get Customer Record”
 (bvTString :-> biTCustRec)

To indicate the input and output types of the task, first

class objects representing types are used. In this case,
bvTString refers to a basic value of type String (as an

input) and biTCustRec refers to a user-defined

business item of type Customer Record (as an output).

To distinguish between the types of our language and

that of the host, the names assigned to all of our types,

include a „T‟. Thus, the type String in our language is

referred to as TString rather than String.
Once all the tasks are defined, it is then possible to

define the model as illustrated in Listing 1
2
. Note that

eNoMoreItems and eMoreItems are boolean

expressions which given an Order, decide how the

flow should be diverted on the outgoing branches of

the decision ‟No More Items?‟.
The properties of the decision branches are defined

using branchProp and include the expression

defining when the branch is true and the probability

that that branch would be true.

3.1. Strongly-Typed Process Fragments

Since the modelling elements in our language are

essentially functions with specifically typed inputs and

outputs, we can use Haskell‟s type checker to check the

type-safety of the models at construction-time. Thus, if

an element that expects as input some data item other

than a Customer Record, is attached to the output of

task „Get Customer Record‟, the type checker would

generate an error at construction-time and prohibits the

user from carrying out other operations on that model.

This is possible through the use of phantom types

[16] in the definitions of the provided basic modelling

elements (such as task, exclDecision, merge, stop).

Since the defined models need to be interpreted and

2 In the definition, note that prefix „t‟ is used for a task, „e‟ for an

expression and „o‟ for output

analysed in various ways, we have opted for a deep

embedded approach, such that, once the model is

defined and type checked, an internal abstract

representation made up of primitive untyped

constructors is defined. In this way, any model in our

language can be interpreted and analysed using the

same functions.

Type classes are also used extensively to carry out

various computations and checks at the type level as

discussed in [8].

3.2. Detecting Sharing and Loops

An issue encountered, while analysing structures in

deep embedded languages, is the inability to detect

shared fragments and loops. Shared fragments are

usually those whose output is used as an input to more

than one fragment. Loops are usually present in

fragments such as Figure 1, where the output of an

element is used as an input to another previous element.

In such situations, fragments are evaluated more than

once, or in case of loops, evaluated until it runs out of

memory space. To be able to detect sharing and loops,

we used non-updateable references as proposed in [2].

3.3. Packaging Models into Sub-Processes

By defining process fragments as functions, as

shown in Listing 1, details of the model are abstracted

away, such that it is easier for the user to reason about

and define more complex models. The only problem is

that, during analysis, such blocks are not identified. To

mitigate this issue, fragments in our language can be

packaged into a sub-process, such that during analysis,

the interpreter can identify the block of elements and

decide either to consider this sub-process as one single

modelling element or explore its internal elements.

Different from fragments defined as functions, the

inputs and outputs of sub-processes are filters, such that

only data is allowed. Thus, if Figure 1 is packaged, the

sub-process would take a String as input and produce a

Package as output. The control input, which is required

for task „Take Order‟, would be derived from the input

data flow. To identify such blocks, the user must

explicitly tag the sub-process.

3.4. Connection Patterns

Languages embedded in a host that supports higher

order functions, usually provide connection patterns to

ensure the production of concise, elegant, readable and

easy to comprehend definitions. These patterns are

essentially functions, which given other functions as

input, combines them in a particular manner and returns a

more complex one. As illustrated in Listing 2
3
, such

patterns in our language are also important to help users

visualize the textually defined models. Different from

Listing 1, the model in Figure 1 is 1) defined with

essentially one line of code, 2) the inputs and outputs are

never referenced and 3) it is easier for the reader to

follow the order of execution of the elements in the

model. For instance, -|- is used to compose fragments

in parallel and ->>- is used to serially compose elements

and allow the system to infer underlying connection types.
Different from the previous examples, soundCycle is a

complex connection pattern, which abstracts the

implementation of an entire fragment and ensures the

production of sound cycles (that lack deadlocks and lack

of synchronisation). After analysing different models and

patterns identified in [9], libraries of such simple and

complex connection patterns were defined in our language.

3.5. Parameterized Models

Different from the current modelling tools, in our

language, users can define their own parameterized

3 In the definition, the Haskell function id is used to allow the first

output of the task „Prepare Package‟ to flow through without being

modified

 pfOrderHandling = (tTakeOrder -|- tGetCustRec) ->>- tUpdateCustRec ->>-

 soundCycle tReduceItemFromStock (“No More Items?”,

 (branchProp eNoMoreItems 0.5, branchProp eMoreItems 0.5))

 ->>- tPreparePackaging ->>- (id -|- stop)

 -<|("Policy Valid?", (branchProp eYes 0.5, branchProp eNo 0.5))|>=

 (tRegisterNewAC, (tCancelNewAC |><| stop))

Listing 2. Defining the process fragment in Figure 1 using connection patterns in our language

 pfOrderHandling (x,y) =

 let otUpdateCustRec = tUpdateCustRec (tTakeOrder x, tGetCustRec y)

 omerge = merge (otUpdateCustRec, oMoreItems)

 (oNoMoreItems, oMoreItems) = exclDecision “No More Items?”,

 (branchProp eNoMoreItems 0.5, branchProp eMoreItems 0.5)

 (tReduceItemFromStock omerge)

 (otPreparePackaging_Package, otPreparePackaging_Order)= tPreparePackaging oNoMoreItems
 ostop = stop otPreparePackaging_Order

 in (otPreparePackaging_Package, ostop)

 -<|("Policy Valid?", (branchProp eYes 0.5, branchProp eNo 0.5))|>=

 (tRegisterNewAC, (tCancelNewAC |><| stop))

Listing 1. Defining the process fragment in Figure 1 using basic modelling elements in our language

models, such that, families of similar structured process

fragments can be composed. If a user identifies that a

particular structure is repeatedly used, then it would be

wise to define a parameterized model. In this way, by

simply invoking one function and providing the

appropriate input parameters, the required model would

rapidly be constructed in an abstract manner. Thus,

definitions using these models would be concise,

readable and easier to comprehend.

Listing 3 is an example of a parameterized model

which can be used to construct models such as Figure 2.

Depending upon the input list of fragments, the required

fork-joins are constructed and enclosed between a

decision and a merge. In this way, the complex model

in Figure 2, can rapidly and safely be constructed by the

definition in Listing 4.

4. Model Transformations & Quality Assurance

Since our language is based on higher order logic, it is

possible for users to declaratively define pre and post

conditions and composite transformations. A number of

basic checks and transformations are provided in our

language as functions, such that similar to functional

composition, these can easily be composed into more

complex checks and transformations, as shown in Listing 5.

This complex transformation is made up of two

simpler ones (transf1, tranf2), which are carried out

in sequence. The first is a branching type transformation.

It uses the provided basic checks, to define pre-

conditions and to decide which transformation should be

carried out. Thus, transf1 does the following: if a sub-

process named “Order Verification” is found, it is

renamed to “Certify Order”; else, if the process contains

a task/s named “Reject Order”, the first one is substituted

with another task named “Apply Special Terms to

Order”. transf2 then renames decision “Is Order

Valid?” to “Is Order Certified?”. Thus, the basic
checks containsSubProcess and containsTask,

and the basic transformations renameSubProcessQA,
substituteTaskQA and renameDecisionQA are

used. As indicated by the suffix „QA‟, these basic

transformations are quality assured. This means that

other pre and post conditions are internal defined, such

that, the basic transformation is not carried out and the

transformed model is not returned unless the conditions are

satisfied. An important condition is the assurance that a

model is structurally correct and sound before and after the

transformation is carried out. In this way, by combining

model transformations with quality assurance, modellers can

Listing 4. Defining the model in Figure 2 using decisionMerge_forkJoins (Listing 3)

Figure 2. A decision-merge with internal fork–joins, constructed using IBM WebSphere Business Modeler

Advanced v6.0.2

 50% Credit Card

 50% Cash

 fork_joins [pfsFJ] = fork_join pfsFJ

 fork_joins (pfsFJ : pfsFJs) = (fork_join pfsFJ) -|- (fork_joins pfsFJs)

 decisionMerge_forkJoins nm brs pfsL = exclDecision_merge nm brs (fork_joins pfsL)

Listing 3. A parameterized model to define models such as Figure 2

fork_joins generates the internal fork-join fragments by using the connection patterns fork_join and -|-
decisionMerge_forkJoins constructs the actual fragment, where nm and brs are respectively the name and the properties of the

branches of the decision. pfsL is the list of the process fragments for the internal fork-joins

 pf = decisionMerge_forkJoins “How Pay?”

 (branchProp eCreditCard 0.5, branchProp eCash 0.5)

 [(tSwipeCard, tSignReceipt, tRecordDetailsCardHolder),

 (tCountMoney, tIssueCardReceipt)]

preserve the correctness of models and rapidly carry out the

required modifications.

If on the other hand, the language should be extended

with other basic transformations or checks, an appropriate

recursive function, that pattern matches and handles the

internal constructs, should be defined. Other basic checks

can also be defined by carrying out analysis on the

generated directed graph for the model.

5. Evaluation and Case Studies

A number of models created with WSBM have been

used as case studies to evaluate our language. These

models were constructed using different approaches and

each one was analyzed.

The first two case studies are based on two models

obtained from the sample projects that are available with

IBM‟s tool. These projects are very realistic and they were

purposely created to help modellers learn how to use IBM‟s

tool. Thus, it was thought that these models would be ideal

to evaluate our language and help modellers learn how to

define real world processes in our language. In fact, these

samples projects are also provided as samples in our

language. The main aim of the first case study was to

analyse the different ways how models and modelling

elements can be defined using our language, and which of

these, would be most feasible, for a modeller who is not an

IT specialist and who might already be familiar with IBM‟s

modelling tool. The main aim of the second case study was

to identify how easy a complex model can be defined, with

the least amount of effort, components and expertise, while

still ensuring the correctness of the model. Connection

patterns played a very important role to provide the

required abstraction and modularity to handle such

complex models. The third case study considered a model

which was intentionally constructed to illustrate the

importance of connection patterns to handle some of the

most commonly modelled fragments and other fragments,

which can easily introduce new errors, if constructed

manually. Finally, two examples of parameterized models

were investigated in case study 4.

After evaluating these case studies, it was evident that,

using our language, any business process model can rapidly

be constructed in a concise and readable manner. This was

possible through the use of connection patterns and

parameterized models that allowed us to achieve the

required modularity and abstraction. Moreover, the

produced models were guaranteed to be of a high quality.

Through our embedded type system, errors were identified

as early as construction-time, when the script defining the

model was compiled. In this way, errors were trapped at the

modelling phase and were not allowed to propagate to the

succeeding stages in BDD lifecycle.

These case studies enabled us to identify the

effectiveness of this first prototype of our language. Other

more comprehensible evaluation techniques, which would

employ more domain experts and analyse a wide variety of

models, shall be carried out in the next version.

6. Related Work

To assist modellers, various languages and tools, such as

WSBM, having been developed. The most recent is

Business Process Modelling Notation (BPMN) [15], whose

main objective is to unify the features of all the other

languages. Still, none of the languages adopt a functional

approach, based on higher-order logic.

As argued in [10], a declarative approach would be

appropriate to define composite transformations and pre

and post conditions that assure the quality of the produced

models. In [12], pre and post conditions of out-place

transformations were represented in the Object Constraint

Language and used successfully to refine the models into

the executable BPEL code. However, such an approach

brings about other advantages. Noting how effectively

certain features in Haskell [6] were used to define circuits

[17] and other domains, we were inspired to use Haskell as

our host, and thus define models as functions.

To analyse and interpret the model in an infinite variety

of ways, we have adopted a combinatorial approach, as in

[7] whereby a combinator library in Haskell was produced

to compose financial contracts. By employing such a deep

embedded approach, the basic modelling elements in our

language act as combinators.

 tApplySpecialTerms = task “Apply Special Terms to Order” (biTOrder :-> biTOrder)

 transOrderProcessing pf x =

 let (hasSPOrderVerif, _) = containsSubProcess “Order Verification” pf

 (hasTaskRejectOrder, _) = containsTask “Reject Order“ pf

 transf1@(wasTransDone, transMsg, transPF) =

 if (hasSPOrderVerif)

 then (renameSubProcessQA “Order Verification” “Certify Order” pf x)

 else if (hasTaskRejectOrder)

 then (substituteTaskQA “Reject Order“ tApplySpecialTerms [1] pf x)
 else (Succeeded, “”, pf x)

 transf2 = renameDecisionQA “Is Order Valid?“ “Is Order Certified?” pf x

 in transf2

 -<|("Policy Valid?", (branchProp eYes 0.5, branchProp eNo 0.5))|>=

 (tRegisterNewAC, (tCancelNewAC |><| stop))

Listing 5. Defining the quality assured composite transformation transOrderProcessing

To extend the WSBM in [10], IBM presents a model

transformation framework. Their main objective is to

provide an abstract layer over the tool, such that specialized

developers would be able to easily define new

transformations, quality assure them and integrate them into

the tool. However, since it uses first-order logic, developers

still need to consider the implementation of the required

operations. Moreover, to carry out checks while the user is

constructing or editing the model, linear-time algorithms

that do not introduce any significant delay, such as [18]

would have to be adopted. In contrast, with our language,

we are able to statically trap errors and ill-typed processes

at construction-time through our embedded type system

and Haskell‟s type checker. These are identified before any

further computation is carried out. Phantom types and type

classes are used in a similar way as in [13] and [1] to define

our strongly typed system. Besides this, specialized

functions, that operate on the abstract representation, are

provided to analyze the structural correctness of the models.

Over the years, various quality assurance techniques

have been suggested. In [18], the authors argue that if

models are decomposed into Single-Entry-Single-Exit

fragments, they can be quality assured more effectively by

using linear-time control-flow heuristics or complete state

analysis. Similarly, a set of patterns and anti-patterns have

been identified in [9]. To help modellers rapidly and safely

transform the current „as-is‟ to the future „to-be‟ models, in-

place model transformations must be combined with

quality assurance techniques. Even though IBM‟s

framework enables programmers to define such

transformations, it is still based on first-order logic and thus,

it not possible for the modellers themselves to create

composite branching and iterative transformations and to

define pre and post conditions that quality assures them. In

our language, users can declaratively define sequential,

branching and iterative composite transformations and the

required pre and post conditions.

7. Conclusion

With our functional modelling language, we have

managed to develop a language which is able to capture

precisely the domain of business process modelling and

allows users to model, transform and quality assure

business processes in BDD. Connection patterns play an

important role to ensure that the definitions of models are

readable, easy to comprehend and type-safe. Different from

other previous modelling tools, users are able to define their

own parameterized models and transformations. By

defining and using the provided quality assurance checks,

the soundness of the processes is guaranteed and thus the

derived IT solutions should be correct. Quality assurance

can be combined to model transformations and by using the

generated directed graph for the model, users can easily

analyse the processes. Since our language has been

successfully embedded in Haskell, we were able to adopt a

functional approach and inherit the infrastructure, tools and

features of the language without necessarily having to re-

implement them. Various models have been defined in our

language to ensure that our objectives were achieved. In the

next version, we would like to include parameterized

verification and pass on the defined processes to some

model checkers to carry out complete state analysis.

References

[1] K. Claessen, Embedded languages for describing and verifying

hardware, Dept. of Computer Science and Engineering,

Chalmers University of Technology, Ph.D. thesis, April 2001.

[2] K. Claessen and D. Sands, "Observable Sharing for Functional

Circuit Description," Proceedings of Asian Computer Science

Conference (ASIAN), Springer Verlag, 1999, p. 12.

[3] P. Hudak, "Building domain-specific embedded languages,"
ACM Computing Surveys, 1996, p. 196.

[4] P. Hudak, "Modular domain-specific implementation and

exploration framework for embedded software platforms," DAC

'05: Proceedings of the 42nd annual conference on Design

automation, 1998, pp. 254-259.

[5] P. Hudak and M. P. Jones, "Haskell vs. Ada vs. C++ vs. Awk vs.

… - An Experiment in Software Prototyping Productivity," Yale,
1994.

[6] S. P. Jones, Haskell 98 Language and Libraries: The Revised

Report, Cambridge University Press, 2003.

[7] S. P. Jones, J.-M. Eber, and J. Seward, "Composing contracts: an

adventure in financial engineering," ACM SIG - PLAN Notices,

2000, pp. 280-292.

[8] S. P. Jones, M. Jones, and E. Meijer, "Type classes: exploring the

design space," Proceedings of the Haskell Workshop 1997, 1997.

[9] J. Koehler and J. Vanhatalo, "Process anti-patterns: How to avoid

the common traps of business process modeling, Part 1 modeling

control flow, Part2 modeling data flow," IBM WebSphere

Developer Technical Journal 10.2, 10.4, 2007.

[10] J. Koehler, et al., "Combining Quality Assurance and Model

Transformations in Business-Driven Development," Proceedings

of Applications of Graph Transformations with Industrial

Relevance 2007, 2007, pp. 1-16.

[11] J. Koehler, et al., "The role of visual modeling and model

transformations in business-driven development," Proceedings of

the 5th International Workshop on Graph Transformation and

Visual Modeling Techniques, Elsevier, 2006, pp. 1-12.

[12] J. Koehler, R. Hauser, S. Sendall, and M. Wahler, "Declarative

techniques for model-driven," IBM Systems Journal, vol. 44, no.

1, 2005, pp. 47-65.

[13] D. Leijen and E. Meijer, "Domain specific embedded compilers,"
Proceedings of Domain-Specific Languages, 1999, pp. 109-122.

[14] T. Mitra, “Business-Driven Development”, IBM developerWorks

article, 2005.

[15] OMG, Business Process Modeling Notation Specification 2008,

Version 1.1, Object Managementt Group (OMG), 2008.

[16] M. Rhiger, "A foundation for embedded languages," ACM

Trans. Program. Lang. Syst., 2003, pp. 291-315.

[17] M. Sheeran, "Hardware Design and Functional Programming: a

Perfect Match," j-jucs, vol. 11, no. 7, 2005, pp. 1135-1158.

[18] J. Vanhatalo, H. Völzer, and F. Leymann, "Faster and More

Focused Control-Flow Analysis for Business Process Models

Through SESE Decomposition," Service-Oriented Computing –

ICSOC 2007, 2007, pp. 43-55.

View publication statsView publication stats

https://www.researchgate.net/publication/237229191

