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As computer systems continue to grow in complexity, the possibilities of failure increase. At the
same time, the increase in computer system pervasiveness in day-to-day activities brought along
increased expectations on their reliability. This has led to the need for effective and automatic error
recovery techniques to resolve failures. Transactions enable the handling of failure propagation

over concurrent systems due to dependencies, restoring the system to the point before the failure
occurred. However, in various settings, especially when interacting with the real world, reversal
is not possible. The notion of compensations has been long advocated as a way of addressing this
issue, through the specification of activities which can be executed to undo partial transactions.

Still, there is no accepted standard theory; the literature offers a plethora of distinct formalisms
and approaches.

In this survey, we review the compensations from a theoretical point of view by: (i) giving a

historic account of the evolution of compensating transactions; (ii) delineating and describing a
number of design options involved; (iii) presenting a number of formalisms found in the literature,
exposing similarities and differences; (iv) comparing formal notions of compensation correctness;
(v) giving insights regarding the application of compensations in practice; and (vi) discussing

current and future research trends in the area.

Categories and Subject Descriptors: H.2.4 [Systems]: Transaction processing

General Terms: Reliability, Theory

Additional Key Words and Phrases: Compensations

1. INTRODUCTION

Over the past decades we have witnessed a dramatic increase in the pervasiveness
of computer systems in day-to-day activities, at the same time came an increase in
their size and complexity. This, together with the tightly knit interaction with other
activities made it virtually impossible to have systems which never fail. However,
their unavoidable role in sensitive human activities also put higher expectations
of reliability. To handle such scenarios, fault tolerance techniques started play-
ing a crucial role in software development. The philosophy behind fault tolerance
techniques is that, given that, even after rigorous testing, failures in a complex
system are considered a possibility or in some settings inevitable, mechanisms are
introduced to handle them.
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A commonly used mechanism for fault tolerance is error recovery, consisting of
attempting to fix the system state upon the discovery of an error to enable normal
execution to proceed unhindered. Error recovery techniques can be categorised
into backward recovery and forward recovery approaches. Backward recovery back-
tracks to an earlier and correct state of the system before proceeding, while forward
recovery attempts to correct the error before proceeding.

Although error recovery in small and simple systems tends to be manageable, an
increase in complexity brings about a disproportionate increase of complexity when
handling recovery. For instance, with a system supporting concurrency, dependen-
cies between concurrent processes introduce issues with the ordering of recovery
actions which need not be considered in linear systems. Forward recovery tech-
niques are limited in such scenarios, since they they are typically not aware of the
history which led up to the failure which they are trying to fix.

Various approaches to backward recovery have been developed, but the main issue
with this approach is that some processes with which a system interacts may not
support backward error recovery. Typical examples would be real-life processes such
as bank account transfers, shipping, etc. Such processes cannot be simply undone
and forgotten. In such cases, instead of undoing some actions, one might actually
need to execute further “counter”-actions, better known as compensations. For
example in the case of bank account transfers, one might have to add a processing
fee over and above the return of funds to the original account, while in the case of
shipping one might need to ship some items back.

Compensations have become even more relevant with the advent of the Internet
which enabled widespread interaction and collaboration particularly through the
use of web services. This phenomenon facilitated interactions across entities which
might not even have been aware of each other before the interaction. In such
a scenario, with usually long-running interactions, backward recovery is not an
option. To this end, compensations are heavily used to support such interactions
with the current de facto standard being the Business Process Execution Language
(BPEL).

The proliferation in the use of compensations motivated extensive research of
the area, particularly by suggesting different formal models of compensation and
defining formal semantics for BPEL. While from a practical perspective, BPEL is a
de facto standard supporting compensations, from a theoretical perspective, various
approaches have been proposed — varying in the way compensations are modelled
but, more fundamentally, also in their exploration of compensation design space.
The comparison of these approaches is crucial to identify what the core theoretical
underpinnings of compensation are.

In this survey we start by giving a historic account of the rationale behind the
conception of compensating transactions (Section 2). We explore the design aspects
of compensations (Section 3), comparing and contrasting different options and solu-
tions as proposed and adopted in the literature (Section 4). Furthermore, we review
compensation correctness concepts (Section 5) and ways of verifying compensating
transactions (Section 6) which are crucial in setting a sound foundation for the
specification of compensating transactions. Although the main focus of the survey
is the theory of compensations, Section 7 deals with various practical issues, useful
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for anyone wanting to apply the theory into practice. We conclude this survey by
discussing open philosophical issues and comment about current and future trends
in the area of compensations.

2. THE RATIONALE BEHIND COMPENSATIONS

The higher the reliability expected of a system, the more precautions have to be
taken, possibly introducing additional complexity and sources of unreliability. The
situation is further aggravated by the many possible sources of faults in a computer
system: hardware faults, operating system faults, and faults within the computer
system itself. Potentially, faults cause the system to reach an erroneous state which
may then lead to failure1, i.e. making the effects of having reached an erroneous
state visible from outside of the system.
Given that failure in large systems has to be accepted as part of reality, the

solution is typically not to try to engineer systems which never fail but rather to
create safety nets within and around the system so that the system can tolerate
faults in such a way that they do not lead to failure. Furthermore, when a system
depends on other external systems, the possibility of failure has to be handled
internally since one has no control over external failure. A commonly used fault-
tolerance technique [Randell et al. 1978] is error recovery — the task of dealing
with an error before it has time to cause a failure.

2.1 Forward and Backward Error Recovery

The various strategies of error recovery [Randell et al. 1978; Verhofstad 1978] are
typically classified as backward or forward recovery. Backward recovery refers to
strategies which first revert the current (erroneous) state to a previous (correct)
state before attempting to continue execution, while forward recovery attempts to
correct the current (erroneous) state and then continues normal execution. The
main difference is that backward recovery uses the execution context to fix the
problem, which is not necessary in forward recovery. On one hand, one can see
backward error recovery as a particular form of forward recovery, in which additional
data structures are used to store the history of execution. On the other hand,
forward error recovery can also be considered as an optimisation of backward error
recovery [Randell et al. 1978], in that the recovery path is deduced without keeping
a log of the past actions.
Forward error recovery is particularly useful when the failure — the symptom of

the error — is sufficient to determine which solution to apply. A simple mechanism
to encode forward recovery in most modern programming languages is the use of
exception and error event handlers. The code used to recover acts as a reparation,
intended to fix the problem encountered. Note that, unless additional mechanisms
are used to keep a log of what actions the system performed, exception handlers
are only aware of failure happening in a particular block of code.
To make backward recovery possible, one has to keep track of the system’s previ-

ous states or transitions, which involves recording past data or actions which have
been carried out. One approach to backward recovery is that of backing up the
system’s data (also called checkpointing) so that if an erroneous state is reached,

1The terminology is used in line with that introduced in [Melliar-Smith and Randell 1977].
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the data can be restored to a past but sane copy. A dual approach is that of keeping
an audit trail, recording sequences of actions which had been carried out, so that
the system state can be restored by reversing the actions previously performed.
While the first approach incurs a high overhead in data storage, the latter requires
knowledge on how to reverse a system’s actions. One way of undoing a system’s
recent actions is through rollbacks, which are perfect reversals of previous actions,
i.e. leaving no evidence of either the original action or its reversal. However, per-
fect action reversal is not always possible, particularly when a system interacts
with other external systems (e.g. a bank system or a shipping agent) which do not
support perfect reversal of actions. In this case, rather than a perfect reversal of an
action, one would need to execute a “counter”-action, better known as a compen-
sation which semantically undoes the original action as much as possible. So, for
example, to compensate for a bank transfer one might need to reverse the involved
sum and charge an extra fee. Observe that, even if no fee is incurred, the two
transfers back and forth distinguish the resulting account from one never involved
in a transfer. Similarly, to compensate for a wrong shipment, one might need to
book a reverse shipment followed by shipment to the correct destination. Note the
fundamental difference between rollback and compensation in that the latter does
not remove evidence of the erroneous action but simply executes a correction.
The main gain with a compensation-based approach over checkpointing and roll-

back comes when one handles long running transactions due to the increased effort
involved in maintaining error recovery information and transaction isolation. Trans-
actions in a loosely-coupled concurrent setting are usually long running. Moreover,
makes the task of maintaining overall correctness even more challenging due to
the high degree of independence allowed to the concurrent elements. Historically,
this has been one of the main drives behind the study of compensation-based error
handling.

2.2 Failure Recovery in a Concurrent World

Concurrency is highly desirable in many computer systems, enabling sharing of re-
sources, and distributing computation. However, concurrency introduces a further
level of complexity to the task of error recovery since concurrent systems usually
share resources or at least use each others’ results. This causes what is termed as
the “domino effect” [Randell 1975] where a failure of a process potentially causes
the failure of other concurrent tasks. For example, consider two concurrent money
transfers: one transfers 100 euros into an account A while the other transfers 90
euros from account A to another account B. Without the first transfer, account A
might not hold sufficient funds to supply 90 euros for the second transfer. If this is
the case, the failure of the first transfer would result in the failure of the second.
To effectively deal with this problem, it has long been suggested [Davies 1973] that

processes which are dependent should be clearly bounded by a sphere of control —
a logical container which explicitly demarcates depedency and is thus a boundary
for propagation of errors. As a result, a generalised approach can be applied to
recovery — the container implicitly defines which processes need to be recovered.
Along the years, related (and almost synonymous) notions have emerged including
conversations [Randell 1975], transactions [Eswaran et al. 1976], and recovery lines
[Randell et al. 1978]. The following is a brief overview of these approaches:
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— Sphere of control: A sphere of control incorporates a number of participant
processes which are allowed to share resources amongst themselves. A process may
request a resource in three ways: (i) reference only — the process making the
request does not care if the resource is changed by other processes during the use of
the resource (e.g. a process monitoring other processes is aware that the monitored
values are continually changing and is not affected by this fact); (ii) dependent — the
requester wants to know of any changes of the resource but is willing to give up the
resource at any time (e.g. a background process accessing employees’ information
but which is willing to pause if some data is being modified); and (iii) committed —
the requester is not willing to give up the resource (e.g. a shipping order which has
been committed by a process cannot be “uncommitted”). In the case of dependent
resources, backward recovery is possible due the requester’s readiness to give up
the allotted resource. However, in the case of the committed mode of resource
sharing, execution cannot be undone as by definition the resource is committed,
thus making backward recovery impossible, hence requiring forward recovery to
correct the state of the system. Taking the example of the shipping order, if the
order needs to be changed or cancelled, it is impossible to reverse the physical ship
executing the order. A possible option would be to set up another transaction
which (for example) ships back part of the order.

— Conversations: The idea of conversations is very similar to a sphere of control
in that they both use backward recovery followed by forward recovery. However,
whereas the latter supports customised forward recovery based on the cause of
the failure, in conversations, forward recovery is preplanned in terms of a recovery
block. Thus, the recovery block provides an alternative execution algorithm to
the one which failed without taking into consideration what caused the failure.
The aim of conversations is to avoid the domino effect and provide a “firewall”
around interacting processes so that a failure in one of the processes does not have
undesirable effects on the rest of the system (but only on other processes in the
conversation). Upon completion of the recovery block execution, the system state is
checked through the application of an acceptance test. If the test succeeds, then the
state is considered committed and any backward recovery information is discarded.
Hence from this point onwards, backward recovery of the committed execution is
no longer possible. Note that this might be a problem in particular cases such as
the case of the shipping order above.

— Transaction: A transaction is a means of isolating an action such that it ap-
pears to processes outside the transaction that an uninterruptable (atomic) action
has taken place. The main motivation behind transactions is that consistency rules
cannot be maintained on a per-operation basis. For example, if a bank system has
the following consistency constraint: “unless a deposit or withdrawal takes place,
the total sum of money in the bank cannot change”, then in a money transfer
between accounts, the constraint will be violated after the update of the source ac-
count (before the update of the destination account). Thus certain operations have
to be grouped into a transaction and appear to other processes as a single action
which either succeeds or fails. These principles together with that of durability (see
below) form the bases of transactions and are referred to as the ACID principles
(due to which the transactions we are describing are something referred to as ACID
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transactions): atomicity — ensuring that either the transaction fully succeeds or
else it leaves no effect on the system state; consistency — ensuring that the sys-
tem state progresses from one correct state to another; isolation — ensuring that
intermediate results of a transaction are not visible to other transactions, giving
the impression that each transaction works in isolation; and durability — ensuring
that the outcome of a transaction is persisted and never undone. For many years
these have proven to be an adequate way of handling database operations. This
arrangement frequently relies on a resource-locking policy whereby transactions op-
erate under the illusion of complete isolation from the rest of the world. Thanks to
this strict approach, recovering from an error during a transaction simply requires
a save point for all processes (participating in the transaction) exactly before the
start of the transaction. In case of failure, the involved processes can be reverted
to such a save point. Once the transaction commits, then the save points are dis-
carded, i.e. reversing the effects of the transaction is no longer possible beyond the
commit operation. This is also in line with the principle of durability mentioned
above. However, once more we are faced with a problem when a situation similar
to the shipping order example arises — there is no way of reversing a committed
transaction.

— Recovery line: Although processes participating in a transaction would all
have a recovery point at the start of the transaction, other recovery points belonging
to individual processes (based on information flow techniques2 rather than simply
the start of a transaction) might also be used. The motivation is that when possible,
recovery need not backtrack to the start of a whole execution sequence but rather
to the most recent recovery point. A recovery line refers to the most recent set of
consistent3 recovery points across all the processes participating in an operation.
The problem with information flow techniques is that due to a commitment by one
of the processes, a recovery line might cease to exist. Furthermore, if two processes
with no common recovery line interact, then there is no way the two processes can
be reverted back to a common past state (using the individual recovery points of
both might not produce a globally consistent state). Therefore this is known as
an interaction commitment. At other times commitment is deliberate — explicit
commitment — as non-commitment would result in huge overheads to maintain
large numbers of recovery points. There is also a third kind of commitment which
is accidental commitment. As the name suggests, this occurs when due to some
unexpected event, recovery data is damaged and rendered unusable. Again, this
brings up the issue of recovery in case of the shipping order example.

It is interesting to note that in all approaches that we have listed, a problem arises
after commitment: how can committed resources, data, and interactions be modi-
fied and corrected? Even without considering errors and recovery, corrections might

2Information flow techniques try to use knowledge of interaction points among processes to identify
suitable recovery point during execution. For example, a good recovery point would be before a

process asks for a resource from another process so that in case the latter fails, the former can
recover to exactly the point before the interaction.
3Recovery points of different processes must contribute towards a common global state and hence
they have to be consistent in the sense that the recovered global state has to respect all applicable

consistency constraints.
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still need to be carried out due to, for example, a user modifying an order placed
earlier. Therefore, this problem is not strictly speaking caused by the need of error
recovery but rather by a combination of challenges due to the need of correctly
handling concurrent access to data, and the need to be able to make consistent cor-
rections to data. The problem becomes even more intricate with processes which
take a long time to complete and for which it may thus not be desirable to keep
recovery information for such long periods of time. Even worse, it may not even
be reasonable to prevent the process (during its long execution) from interacting
with the outside world. The first case — that of recovery data being discarded
due to the length of the transaction — corresponds to explicit commitment, while
the second case — that of allowing interactions with the “outside world” — corre-
sponds to interaction commitment. Both commitments, as explained above would
render backward recovery impossible. This is why compensations are necessary —
providing a means of reversing operations even beyond their commitment. In the
following subsections we expand further on compensations and give an example to
illustrate a number of advanced features of compensations.

2.3 Compensations

Compensations have been proposed almost four decades ago [Davies 1973] as a form
of forward recovery [Randell et al. 1978] which attempts to correct the state of a
system given some knowledge of the previous actions of the system. For example,
consider a bookshop which is processing an order — as long as the bookshop’s
computer system does not interact with the outside world, say, the shipping agent,
then backward recovery would be possible because all processes involved are under
the control of the bookshop. However, as soon as the bookshop places the shipping
order, an interaction commitment would have taken place as the bookshop does not
have access to backward recover the shipping order at the shipping agent’s site (and
even if the shipping agent was part of the bookshop system, the order might have
already started being carried out, i.e. an interaction has taken place with another
process outside the control of the system — the physical process). If a client decides
to cancel an order, then a special forward recovery, termed a compensation, has to
be carried out to check whether the shipment is still in time to be cancelled. If the
shipment is successfully cancelled, the client is possibly charged a fee and notified
of the cancellation. On the other hand, if it is too late to cancel the shipment,
an apologetic message is sent to the client explaining the situation. Note that
although at a high level of abstraction cancelling the order might be considered
as a backward recovery (cancelling the shipping order), in actual terms the order
has not been undone but rather a “counter”-transaction took place whether or
not cancellation succeeded. Expanding the same concept, [Gray 1981] presents
compensating transactions, later as sagas [Garcia-Molina and Salem 1987], as an
extra layer on top of ACID transactions. The argument for this addition is two-
fold: (i) long-running transactions render ACID transactions impractical as locking
resources for long periods of time is infeasible in a highly concurrent system; and
(ii) ACID transactions do not support nesting of transactions (as committed ACID
transactions cannot be undone) so using compensations as counter-transactions,
transactions can be nested and composed into a saga — a form of higher-level
transaction.
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This historic account of compensations brings us to compensable transactions4

as understood in contemporary literature. To further illustrate the concepts pre-
sented, in the following subsections we give a larger example with compensations
and explain in more detail the concepts surrounding compensations.

2.4 Compensations by Example

To explain the concept of compensations and demonstrate how this is applied to
realistic scenarios, we present an extended example of the online bookshop scenario.
Consider the process the bookshop undertakes upon receiving an order: The

bookshop first checks whether the requested books are in stock. If this succeeds,
the bookshop concurrently sends the books to be packed and charges the client’s
bank account. If both operations are successful, a courier is booked to deliver the
order. In the eventuality of a failed activity, any completed activities are com-
pensated by executing the associated compensating activities in order to remove
the effects of the transaction. For example a bank charge is compensated by a re-
fund, whereas packing is compensated by unpacking. Note that the compensation
need not be the exact reverse of the normal activity: apart from incrementing the
stock as a compensation to a stock decrement, an email is sent to the client as a
notification of the transaction failure. It is usually important to decide in which
order the compensations should be executed. In this case, if for any reason, the
unpacking was unsuccessful then it does not make sense to increment the stock
level. Generally, the order of executing compensations is the reverse order of their
normal execution. For example, if the courier booking fails, then both the client
charge and the packing need compensating (in parallel) followed by the compensa-
tion of the stock decrement. Of particular interest is the case when the client bank
charge fails because the next action depends on whether or not the packing activity
running in parallel has completed or not. In case of completion, first the order is
unpacked and then the stock is increased; otherwise, only the latter is carried out.
Figure 1 represents the bookshop scenario with the upper half of the boxes rep-

resenting forward behaviour and those below representing the associated compen-
sation. The arrows with a filled head represent successful execution flow control,
while the others represent a fault which triggers compensation execution. Once
compensation is triggered, the control flow continues in reverse order of the for-
ward behaviour. For example, failure when processing the client payment will
trigger an email to increase stock, but also the unpacking of the order, if that was
completed before the processing of the payment failed. If a compensation fails, a
human operator is notified (not shown in the diagram).
Note that the related backward actions are not intended to fix the related forward
actions if it fails halfway through, but rather to undo it if it had previously been
successfully completed.

2.4.1 Compensation Life Cycle. In practical terms, applying compensations in-
volves the following steps: (i) the specification of the system is given, relating
compensation actions to their counterparts (e.g. as in Figure 1); (ii) during system
execution, upon succesful completion of each action, the related compensation is

4In the rest of the paper we use the term transactions to refer to compensable transactions.
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Inc. stock

Pack

Unpack

Book courier

Cancel courier
Charge client

Refund client

Dec. stock

Email

Fig. 1. A representation of the online bookshop example.

stored for potential invocation in case of failure later on — more technically it is
said to be installed (e.g. upon successfully reducing the stock level, increasing the
stock and emailing the client is installed as a compensation); (iii) subsequently, if
the whole transaction succeeds, then all installed compensations are discarded; (iv)
on the other hand, if a part of the transaction fails, the compensations installed
earlier are executed (e.g. if the booking of the courier fails, then the compensa-
tions for the bank charge, the packing and the stock decrease, are executed); and
(v) finally, if compensation fails, then further action might be necessary such as
notifying a human operator to handle the situation.

2.5 Summary

Concurrency complicates the process of error recovery because interaction among
processes causes failure domino-effects. By structuring process interactions localised
backward error recovery is possible except for cases where interaction occurs with
non-reversible processes such as real-life processes. This motivated compensations
— providing a means of executing activities which semantically reverse actions
which led to a failure — semantic backward recovery. Throughout the years since
the conception of the idea of compensations, different philosophies have emerged
which have been concretised in various models and formalisms. In the following
section, we explore these differences, explaining and comparing the possible design
options as suggested in the literature.

3. DESIGN OPTIONS IN COMPENSATIONS

Compensation-based approaches come in various shapes and flavours, with different
approaches adopting different design options. In this section, we identify the major
issues in compensation-based approaches, and the related design options. The
aspects are organised according to the compensation life cycle stage (see Section
2.4.1) under which they fall, with each subsection corresponding to a different life
cycle stage. The overview presented in this section extends the observations made
in the following works: [Bruni et al. 2005; Chessell et al. 2002; Butler and Ferreira
2004; Li et al. 2007a; Li et al. 2007b; Arkin et al. 2007; Butler et al. 2004; Butler
and Ripon 2005; Bocchi et al. 2003; Guidi et al. 2006; Guidi et al. 2008; Lanese and
Zavattaro 2009; Laneve and Zavattaro 2005; Mazzara and Govoni 2005; Vaz et al.
2009; Lapadula et al. 2007b; 2008a; Bruni et al. 2004; Lanotte et al. 2006; 2008]5.

5We adopt the following terminology: a transaction is a long running transaction which can be

composed processes and activities (used interchangeably with actions). A process can itself be a
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3.1 Specification of Compensations

Clearly, in a compensation-based setting, a system must not only have its normal
behaviour specified, but also the compensations of its constituent parts — requir-
ing a notation for the description and composition of compensations. We start
by identifying and discussing design options related to: (i) compensation opera-
tors — what operators does the notation support for specifying compensations;
(ii) composition of transactions — whether a transaction can itself be made of
other transactions; (iii) action compensations versus transaction compensations —
whether a compensation is itself an action or a transaction; (iv) compensating for
failure of compensations — whether compensations can have compensations; and
(v) concurrent compensation scopes — how simultaneously active scopes can be
dealt with.

— Compensation Operators: We have identified four main compensation opera-
tors used in the literature: (i) the scope operator, which is responsible for defining
the boundaries up to which a compensation remains valid; (ii) the compensation
installation operator, which is responsible for associating compensations to a scope
— ready to be activated in case of a failure; (iii) the compensation discard operator
which discards the currently installed compensations; and (iv) the compensations
activation operator which triggers the execution of the currently installed compen-
sations. The main design option with regards to compensation operators is whether
or not to provide explicit operators (as opposed to implicit default behaviour) for
these indispensable compensation operations. The only exception is the scope oper-
ator which cannot be implicit. However, compensation installation can be implicitly
associated with the start of a transaction scope [Laneve and Zavattaro 2005; Bruni
et al. 2004; Lanotte et al. 2008], the discard operator can be implicitly associated
to the termination of a transaction scope [Butler et al. 2004; Butler and Ripon
2005; Laneve and Zavattaro 2005; Bruni et al. 2004] and compensation activation
can take place automatically upon the occurrence of a fault [Bruni et al. 2005; Li
et al. 2007b; Butler et al. 2004; Butler and Ripon 2005; Bocchi et al. 2003; Lanese
and Zavattaro 2009; Laneve and Zavattaro 2005; Vaz et al. 2009; Lapadula et al.
2008a; Bruni et al. 2004; Lanotte et al. 2008].
The main options associated with this issue is which of the compensation operators
are used explicitly in the syntax or handled implicitly by the semantics.

— Composing Transactions: An important decision is whether or not to allow
transactions to be made up of other long running transactions. For example, a
payment action may be seen as a single transaction, with a compensation related
to it as a whole, and which is invoked if failure occurs later and the payment has
to be revoked. However, such a transaction may involve multiple account transfers
happening behind the scenes, each of which may come with its own compensation
just in case failure occurs before the payment transaction terminates. Note that
none of the formalisms under review allow ACID transactions to be explicitly part
of long running transactions. However, a number of flow composition languages
[Bruni et al. 2005; Li et al. 2007b; Butler et al. 2004; Butler and Ripon 2005]
assume atomic actions as the building blocks (of long running transactions) which

transaction and can also be composed of other processes and activities.

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.



Recovery within Long Running Transactions · 11

can be used to represent ACID transactions. All the works being considered support
nested long running transactions with the exception that [Laneve and Zavattaro
2005] flattens out nested transactions and treats them as parallel transactions.
Various design decisions arise as to the interaction between a transaction and its
parent. For example, is the accumulated compensation of a sub-transaction passed
on to its parent when the sub-transaction completes? What happens to the parent
transaction if one of its children fail? These design issues will be discussed in other
sections further on.

The options presented are thus: (i) whether or not transactions can themselves be
composed of other transactions; and (ii) whether or not the semantics (not only
the syntax) supports transaction composition.

— Action Compensations versus Transaction Compensations: A compensation
may either be an action or a whole compensable transaction itself. The argument
in favour of having only transactions as compensations [Butler and Ferreira 2004;
Arkin et al. 2007; Bocchi et al. 2003; Lanese and Zavattaro 2009; Laneve and
Zavattaro 2005; Vaz et al. 2009; Lapadula et al. 2008a; Bruni et al. 2004] is that
this provides a uniform approach such that the compensation may itself fail and
have its own compensations. On the other hand, a number of formalisms [Bruni
et al. 2005; Butler et al. 2004; Butler and Ripon 2005; Li et al. 2007b] choose to allow
basic actions to have actions as compensations while transactions have transactions
as compensations, thus providing a clear correspondence between actions and their
corresponding compensating actions. The problem with this might be that in reality
a compensation for an action is not itself an action. For example, the compensation
for a bank refund might involve the actual money transfer together with an email
being sent as an explanation to the client. A third option is to allow only basic
activities (or their composition) to be compensations [Lanotte et al. 2008]. This
approach does not support programmable compensations as transactions cannot
have transactions as compensations. Thus the compensation of a transaction is
always the composition of installed compensations and the compensation cannot
itself be compensable.

There are thus, three main design options: (i) all compensations are transactions
themselves; (ii) actions have corresponding compensating actions while a transac-
tion may have a compensating transaction (programmable compensation); or (iii)
compensations are processes which do not support compensations.

— Compensating for Failure of Compensations: With nested compensations, we
considered the possibility of having the forward part of a transaction being split
into parts with smaller compensation units. The dual issue is whether the back-
wards actions — the compensations — can themselves include compensations in
case they need to be undone. Since compensation is usually considered as backward
behaviour, it is somewhat strange to have a backward behaviour of the backward
behaviour. Indeed, in real life examples, one rarely, if at all, encounters examples
where nested compensations are required. However, from a theoretical perspective
enabling compensations to have compensations permit cleaner and more composi-
tional syntax and semantics.

There are various design options which have been considered in the literature:
(i) both the syntax and semantics prohibit compensations to have compensations
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[Butler et al. 2004; Butler and Ripon 2005; Lanotte et al. 2008]; (ii) the syntax
allows for nested compensations while the semantics ignores them [Li et al. 2007b];
and (iii) both the syntax and semantics support nested compensations [Bruni et al.
2005; Butler and Ferreira 2004; Arkin et al. 2007; Bocchi et al. 2003; Lanese and
Zavattaro 2009; Laneve and Zavattaro 2005; Vaz et al. 2009; Lapadula et al. 2008a;
Bruni et al. 2004].

— Concurrent Compensation Scopes: The scope of a compensation is the pro-
cessing component during which the compensation is active, usually referred to as
a transaction. Within a scope, compensations are accumulated together so that if
something goes wrong, anything completed up to that point can be undone. There
are two main options with respect to concurrent scoping: either having only a
single active compensation scope at any one time to which compensations can be
added or else having multiple active scopes (this feature is only provided in [Butler
and Ferreira 2004]). The advantage of the latter is that it allows the programmer
to choose to which compensation scope to install the compensation and eventu-
ally which scope to activate. This is useful, for example, when one wants to use
compensations both for recovery and also for programming purposes. Consider a
scenario where one is making provisional bookings at various establishments; for
each booking two compensations are installed: the confirmation of the booking on
one scope and the cancellation on the other. If all the bookings succeed then one
would simply need to execute the scope with all the confirmations while in case of
failure one runs all the cancellations.

3.2 Installation of Compensations

The installation of a compensation refers to the instant at which an activity is
marked as a compensation ready to be used in case a fault is encountered later on.
The first arising issue is what points during the execution of a transaction can be
used as potential compensation installation points. Furthermore, installation can
either occur implicitly — hiding the details of what is actually happening — or
explicitly — having the user to explicitely state what and where to install com-
pensations. Another important question when it comes to installing compensations
is the policy to be used in the ordering of compensations. The problem is more
complex when there are parallel processes — should the respective compensations
also be activated in parallel or in the order in which execution has actually taken
place at runtime? This is a delicate question to which one finds a variety of answers
in the literature.

— Compensation Installation Points: Usually, compensation installation occurs
upon the completion of an activity [Bruni et al. 2005; Li et al. 2007b; Butler et al.
2004; Butler and Ripon 2005] since a compensation can be thought of as the reverse
of that activity. However, sometimes one would like to compensate for a whole
transaction rather than a single activity and for this reason it is also reasonable
to install a compensation upon the completion of a transaction [Arkin et al. 2007;
Bocchi et al. 2003; Lapadula et al. 2008a]. Still there are various other options of
allowing compensation installation at particular points in a transaction (e.g. after
interactions [Vaz et al. 2009]) or possibly allowing the installation of compensations
anywhere during the execution of a transaction [Butler and Ferreira 2004; Lanese
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and Zavattaro 2009]. Finally, although it is somewhat contrary to intuition, there
are examples in the literature where compensation is installed at the start of a
transaction [Laneve and Zavattaro 2005; Bruni et al. 2004; Lanotte et al. 2008].
This is only possible when the execution of the compensation does not depend on
the execution history — a condition which is satisfied in particular weak forms of
compensation.

In summary, the design options considered are: (i) install compensations upon com-
pletion of an activity; (ii) install compensations upon completion of a transaction;
(iii) install compensations after interactions; (iv) allow compensation installation
at any point; and (v) compensation is installed at the start of a transaction.

— Composing Compensations: When installing a compensation, usually, this is
composed in some way to the already accumulated compensations for that par-
ticular scope, defining the order in which compensations are executed (if later
activated). There are theoretically many other possible orderings than the ones
presented here, but these are the approaches found in the literature. Furthermore,
there seems to be no ordering which is generally more preferred than another.

The four main options of ordering compensations are: (i) install compensations
always in parallel [Bocchi et al. 2003; Vaz et al. 2009]; (ii) install compensations al-
ways in sequence — achieving reverse order of execution [Butler and Ferreira 2004;
Arkin et al. 2007]; (iii) install compensations such that they match the forward
behaviour, i.e. parallel compensation for parallel activities and sequential compen-
sation for sequential activities [Bruni et al. 2005; Li et al. 2007b; Butler et al.
2004; Butler and Ripon 2005; Lanotte et al. 2008]; or (iv) user-given [Lanese and
Zavattaro 2009].

3.3 Replacing and Discarding Compensations

Once the end of a compensation scope is reached, a decision is required regard-
ing the accumulated compensation: this may either be maintained, discarded or
replaced. Discarding compensation without replacement is somewhat counterin-
tuitive as the possibility of compensating for completed transactions is one of the
distinguishing factors between ACID transactions and compensable transactions.
Having said this, an outer scope can still semantically compensate for its sub-scopes
by taking into consideration whether they have succeeded or not (without actually
using the sub-scopes’ compensations). Replacing compensations, i.e. programmable
compensations, is more a question of flexibility since the fine-grained compensations
may need to be replaced by a more simple action once the transaction has been
completed. To introduce even more flexibility, another possible design option is to
provide the possibility of discarding, replacing and modifying the stored compen-
sation at any point of transaction execution [Butler and Ferreira 2004; Guidi et al.
2008; Lanese and Zavattaro 2009; Lanese et al. 2010]. However, this approach is
not mainstream in compensation literature, possibly because such degree of free-
dom is generally unnecessary, and requires substantial syntactic overhead in the
specification.
The options associated with this design issue are various: (i) compensations of

nested scopes are executed as part of the compensation of the outer scope [Lanotte
et al. 2008]; (ii) propagate the compensation to the next outer scope whereupon
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the relevant installation policy (see previous subsection) is applied [Arkin et al.
2007; Vaz et al. 2009]; (iii) discard the compensation of that scope [Laneve and
Zavattaro 2005; Bruni et al. 2004]; (iv) discard the compensation of that scope
with the possibility of installing a coarser-grained compensation in the next outer
scope [Butler et al. 2004; Butler and Ripon 2005; Bocchi et al. 2003]; (v) propagate
the compensation to the next outer scope only if no coarser-grained replacement is
available [Bruni et al. 2005; Li et al. 2007b]; or (vi) preserve the compensation of the
scope beyond its completion so that in the future the scope can still be compensated
without any connection to the compensation of the outer scope [Butler and Ferreira
2004; Lanese and Zavattaro 2009; Lapadula et al. 2008a].

3.4 Activation of Compensations

Once a compensation is installed, it can be activated and executed to compensate
for already completed activities. There are various reasons why a compensation
may be activated: (i) either the programmer chooses (explicitly) to execute the
compensation at some point; (ii) an exception occurs within the transaction, causing
it to compensate; or (iii) because an external fault (e.g. the failure of a parallel
transaction) forces the transaction to terminate (forced termination).
These possibilities give rise to various design issues: (i) whether or not compen-

sation is triggered automatically upon failure; (ii) if a transaction fails, how does
failure propagate from child to parent? (iii) how does failure propagate from parent
to child? (iv) handling interruption — how forced termination is handled; and (v)
termination coordination — how concurrent compensations are executed.

— Implicit versus Explicit Compensation Activation: This design aspect is par-
ticularly crucial because it touches on how compensations are ideally viewed: whether
or not compensations should be strictly related to failures. In general, compensa-
tions have been proposed as a means of handling failure but when compensations
can be activated at any point of execution (irrespective of failure), then compen-
sation becomes more of a programming pattern rather than a failure handling
mechanism. This issue is further discussed in Section 8.2.

There are three main compensation activation modes: (i) compensation is activated
automatically upon a failure [Bruni et al. 2005; Li et al. 2007b; Bocchi et al. 2003;
Bruni et al. 2004; Lanotte et al. 2008]; (ii) compensation is activated explicitly (by
the programmer) [Butler and Ferreira 2004; Butler et al. 2004; Butler and Ripon
2005; Lanese and Zavattaro 2009; Laneve and Zavattaro 2005; Vaz et al. 2009;
Lapadula et al. 2008a]; or (iii) compensation is activated automatically unless an
explicit activation is specified [Arkin et al. 2007].

— Upward Abortion Propagation: When a transaction fails during normal be-
haviour6, it usually affects other transactions such as the parent-transaction and
its child-transactions. In this point, we focus on the former (which we refer to
as upward abortion propagation) while we discuss the latter (downward abortion
propagation) in the following point. Another important distinction is that we are

6We distinguish between failure during forward behaviour and failure during backward behaviour
(i.e. during compensation). In this section, we focus on the former while we leave the discussion

of the latter for Section 3.6.
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discussing failure propagation amongst transactions not among concurrent activities
within a transaction. The fact that an activity failure causes the whole transaction
to fail is inherent in the definition of a transaction which either succeeds fully or
fails completely.

In general, in the literature (except [Li et al. 2007b; Arkin et al. 2007]), failure
of a transaction whose compensation succeeds is not propagated upwards to the
transaction’s parent. This option favours the notion that a successful compensation
is not an exception but rather part of the normal logic. Therefore, a transaction
need not be aware if a sub-transaction has successfully compensated.

— Downward Abortion Propagation: When a transaction encounters an excep-
tion, an important decision needs to be taken as to how any (concurrently) executing
sub-transactions should be handled. The main issue here is whether a failed branch
of the transaction should cause the rest of the concurrent branches to fail. There-
fore this can be considered as a question of whether to have a weak or a strong
parallel composition. In the case of the latter, another question arises: is failure
propagated in a top-down fashion where the transaction signals all its branches to
terminate, or does the (failing) branch itself cause its siblings to terminate?

In other words, the options are: (i) leave child-transactions to continue unaffected
[Bocchi et al. 2003; Laneve and Zavattaro 2005; Butler and Ferreira 2004; Lanotte
et al. 2008]; (ii) propagate the exception in a centralised top-down fashion [Arkin
et al. 2007; Vaz et al. 2009; Bruni et al. 2004]; or (iii) propagate exception to other
sibling-processes and transactions running in parallel [Bruni et al. 2005; Li et al.
2007b; Butler et al. 2004; Butler and Ripon 2005; Lanese and Zavattaro 2009;
Lapadula et al. 2008a].

— Handling Interruption: Exception propagation among transactions assumes
a form of external interruption, also referred to as forced termination. Näıvely
stopping a process at any point of execution is dangerous as it might leave the
system in an invalid state in the middle of an operation. The preferred approach
would depend on how sensitive the system is to forced termination.

Various approaches have been proposed in the literature: (i) by default a transaction
does not yield to forced termination but the programmer can indicate yielding
points at which the transaction yields in case of a forced termination [Butler et al.
2004; Butler and Ripon 2005]; (ii) by default a transaction yields at any point to
forced termination but a protection mechanism can be used to protect particular
parts of a transaction from interruption [Butler and Ferreira 2004; Arkin et al.
2007; Lanese and Zavattaro 2009; Vaz et al. 2009; Lapadula et al. 2008a]; or (iii)
allow an interrupted transaction to execute a termination handler to ensure graceful
termination [Arkin et al. 2007; Lanese and Zavattaro 2009].

— Termination Coordination: As discussed in previous points, upon the occur-
rence of a failure in a strong parallel composition, sibling processes are terminated
(interrupted) and compensated. This raises another design issue: does each parallel
process immediately start compensating, or does it wait for the other siblings so
that all compensations start at the same time? The former is referred to as dis-
tributed interruption while the latter is known as coordinated interruption [Bruni
et al. 2005]. The choice depends on whether the compensations of the interrupted
processes are dependent on each other and whether it is preferable to have a cen-
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tralised mechanism which coordinates the compensations. [Bruni et al. 2005; Li
et al. 2007b] adopt distributed interruption, while [Arkin et al. 2007; Butler et al.
2004; Butler and Ripon 2005; Vaz et al. 2009] adopt coordinated interruption.
In summary the options are: (i) distributed interruption where compensations start
independently; and (ii) coordinated interruption where compensations start to-
gether.

3.5 Compensation Execution

In the theoretical literature reviewed, compensations are executed as normal ac-
tivities but in practical terms various issues arise as regards to state management
during compensation execution. For example, what system state should be used
to start compensation execution? Should the compensation be executed on the
current state of the system, the state at the moment of compensation installa-
tion, or on the state at the moment of completion of the corresponding activity.
BPEL, as an example, records a scope snapshot which records the state of a scope
exactly after completion of the scope. This is then loaded before executing the
corresponding compensation. Another issue is to choose the scope of the compen-
sation execution, i.e. which part of the state of the system the compensation can
access. Referring again to BPEL as an example, the compensation execution does
not only have access to the snapshot but also to the state of the scope (and the en-
closing scopes) which invoked the compensation. After the completion (or failure)
of compensations new issues arise, which we will discuss in the next subsection.

3.6 Post-Compensation Execution

Upon completion of a compensation execution, the point from which execution is to
resume is an important choice. This obviously takes into account whether compen-
sation was successful or not. The possible design options identified in the literature
involved in this phase are: (i) how the transaction continues after a successful
compensation; and (ii) how the transaction continues after a failed compensation.

— After a Successful Compensation: Recall that when a transaction compensates
successfully, the parent transaction is generally not even aware that a compensation
has taken place (see Section 3.4). Therefore, this is one possibility of what happens
after successful compensation, i.e. execution continues as normal forward behaviour
in the parent scope. On the other hand, if compensation is propagated to the
next outer scope, then after a successful compensation, execution continues by
executing the compensation of the next outer scope. Apart from these options,
there is however another possibility: alternative forwarding — after a successful
completion of a compensation, alternative forwarding provides another behaviour
which is semantically equivalent to the one which has been compensated (e.g. if
courier booking fails, another courier which provides an equivalent service may be
tried out). This feature is explicitly provided in [Bruni et al. 2005; Li et al. 2007b].
In summary, the options of continuation following a successful compensation are:
(i) execution continues normally in parent transaction; (ii) execution continues
by triggering the parent’s compensation; (iii) execution continues by executing
alternative behaviour — alternative forwarding.

— After a Failed Compensation: Recall (from Section 3.1) that in many cases, a
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compensation may itself be a transaction. Therefore, a failed compensation usually
has its own ways of coping with failure. However, if after attempting to handle
itself, the compensation still fails, then the transaction is considered just as a failed
transaction. In more practical terms, a failure during compensation becomes a
“normal” failure within the scope which initiated the compensation. In this sense,
there is no distinction between a failure during normal behaviour and a failure
during compensation. A more complex approach arises when compensations are
not necessarily transactions. In this case, a failed compensation is considered as a
special exception which leaves the system in an inconsistent state and therefore must
be handled by exception handling. If an exception handler is not provided, then a
failed compensation causes a failure which propagates upwards to the transaction’s
parents, causing the whole transaction to end in failure unless the exception is
caught at some level.
In summary, the options after a failed compensation are: (i) either to treat the
failure as a normal failure within the scope which triggered the compensation,
possibly triggering higher-level compensations; or (ii) the failure is treated as a
special failure which can only be handled by exception handling.

3.7 Conclusion

The design issues in compensations are considerable and each issue is surrounded by
numerous options. In the next section, we consider various models of compensations
from the literature, with each model representing a particular combination of design
options from the above.

4. MODELS OF COMPENSATIONS

There are various attempts of formalising the notion of compensation, mainly mo-
tivated by the need of clear semantics and the possibility of applying verification
techniques. Among these formalisms there are notable differences in the way they
handle compensations, thus providing a rich background for comparing and con-
trasting the various aspects of compensations.
In the literature, one finds three main approaches to modelling compensations —

(i) flow composition languages which primarily focus on the control structure and
flow of the process under analysis; (ii) approaches, usually based on process calculi,
which focus on the communication and interaction between entities making up the
process; and (iii) automata-based approaches. We start by briefly describing the
interesting characteristics of a number of control-flow approaches:

— Sagas [Bruni et al. 2005] is a flow composition language based on the idea of
sagas introduced in [Garcia-Molina and Salem 1987] where, in essence, a sequential
saga is a sequence of activities which either succeed in totality or else the completed
activities should be compensated (giving the illusion that none of them were suc-
cessful). Sagas automatically installs compensation actions corresponding to the
forward behaviour — in sequence if the forward behaviour is in sequence and in
parallel if the forward behaviour is in parallel. Starting from this basic structure
of a sequence of activities, Bruni et al. go on to provide a hierarchy of extensions
including parallel composition of activities, nesting of transactions, programmable
compensations and various other highly expressive features including alternative

ACM Transactions on Computational Logic, Vol. V, No. N, August 2011.



18 · C. Colombo and G. J. Pace

forwarding and speculative choice. Sagas provides both exception and compensa-
tion handling with the former taking over when the latter fails. A limitation of
Sagas is that it does not provide a mechanism for handling forced termination, i.e.
if a process fails, other processes running in parallel are interrupted without any
precautions.

— Compensating CSP (cCSP) [Butler et al. 2004; Butler and Ripon 2005] is an
extension to CSP [Hoare 1985] with the aim of providing support for long-lived
transactions. In cCSP, all basic activities succeed and failures are explicitly pro-
grammed using a special THROW activity which always fails. Compensations in
cCSP can be programmed at two levels: a compensating action can be associated
with an action while a compensating transaction can be associated with a transac-
tion. Similar to Sagas and t-calculus[Li et al. 2007a; Li et al. 2007b], cCSP installs
compensations automatically in such a way as to reflect the forward behaviour. A
special feature of cCSP is that once a transactions completes, installed compensat-
ing actions are automatically discarded. Therefore, by associating a compensation
to a transaction one would effectively be replacing the automatically accumulated
compensations with a coarser-grained compensation for the whole transaction (pro-
grammable compensation). Another particular feature of cCSP is that in case of
a process failing within a parallel composition, it allows the programmer to decide
at which point the other processes (in the composition) can be interrupted by the
failure. It is also interesting how fault handling and compensations are intermixed
in cCSP: when a failure occurs, the compensation is only triggered if the exception
handler fails (or no exception handler is available).

— StAC [Butler and Ferreira 2000; Chessell et al. 2002; Butler and Ferreira
2004] separates the compensation mechanism from failure handling and thus com-
pensations can be used freely as any other programming construct. Compensations
in StAC are stored in so called compensation stacks such that compensations can
be installed, executed and discarded through stack operations. Although this ap-
proach makes automation of compensation installation impossible, it provides total
freedom to the programmer to use compensations as deemed necessary. StACi is
an extension of StAC supporting concurrent compensation stacks, implying that
several compensation scopes can be maintained concurrently during the execution
of a process. This is useful when for example, one wants to be able to execute
a particular “compensation” if all bookings succeed (e.g. confirming all bookings)
and a different compensation if one of the bookings fail (e.g. cancelling all book-
ings). Additionally, StACi (but not StAC) provides a mechanism for protecting a
process from early termination originating from another process. This guarantees
that processes are interrupted only when it is safe to do so.

— Transaction calculus (t-calculus) [Li et al. 2007a; Li et al. 2007b] is a highly
expressive language which, building on the ideas of Sagas [Bruni et al. 2005], StAC
[Butler and Ferreira 2004] and cCSP [Butler et al. 2004], provide an algebraic se-
mantics for transactions. The transaction calculus is notorious for providing two
exception handling constructs apart from the compensation mechanism: forward
and backward handling. The difference is that the forward mechanism treats the
handler as a successful alternative forward behaviour to the failure, i.e. after success-
ful forward exception handling, execution continues as if everything was successful.
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On the other hand, the backward mechanism uses the handling logic as a reversal
of any execution which occurred before the exception, i.e. after successful backward
exception handling, execution has to restart the failed process. Unlike StAC but
like Sagas and cCSP, t-calculus uses exception handling only when compensation
fails. Similarly to cCSP, the calculus is based on atomic actions which always suc-
ceed and each action must have an associated compensation action which can be
the empty process or the process which always fails. Similar to Sagas, t-calculus
provides native advanced operators including speculative choice, alternative for-
warding and programmable compensation. Also, it does not provide a means of
termination handling.

— Amongst the suggested languages to tackle programming complex services
and interactions across organisational boundaries are Microsoft’s XLANG [Thatte
2001] and IBM’s WSFL [Leymann 2001]. The Business Process Execution Language
for Web Services, known as BPEL4WS [Andrews et al. 2003] and more recently WS-
BPEL [Arkin et al. 2007] (or BPEL for short) is the offspring of both XLANG and
WSFL, integrating XLANG’s structured nature with WSFL graph-based approach.
Due to the widespread application of BPEL in industry and its incorporation of
compensations, it has been given much attention in the area of compensations.
Various attempts have been made to formalise the semantics of BPEL since these
have been originally given in textual descriptions. Among these attempts, several
[Hamadi and Benatallah 2003; Arias-Fisteus et al. 2004; Koshkina and van Breugel
2004; Haddad et al. 2004; Fu et al. 2004; Pistore et al. 2004; Wombacher et al. 2004;
Viroli 2004; Verbeek and van der Aalst 2005; Pistore et al. 2005; Baldoni et al. 2005;
Kazhamiakin and Pistore 2005; Yang et al. 2006; Pu et al. 2006; Nakajima 2006;
Weidlich et al. 2007; Mateescu and Rampacek 2008; yun Long and shi Li 2009] do
not take compensations into consideration. In a more detailed report [Colombo and
Pace 2011] we delve deeper into the literature [Farahbod 2004; Farahbod et al. 2005;
Fahland and Reisig 2005; Fahland 2005; Butler et al. 2005; Lucchi and Mazzara
2007; Lohmann 2007; Ouyang et al. 2007; He et al. 2008; Ferrara 2004a; 2004b; Pu
et al. 2006; Foster et al. 2006; Foster 2006; Eisentraut and Spieler 2008; Abouzaid
and Mullins 2008; Lapadula et al. 2008b; Coleman 2004] which formalises BPEL
including its compensation mechanism. These formalisms include abstract state
machines, Petri Nets, and process algebras.

The main construct of BPEL scoping, which acts as a process container providing
a fault, a compensation and a termination handler for the scope-enclosed process.
In BPEL, it is always the responsibility of the fault handler to handle faults (and
never of the compensation handler). However, the default fault handler invokes
the compensation handler so that any actions completed before the occurrence of
the fault can be compensated. Note that the fault handler can be customised and
need not call the compensation handler. Unlike Sagas and t-calculus but like StAC,
BPEL always installs compensations in sequence (never in parallel) irrespective of
whether the forward behaviour was executed in parallel. Note that BPEL provides
a termination handler which allows the programmer to decide what actions need
to complete before a process is forced to terminate.

Variants of process algebras have also been extensively used to model business pro-
cesses and web services. Unlike flow compensation approaches, they focus primarily
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on the communication taking place amongst processes, which is particularly salient
when modelling systems scattered across a network.

— πt calculus [Bocchi et al. 2003] is an extension of the π-calculus [Milner 1999]
having a transaction construct. A transaction includes four components: a main
process, a failure manager, a compensation store, and a compensation process. The
failure manager is a process which is executed in case the transaction fails, the com-
pensation store is a collection of compensations which compensate for previously
completed nested transactions, while the compensation process is a process which
will be added to the compensation store if the current transaction succeeds. πt
calculus is particular in that the failure manager is always executed after the com-
pensation store is executed. This allows the programmer to decide how to continue
after compensation. A characteristic which is only present in πt calculus is that it
does not force processes to terminate when a process fails in a parallel composition.
Furthermore, compensations can only be installed in parallel — never in sequence
— meaning that irrespective of the order in which actions were executed, the order
of their compensation is arbitrary.

— SOCK [Guidi et al. 2006; Guidi et al. 2008; Lanese and Zavattaro 2009] is
aimed specifically as a calculus for service oriented computing. For example, SOCK
provides the request-response mode of communication through which a client can
request an activity on a server and receive back the output of the activity. For such
a scenario, SOCK also offers other notions such as the concept of a location — a
process is not only distinguished by its definition but also on the location where
it is running. SOCK provides three error handling mechanisms: fault handling,
termination handling and compensation handling — all centred around a process
container called a scope. The scope associates fault names with fault handlers and
the scope’s own name is associated with the termination handler. If the scope
terminates and the termination handler has not yet been invoked, then the termi-
nation handler becomes the compensation handler for that scope (as the scope has
been successfully completed). Subsequently, the name of the scope can be used to
trigger the compensation handler in case the successful scope needs to be compen-
sated. In SOCK, handlers (any type) can be modified at any point of execution.
This provides a high degree of flexibility and does not impose any predefined policy
on the programmer. A special feature of SOCK is that it provides a mechanism
for distributed compensation. This is achieved by allowing a server to send a fail-
ure handler to the client. Thus, if the operation on the server fails, the client is
informed by the server how compensation can take place.

— webπ [Laneve and Zavattaro 2005; Mazzara and Govoni 2005] is an extension
of asynchronous π-calculus [Hennessy 2007] with a special process for handling
transactions. A notable aspect of webπ is that it has the notion of a timeout:
if a transaction does not complete within a given number of cycles, then it is
considered to have failed. A variation of webπ which abstracts from time is webπ∞

[Mazzara and Lanese 2006]. When the notion of time is abstracted, a transaction
which has not timed out is a transaction with normal behaviour, while otherwise
it is a failure. Both flavours of webπ provide the notion of mobility of processes
across machines which is particularly useful when modelling web services. webπ
differs from all other models of compensation in that transactions composed of
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other transactions are treated as the parallel composition of the parent and child
transactions. The implication is that no automatic error propagation occurs in
webπ, i.e. if a transaction fails, no other transaction is affected. In all other models,
when a transaction fails (unless the failure is corrected) the failure propagates
to the parent transaction. However, failure propagation can still be programmed
manually in webπ through channel communication. Another minimalistic aspect of
webπ is that exception handling and compensation handling are one and the same
thing. This implies two serious limitations in the expressivity of compensations
supported: (i) to compensate for completed transactions one has to manually keep
the transaction alive to preserve the compensation handler; and (ii) the order of
compensation execution cannot take into account the execution history.

— dcπ [Vaz et al. 2009] is another process calculus based on asynchronous π-
calculus. It differs from other models in that instead of associating compensations
to a scope, it associates compensations with channel input, i.e. compensation in-
stallation occurs upon an input on a channel. Another peculiarity of dcπ is that it
guarantees that installations and activations of compensations take place through
proofs on the semantics. In dcπ each transaction is assigned a unique identifier
through which it can be signalled to start executing its compensation. Thus, any
process which is allowed to cause a transaction t to compensate, should be given
access to a corresponding channel t. For this purpose, scope extrusion7 is heavily
used in dcπ to pass on access to such channels to the relevant transaction process.
Another feature of dcπ is that after their completion, transactions still preserve
their compensations so that these can be executed at any time later on. dcπ also
provides a construct for protecting transactions (or compensations) from being dis-
carded due to forced termination. A remarkable limitation is that dcπ only allows
parallel composition upon compensation installation. This prevents the ordering of
compensations from being based on the execution history.

— COWS [Lapadula et al. 2007b; 2008a] is specifically targeted to formally
model web services, providing a way of applying formal methods to web services.
In COWS, an endpoint which receives or sends service invocations is a tuple: a
partner (conceptually similar to a location) and an operation. Thus, each partner
can be involved in various concurrent operations. Notably, COWS provides a very
restricted basic syntax, using which, richer syntax is defined, providing constructs
for modelling failure, compensation, and scope. The main three basic operators
which are crucial as building blocks are (i) a delimitation operator which defines
the scope of a variable; (ii) a kill operator which terminates a scope; and (iii) a
protection operator which protects a scope from the kill operator. Using these oper-
ators a process can be enclosed in a special scope with the possibility of associating
failure and compensation handlers to it. Similar to webπ, in COWS, compensations
are statically defined as part of the scope and thus cannot take the execution his-
tory into account. However, unlike webπ and like dcπ, COWS allows transactions
to be compensated after their termination.

— The committed join (cJoin) [Bruni et al. 2004] is an extension of the join

7Informally, scope extrusion occurs when a restricted (local) channel is passed on to another

process (outside of the scope of the channel).
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calculus [Fournet and Gonthier 1996], enabling it to handle compensations. The
join calculus has been devised to provide an abstract foundation for object-based
languages and it follows the idea of chemical abstract machines which attempt to
emulate chemical processes as a means of computation. Similar to process alge-
bras, chemical abstract machines are apt to model interactions among processes
and how processes evolve during execution. These aspects, together with a negoti-
ation construct — a kind of scope construct which relates failure handling process
to another process — make cJoin capable of modelling transactions with compen-
sations. Like webπ and COWS, cJoin also supports only static compensation which
is defined as part of the scope. Furthermore, like webπ, cJoin does not separate
compensation and fault handling. Moreover, compensation is automatically dis-
carded upon transaction termination and therefore completed transactions cannot
be compensated.

A number of other calculi such as RCCS [Danos and Krivine 2005], τ -calculus
[Field and Varela 2005], and TransCCS [De Vries et al. 2010a; 2010b] also enable the
formalisation of transactions. In particular, TransCCS supports the specification
and verification of safety and liveness properties in the context of transactions.
These calculi differ from the others overviewed above in that the former support
rollback of transactions rather than compensations. The essential difference lies in
the fact that transactions are reversed automatically by reverting to a savepoint
while compensations have to be programmed explicitly.

Finally, automata have also been used to model compensating transactions. Apart
from the advantage of being a graphical notation, a lot of work has already been
done in automata particularly in the area of verification which can then easily be
adapted for compensations.

— Communicating hierarchical transaction-based timed automata (CHTTAs)
[Lanotte et al. 2006; 2008] are communicating hierarchical machines [Alur et al.
1999] enriched with time (similarly to timed automata [Alur and Dill 1994]), and
with other slight modifications to accommodate the representation of transactions.
Two appealing features of CHTTAs (apart from the inherent graphical aspect) is
that they support the notion of time and can be reduced to timed automata and
hence are model-checkable. Long running transactions (LRTs) are defined over and
above CHTTAs such that a CHTTA can be specified as the compensations of an-
other CHTTA. Furthermore, LRTs can also be nested or composed in parallel or
sequentially. Similarly to a number of other approaches, the order of compensation
execution in LRTs is in reverse order in case of sequence and in parallel in case of a
parallel composition. Also, in the case of successfully aborted nested transactions,
the parent transaction is not aware of abortion and continues unaffected. A limi-
tation of LRTs is that they do not show clearly (graphically) which compensation
corresponds to which component and it is assumed that compensations succeed.
The latter limitation can be lifted by introducing exception handling which is com-
pletely absent in LRTs. Another mechanism which LRTs do not provide is forced
termination and consequently neither termination handling.
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4.1 Comparison by Example

To illustrate some of the differences between the different approaches, we encode
the example given in Section 2.4 in Sagas, SOCK and BPEL. The example can be
found encoded in other compensation modelling languages in [Colombo and Pace
2011].

— The Example in Sagas: Apart from the usual sequential and parallel composi-
tion operators, Sagas employs a number of compensation-related ones. For example,
in order to associate actions to their compensations, Sagas uses the ÷ operator, e.g.
DecStock÷IncStock represents the fact that increasing stock is the compensation of
increasing it. Furthermore, try a with b is used to associate exception handling b
to a compensable unit a so that if a failure occurs during compensation, the handler
b is triggered. Finally, {[ ]} are used to delineate the scope of compensations such
that if a failure is successfully compensated, then compensation is not propagated
beyond the scope. Using these operators, the example can be encoded as follows:

Transaction
def

= try {[ (DecStock ÷ IncStock) ; (0÷ Email) ;
((Pack ÷ Unpack) || (Credit ÷ Refund)) ;
(Courier ÷ Cancel) ]} with Operator

Note that in Sagas actions DecStock , IncStock , etc, are not decomposed further
but are assumed to either succeed or fail according to their context. This is in line
with the big-step semantics in which the semantics of Sagas is given. Furthermore,
a compensation in Sagas is a single activity and as such the sending of an email
had to be encoded as the compensation of the inert process — 0 ÷ Email . By so
doing, we have not strictly kept to the specification because the stock update and
the sending of the email are supposed to be done in parallel. The alternative would
have been to amalgamate both activities as a single basic activity. In this example,
we have also deviated from the original specification as the interaction among the
various entities involved (e.g. bookshop, warehouse, etc) in the transaction is not
explicitly modelled.

— The Example in SOCK: Unlike Sagas, SOCK models interaction among pro-
cesses as channel communication with c and c representing input and output on
channel c, respectively. Another major difference is that compensation and failure
handlers are installed as processes attached to handler and scope names. For ex-
ample s 7→ cH || IncStock ||Email represents the fact that in parallel with anything
already associated with handler s (represented by cH ), two additional actions are
composed: increasing the stock and sending an email to the client. The example
modelled in SOCK is given below:

Store
def

= order ; (x || (x) + (x ; throw(st))) || restock ; (x || (x) + (x ; throw(rs)))

DecStock
def

= order([s 7→ (cH || IncStock || Email), st 7→ throw(f)])

IncStock
def

= restock([rs 7→ throw(g)])

Transaction
def

= {inst([f 7→ comp(s), g 7→ Operator ]) || IncStock ; (Pack || Credit)}s

Modelled in a service-oriented fashion, the IncStock activity contacts the Store
through channel order and if the activity succeeds (modelled as a non-deterministic
choice using the + operator), then the activity exits, otherwise, it throws fault st.
This fault is handled by DecStock and rethrown as fault f which is in turn handled
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by Transaction — triggering the compensation for scope s. If the compensation
(IncStock) fails, fault g is triggered instead of f , causing the Operator activity to
start. The activities which are not given above should be modelled in a similar fash-
ion to DecStock and IncStock . Note that in SOCK we have kept to the specifications
and installed compensations in parallel.

— The Example in BPEL: A BPEL process is a composition of scopes where
each scope performs some kind of function and may have up to three handlers
associated to it: a fault handler, a compensation handler and a termination handler.
A fault handler intercepts faults and handles them, possibly by executing other
handlers such as a compensation handler. As a scope can only be compensated
upon successful completion, the outermost scope can never be compensated and
therefore it cannot have an associated compensation either. The following is a
skeleton of the BPEL specification of the bookshop example:

<process name="bookSellingTransaction">

<documentation xml:lang="EN"> A process for handling orders </documentation>

<faultHandlers> <catchAll> <compensate /> </catchAll> </faultHandlers>

<sequence>

<scope name="stockUpdate">

<documentation> This is the scope for handling the stock level </documentation>

<faultHandlers> <!-- This is the default fault handler>

<catchAll> <sequence> <compensate /> <rethrow /> </sequence> </catchAll>

</faultHandlers>

<compensationHandler> ... reupdate stock levels and send email </compensationHandler>

... check stock and decrease

</scope>

<flow>

<scope name="packOrder">

<documentation> This is the scope for packing the order </documentation>

<compensationHandler> ... unpack </compensationHandler>

<!-- This is the default termination handler>

<terminationHandler> <compensate /> </terminationHandler>

... pack

</scope>

<scope name="chargeCustomer">

<documentation> This scope is for charging the bank account </documentation>

<compensationHandler> ... refund customer </compensationHandler>

... charge customer’s bank account

</scope>

</flow>

</sequence>

</process>

The encoding in BPEL is done using three scopes — one for each activity having
a compensation. Scopes are the only mechanism in BPEL through which compen-
sations can be associated to activities. Note that in all scopes, the default fault
handling mechanism is utilised (only explicitly shown for the scope stockUpdate; it
is implicit in the other cases). This simply executes the installed compensations
(using <compensate />) and rethrows the fault to the next higher level scope.
Similarly, we only explicitly declare the default termination handler in scope pack-
Order so that, if for example the bank account transfer fails while the packing is
still executing, compensation is executed (assuming packing has a further nested
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scope).
The rest of the details (which are left out) can be implemented using BPEL pro-
cesses such as assign to update stock values, and invoke and receive to commu-
nicate with the bank and the packing department.

Although simplistic, the example presented in this subsection should illustrate the
main differences among the different models used to model compensations: mainly
that flow composition languages generally provide a more concise representation of
the logic with a clear delineation of activities and compensations, process algebraic
approaches focus on the communication aspect, while BPEL is intended as an
implementation to be executed on a BPEL engine.

4.2 Conclusion

The formalisms presented in this section provide varied approaches to the design
issues of compensations. Undoubtedly, there are various other formalisms catering
for compensations. For example, [Acu and Reisig 2006] extends the work on work-
flow nets in [van der Aalst 1998] to include compensations. However, the concept
of compensation employed is similar to that of Sagas [Bruni et al. 2005] where the
order of the compensations depends on the order of execution, establishing a par-
tial order among activities. Therefore, we opt to leave out further details of such
work. Similarly, we leave out others works which we feel are already in some way
represented in the notations tackled in this section.
Although we have reviewed various compensation models, we have not presented

what it means for a compensation to be correct in a given context. In the next
section, we give an overview of the literature which tackles this issue.

5. FORMALISING COMPENSATION CORRECTNESS

The complexity of compensation semantics raises the question of the soundness
of a given language or approach as to whether it really deals with compensations
correctly. In this section we review two main approaches of compensation correct-
ness appearing in the literature. The first approach assumes that compensations
are perfect, i.e. running a compensation after the compensated action would result
as if no action has been taken at all (all-or-nothing). This assumption facilitates
reasoning about compensable transactions as one would simply have to ensure that
either the transaction succeeds fully or not at all (up to compensations). The sec-
ond approach revolves around algebra of programs, i.e. how compensation activities
would fit within a program and what laws apply in general to programs with com-
pensations. Such generic laws can then be used to manipulate any program with
compensations.

5.1 All-or-Nothing Correctness Principle

The approach usually taken to prove sanity of compensation semantics is that a
system built from atomic actions all of which have a perfect compensation8 asso-
ciated to them, will either successfully complete its behaviour, or will be aborted

8How perfect a compensation is, depends on the level of abstraction one is viewing the behaviour.
For example delete is a perfect compensation for insert if one views an index at the level of

abstraction of an index. It is highly improbable though, that at the bit level the original index
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but will not leave any side effect on the system state. Note the strong assumption
of perfect compensations is rarely the case in practice, but is only used to ensure
that the order of execution of triggered compensations is as expected. Different
approaches have been taken in the literature:

— Perfectly compensated programs: The cancellation semantics given for cCSP
[Butler et al. 2004] are an attempt to formalise the correctness criterion that a
compensable transaction should either succeed or be equivalent to the inert pro-
cess skip, i.e. it leaves no side effects. The result assumes that the compensating
actions are perfect inverses of the compensated actions and that compensations are
independent of each other (they commute with respect to sequential composition).
The approach adopted to define soundness, is to consider perfect compensation of
basic activities, and proving that the formal semantics guarantee that the derived
compensation of a transaction (built compositionally from basic activities) is still a
perfect compensation of the transaction. The semantics of a compensable process
in cCSP is given as sets of pairs of traces — the forward behaviour, and the accu-
mulated backward (compensating) behaviour. The sanity check for compensating
programs is thus that the trace semantics of a transaction block, may only include:
(i) successfully terminating traces; and (ii) traces which after applying commutativ-
ity (to enable moving of compensations forward and backward through sequential
composition) and cancellation (a basic action A and its compensation A′ satisfy
A;A′ = skip) are equivalent to skip.

— Relaxing equivalence: The work in [Caires et al. 2008] weakens the strong
assumption of equivalence of behaviour by parametrising the verification up to a
given equivalence relation ⊲⊳. Rather than assuming that each atomic action A is
associated with its perfect compensation A′, it is assumed that A′ reverts A — that
executing A followed by A′ will yield a state equivalent (up to ⊲⊳) to the original
one. It is assumed that compensation execution is always successful.
The atomicity property of ⊲⊳-consistent programs (in which basic actions are re-
verted by their compensations) states that the resultant behaviour of a compens-
able program, P , simulates a non-deterministic choice between the successful for-
ward behaviour of the program P+ (dropping accumulated compensations), and
the throwing of an error but with no further side effect throw : P ⊑ P+ ⊕ throw .

— Transactions dependencies: The notion of compensation correctness in [Korth
et al. 1990] revolves around the effect of a transaction on other transactions. Rather
than looking at a transaction behaviour locally, the sanity condition is that from the
point of view of transactions dependent on a particular transaction T , the behaviour
of T failing and compensated for, is indistinguishable from the case when T has
never been executed. The model focuses on low-level database actions as the basic
atomic building blocks.
Seeing a computation history as a function over system states, and using a notion of
transaction dependency (where the set of transactions dependent on transaction T is
defined to be those which use values which T can write to), they define the notion of
compensation soundness as: A transaction T (with dependant transactions DT ) and

is identical to the index following an insert and a compensating delete. This obviously has an

impact on the notion of correctness.
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its compensation T ′ are said to be sound if at any point in the execution, the history
of DT is equivalent to the combined histories of T , T ′ and DT . In practical terms,
the outcome of the transactions depending on T is indistinguishable whether (i) T
is never executed; or (ii) T occurs followed by its compensation. More succinctly,
the transactions which depend on T are not affected if T is run and undone using
its compensation T ′.

The principle of compensation correctness is similar in all approaches, namely that
of giving the illusion of atomicity — that either the transaction succeeds in its
entirety or it fails and leaves no trace of its execution. The differences lie in the level
of abstraction at which they tackle the issue and in the underlying assumptions.
All approaches take the assumption that compensations succeed and thus show
that perfect compensation is compositional. Atomicity of execution is, however,
just one of the desired properties of compensation logics and languages. Other
issues include, for instance, the effect of compensation replacement — ensuring that
replacing a compensation only affects the compensation stack locally — and the
effect of failures in compensations — ensuring that triggering backward execution
multiple times ensures overall failure resolution. Although most of the logics deal
with these issues directly by being direct consequences of the semantics, there still
lacks a complete formalisation of the properties expected to hold of compensation-
aware languages.

5.2 Algebraic Properties of Compensable Programs

The algebraic approach to programming proposed by Hoare et al. [Hoare et al. 1987]
used the notion of program quotients, where the quotient9 of program P with respect
to program (or specification) Q (written P/Q), returns the weakest specification
or program Q′ such that executing Q and Q′ sequentially is a refinement of the
original program P (P/Q is the weakest X such that Q;X ⊑ P ). Although the
original paper makes no mention of compensations, this operator enables one to
express the notion of a perfect immediate compensation of a program P as skip/P
(where skip is the program that has no effect on the state), since it corresponds to
the weakest program X such that P ;X ⊑ skip.

These algebraic laws of programming were extended to reason about compens-
able programs [Jifeng 2007], where laws of a programming model with a notion of
compensations which are composed in reverse sequential order are given. These
laws also correspond to soundness criteria for compensation handlers, as for ex-
ample, the property that a pure compensation installer commutes (over sequential
composition) with assignment and that installing two compensations in sequence is
equivalent to installing them as a single compensation but with their order switched.

5.3 Conclusion

Formal reasoning based on the all-or-nothing principle provides a mechanism to
reason about the sanity of compensation formalisms while algebraic laws provide
a means of reasoning about compensable programs. A considerable limitation of

9In fact, [Hoare et al. 1987] introduces both left and the right quotient operators. In this paper,

only the right quotient is relevant to the discussion.
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these works is that the assumptions involved are quite rigid vis-à-vis practical chal-
lenges. For example, what if an action cannot be completely compensated or one
consciously wants to compensate a part of the transaction later on (see [Greenfield
et al. 2003] for more examples)? This is potentially a direction of future work in
the area of compensations, enabling a more flexible reasoning approach.

6. VERIFICATION OF COMPENSATING TRANSACTIONS

Apart from checking the sanity of compensating transactions through notions of
correctness, one would also like to be able to specify and verify more specific be-
havioural properties about transactions. For example, can it be guaranteed that if
the credit check fails, the courier booking has not taken place? In order to verify
such transaction behaviour, one would need an abstraction of transaction implemen-
tation and a notation to describe the set of acceptable transaction behaviours, i.e. a
specification. Three main approaches in the literature for compensable transaction
verification use different levels of implementation abstraction. At the lower end
of the spectrum, the proposed abstraction is a transaction trace which preserves
both order and repetition of transaction actions. On the other end, transaction
actions are represented as a set of completed actions, thus discarding order and
repetition information. The higher the level of abstraction, the more behavioural
information is lost but verification becomes cheaper as the range of possible verifi-
able behaviours becomes more limited. For example temporal properties cannot be
verified on implementation abstractions which discard order and repetition details.
More details are given below, starting with the highest level of abstraction.

— Set Consistency: The set consistency approach [Fischer and Majumdar 2007]
discards ordering and repetition of transaction actions and represents a transaction
execution in terms of a set of successfully completed actions. Any actions which
have either not been executed or have failed are not members of the set. For
example, if in the case of the bookshop, courier booking failed, then a possible set
of executed actions is: S = {DecStock ,Credit ,Pack ,Unpack ,Refund , IncStock}. A
property is then defined in terms of which actions should and should not be included
in the set. The example property that unless the payment succeeds, courier booking
should not take place can be specified as: Credit /∈ S ⇒ Courier /∈ S. This is clearly
satisfied by the transaction execution above.

— Acceptable Terminating States: A similar approach to the set consistency ap-
proach is the set of acceptable termination states (ATS) [Li et al. 2008] approach.
The main difference is that the set elements do not simply show whether an ac-
tion has completed (through membership) or failed (through omission). Rather, a
special tag can be associated with each action where tags are based on the idea
that a transaction goes through the following life cycle: it starts as idle, is acti-
vated, possibly encounters an error and either successfully aborts or fails, oth-
erwise if successful, if might be later compensated or half-compensated if
compensation fails. Amongst these states, the set of possible final states are ab-
breviated as: ∆ = {abt , fal , suc, cmp, hap} (reflecting the states in bold). Using
these as tags, the following is a possible termination state of the bookshop exam-
ple: {IncStock .cmp,Pack .cmp,Credit .cmp,Courier .abt}, meaning that the courier
booking failed and all the previously completed operations were successfully com-
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pensated. Specifying properties in this approach involves specifying the set of ter-
mination states which the transaction is allowed to reach. If the set of acceptable
(allowed) termination states all fall within the set of possible termination states of
the transaction, then the specification is satisfied. Taking the above example, the
ATS might include: {IncStock .cmp,Pack .cmp,Credit .cmp,Courier .abt} which sig-
nifies that it is allowed to complete the payment and later fail the courier booking.
This behaviour can be generated by the current transaction specification and thus
verification succeeds.

— Temporal Constraints: A verification approach which does not abstract the
order and repetition of executed transaction actions is given in [Li et al. 2008] by
applying verification on traces. A trace of a transaction is an ordered list of transac-
tion states (see previous point) which the sub-transactions have gone through. For
example, taking the bookshop example and assuming that the packing failed, the
following would be the generated trace: 〈(DecStock , suc), (Credit , suc), (Pack , abt),
(Credit , cmp), (DecStock , cmp)〉. This allows for more expressive properties to be
verified, particularly temporal properties for which order is crucial. Using the
temporal specification language supported in [Li et al. 2008], one can specify con-
straints such that eventually an action should occur, or that an action should al-
ways be preceded by another. For example the property that a successful courier
booking should always be preceded be a successful payment can be written as
(Credit , suc) << (Courier , suc). A transaction satisfies such a property if all the
transaction traces fall with the set of all traces which respect the temporal prop-
erty.

6.1 Conclusion

The first two approaches outlined in this section are quite limited in terms of the
expressivity of supported properties because they discard all ordering information.
On the other hand, the third approach allows temporal constraints on traces which
are however more expensive to check due to the greater number of possible traces
as opposed to possible sets. To the best of our knowledge only the consistency set
approach has been implemented and applied to realistic examples. Note that there
were other attempts at verifying business transactions [Pistore et al. 2004; Koshk-
ina and van Breugel 2004; Arias-Fisteus et al. 2004; Kazhamiakin and Pistore 2005]
mainly by translating the transactions to existing formalisms which support verifi-
cation. However, none of these works fully supports the verification of transactions
having compensations.

7. PRACTICAL ASPECTS OF COMPENSATIONS

In this section, we aim to give insights to prospective users of compensations where
and where not to apply compensations. After delineating the use of compensa-
tions from the use of reparations, we give examples of practical applications which
employ compensations. Subsequently, if an application is fitting for the use of com-
pensations and one wants to model it formally, then the right formalism must be
chosen. For this reason, we give an outline of the main features of the formalisms
presented in this survey.
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7.1 When to use Compensations

The advantages of using compensations over forward-recovery mechanisms, or repa-
rations, mainly come in when the application domain has: (i) a transaction format
such that when an activity fails, the previously completed activities require re-
versal; and (ii) clear corresponding compensations for its actions. In such cases,
the compensation mechanism provides a structured way of organising the activities
and their respective compensations. This is not to say that reparations cannot
be used to encode compensations in many circumstances. However, in general
compensations are more expressive than reparations [Lanese et al. 2010]. Since
compensations are generated dynamically at runtime while reparations are defined
statically at compile time, compensations have access to runtime information (such
as execution ordering) which might not be available at compile time. Furthermore,
another crucial difference between compensations and reparations lies in the state
of a system following a failed activity A. If a reparation is executed after the fail-
ure, the resulting state is assumed to be equivalent to the state after a successful
execution of A. On the other hand, if a compensation is executed, the state is
assumed to be equivalent to the state before the start A.
The virtue of compensations is also their limitation: compensations follow a

pattern of backward and forward behaviour which allows automatic composition of
backward activities, reflecting forward ones. Various applications would not fit into
such a pattern; particularly when the compensation is structurally different from the
forward behaviour. For example consider a more complex online bookshop which in
case some books are not in stock, it does not cancel the whole transaction but simply
delivers the books which are in stock and deliver the other books when they are
available in the future (see [Greenfield et al. 2003] for a similar but more extended
example). In such a case the distinction between backward and forward behaviour
is blurred and it would probably make more sense to model such behaviour in terms
of reparations and be treated as forward behaviour.
It is not always clear when to use reparations and when to use compensations.

Indeed, in a number of cases they offer a similar level of expressivity and the
distinction between them may not be so clear. It is important to realise that
compensations and reparations need not be substitutes. Rather, they can be seen
as complementary tools, offering distinctive mechanisms to handle errors. As a
matter of fact, it is not unusual to find them combined together for complex recovery
situations — with reparation being triggered when a compensation fails, or with
compensations applied when reparations do not have sufficient context information
to fix the failure. The challenge is to use compensations and reparations in their
rightful roles with the possibility of one complementing the other.

7.2 Applications of Compensations

Compensations usually accompany long running transactions to enable commit-
ted activities to be semantically undone. Therefore in areas of application of
long running transactions one is bound to find compensations. Such applications
have evolved through time [Wang et al. 2008]: (i) the first notion of compensation
emerged when transactions started to become longer and more complex, frequently
necessitating decomposition — the focus at this stage was to ensure that the ap-
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plication carries out the expected functions correctly; (ii) following this stage, the
focus shifted towards workflows, i.e. how functions can be composed together to
form reliable processes; and (iii) the latest stage shifts the focus on interactions
across a number of geographically distributed participants, i.e. how distributed
workflows can be composed reliably. Many examples in recent compensation liter-
ature fall under the latter stage: trip booking systems where a booking potentially
includes a number of other bookings [Arkin et al. 2007; Bocchi et al. 2003; Bruni
et al. 2004]; online sales systems where a number of parties are involved usually
including the customer’s bank and the courier [Bruni et al. 2005; Butler and Fer-
reira 2004; Li et al. 2007b; Butler et al. 2004; Arkin et al. 2007; Vaz et al. 2009];
and shipment example where potentially an order requires one or several shipments
[Arkin et al. 2007; Lanese and Zavattaro 2009; Lapadula et al. 2007b]. Using more
practical business terminology [Sarang et al. 2006; Bolie et al. 2006], long running
transactions (and thus compensations) are most often used to solve a problem of
integrating functionality across platforms and businesses. Although all the litera-
ture examples involve business-to-business interaction (B2B), this need not always
be the case. Within a single business, frequently enterprise application integration
(EAI) is used to provide middleware connecting various applications while enter-
prise resource planning (ERP) systems aim to provide a single readily integrated
solution. However for various reasons such as legacy systems, mergers, etc, a busi-
ness might end up having several EAIs and/or ERPs. In such a scenario, the service
oriented architecture (SOA) provides the basic mechanism for integration by expos-
ing functionality in a standardised way. Once services are available, these can be
composed into business processes, i.e. long running transactions, to provide more
sophisticated business solutions. As a real-life example consider a scenario [Bolie
et al. 2006] where a business has both a Siebel and a SAP system, each with its own
middleware: TIBCO and webMethods respectively. Using web services, a common
interface can be provided by both systems (to both systems). Using an orchestra-
tion language such as BPEL, these web services can be orchestrated to provide a
single interface to users while under the hood web services ensure that both sys-
tems remain synchronised, e.g. by coordinating inserts, updates and deletions. As
a concrete example of a B2B integration, consider a travel agent’s service [Sarang
et al. 2006] where the travel agent receives travel requests and provides the user
with a list of options ordered by price. Assuming the airlines have their function-
ality exposed as web services, the actual (potentially diverse) systems used by the
individual airlines become irrelevant. Each airline would receive a service request
and reply through a service response, supplying the necessary details. Once the
travel agent receives the information from the airlines, this is communicated back
to the client, ordered in some preferred way. Note that the emphasis in these ex-
amples are not compensations. However, compensations are a necessity to compose
such loosely coupled services which interact with real-life actions and third-party
activities which frequently cannot be simply undone.

From a practical point of view, BPEL is considered to be the de facto standard
as a means of composing and executing web transactions and as such it probably
constitutes the vast majority of use of compensations in industry. However, while
the logics reviewed in this survey focus around the notion of compensation, BPEL is
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a language which has compensation as one of its constructs. The aim of compensa-
tion in BPEL is to have a practical and useful construct to be used in practice, and
not to explore the choices or semantic issues with compensations. Compensations
are thus but one (albeit important) part of BPEL and it would be misrepresenting
BPEL to call it a compensation language. Still, if one compared BPEL from a com-
pensation point of view of the other notations, there are various aspects in which
BPEL is particular. For example, an error is always handled by exception handling
and then it is the exception handler which triggers compensation execution. This
approach allows full customisation of compensation during exception handling. An-
other important aspect which one has to keep in mind when adopting BPEL is that
it is an orchestration approach. This means that interactions defined in BPEL are
defined from the point of view of a single participant which is in charge of the in-
teraction. This differs from the process algebra approaches presented earlier where
each participant is equal in the interaction — the choreography approach. There-
fore, before achieving an orchestration, the parties involved should already have
agreed to participate in the interaction. For more details about how BPEL relates
to other protocols we refer the reader to [Sauter and Melzer 2005; Kopp et al. 2009]
and to [Van Der Aalst et al. 2003; van den Heuvel 2008] for surveys about business
process specification.
Apart from these applications to which compensation are commonly associated,

there are various other applications of compensations. Fundamentally, a compensa-
tion is a means of logically reversing the state of a system. As such, this is useful in
any application where synchronisation between two or more parties requires some
of the participants to go back some steps to be in line with the rest. A typical
application are distributed games [Bernier 2001; Mauve et al. 2004] where all the
players are participating in a global state and synchronisation is not instantaneous,
meaning that state discrepancies are frequent. Compensations are then used to
correct the local states to achieve a synchronised global state of the game. A simi-
lar application is the use of compensations in asynchronous monitoring of software
[Colombo et al. 2010] where the system is allowed to proceed ahead of the monitor.
When a violation is detected, compensations are used to revert the system back to
the state exactly after the violation so that correction may take place.

7.3 Which Model to Choose

Having such a vast selection of formal notations to choose from makes it difficult
for a user to choose the right formalism for a particular application. The models we
have presented fall within the latter two evolution stages of compensations outlined
in the introduction (of this section). These stages greatly facilitate the choice of a
compensation model as most models are either flow composition languages which
are useful to model applications which fall under stage (ii) while the rest focus on
interaction among collaborating parties, facilitating modelling of applications of the
kind which fall under evolution (iii).
In the rest of this subsection, we aim to highlight the main features of each

formalism in an attempt to narrow down the choice process to individual models.
Therefore, as in Section 4, we group the compensation models under flow com-
position models, process algebras, and automata. Note that we will treat BPEL
separately in the next subsection.
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— Flow Composition Models: Flow composition approaches usually have explicit
operators for most compensation operations and they leave out notions of partici-
pants or communication among them. Therefore in this sense, understanding what
is going on in terms of high-level composition of actions is generally easy when
using flow composition models. Excluding StAC, the main difference among flow
composition models is their focus or their style. Sagas can be considered as the
most basic of the flow composition languages, providing all the basic compensation
operators. This makes Sagas ideal for someone who would simply like to build a
simple model by plugging different actions together to form a flow. Both cCSP and
t-calculus are very similar to Sagas. However, cCSP provides the yield operator
which allows processes to decide when to allow external interruption. This is useful
when one needs to build a more realistic model of workflows. t-calculus does not
support handling of external interruption but provides an extra operator for excep-
tion handling. This is useful when one needs to model a system where exception
handling can take the state either backward or forward. StAC is very different from
the rest as it allows compensation to be used possibly with no connection to error
handling. This makes it ideal for someone using compensations as a programming
construct and not necessarily in the context of transactions.

— Process Algebras: While flow composition languages totally omit interaction,
this is the main appeal of process algebras where activities are represented by chan-
nel communication. Anyone choosing a process algebra to model a system should
be aware of a fundamental distinction separating webπ, COWS, and cJoin from πt
calculus, SOCK, and dcπ. The former three support only statically defined com-
pensations, while the latter three allow compensations to be composed dynamically
through installation. Furthermore, πt calculus and dcπ only support parallel instal-
lation of compensations. Considering these aspects one can already narrow down
the choice according to the system to be modelled. πt calculus is the only notation
which always executes an exception handler after executing compensations. On the
other hand, dcπ is the only notation which associates compensation installation
to channel communication. This might be useful for someone modelling a system
where channel input represents the completion of an action by some participant.
cJoin is particular as it is based on a different interaction model — it is based on
chemical abstract machines rather than the π calculus.

Another distinction among process algebras is that webπ, SOCK, and COWS have
been specifically aimed for modelling web services. Hence someone wishing to model
web services formally, should consider one of these three. Among these three, webπ
and a timed version of COWS [Lapadula et al. 2007a] are the the only formalisms
which support a notion of a timeout. SOCK should be chosen if a user wants
a process algebra with high flexibility when installing compensations. COWS is
particular as it models communication endpoints as a tuple including a partner
and an operation. This allows the invocation of the same operation on different
partners or the invocation of different operations on the same partner. SOCK offers
something similar by allowing the specification of engines which support multiple
instances of the same service.

— Automata-Based: The automaton-based notation, CHTTAs presented in this
survey, is very similar to flow composition languages in that automata are com-
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posed together to form more complex flows. CHTTAs do not support advanced
compensation features such as forced termination or handling of errors during com-
pensation. The main appeal of CHTTAs is their support of the specification of
real-time constraints which is absent in all the other notations. Furthermore, it
is useful for anyone wanting to model check the compensation model as these au-
tomata are reducible to timed automata and hence model checkable.

After considering whether compensations can be useful for a task at hand, an
appropriate theoretical notation can be useful as a tool for reasoning about the
solution. Once a formal model has been built and validated, it can be implemented
(or mapped directly) in an executable language such as BPEL. However, since
BPEL does not have a formal semantics, in case of an implementation (as opposed
to a direct mapping), one should be aware of what exactly happens under the
hood (for example see execution details in Section 3.5). Otherwise, the resulting
behaviour might be different from the intended behaviour.

8. SUMMARY AND CONCLUSIONS

Fuelled by the streamlining of complex business logic, the increase in electronic fi-
nancial operations and of cross-entity interaction, modern day transactions require
a robust framework, able to deal efficiently with failures. Furthermore, transactions
became longer due to the communication involved with different parties, rendering
ACID transactions inappropriate. The compensation mechanism was introduced
to transactions, enabling them to handle the new challenges. Later, compens-
able transactions evolved and were integrated with more complex models involving
amongst other aspects: parallelism, exception handling, transaction composition
and communication amongst activities. A variety of approaches and models have
emerged, providing different solutions to the design issues involved. After briefly
describing a number compensation models, in this paper, we have compared them
in depth with respect to many issues concerning compensations.

8.1 Trends in Compensation Research

Although compensable transactions started off as a means of handling complex
database transactions, the focus has now shifted to modelling service-oriented in-
teractions. Particularly, considerable attention has been given to the technology-
supported language, BPEL, in numerous attempts to formalise it. Furthermore,
apart from the work on BPEL, several formalisms have been devised to handle
compensable transactions diverging in their approach from BPEL. This has led to
a significant number of proposals and approaches, giving rise to a healthy spectrum
of ideas. What is still significantly lacking is the application of various formal mod-
els to real-life scenarios. Moreover, another significant shortcoming in the area of
compensations is that little work has been done to provide mathematical frame-
works to reason about system states before and after the compensation is applied.
Although theory in this respect has been proposed in [Caires et al. 2008], more work
still needs to be done to apply the idea to a practical case study. Furthermore,
more needs to be done to mathematically specify the properties which compen-
sating transactions should satisfy. Future work can also be directed to apply the
notion of compensations to other areas; possibly to areas such as automatic con-
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tract enforcement, and weak synchronisation in distributed systems. Finally, apart
from a notion of a timeout event in BPEL (and some formalisms modelling it, e.g.
[Pu et al. 2006; Haddad et al. 2008]) and work [Lanotte et al. 2006; 2008] which
integrates compensations into hierarchical timed automata, the notion of real-time
is lacking in the area of compensable transaction.

8.2 Final Remarks

Although compensations offer a rich construct for fault handling, the same aspect
which enables automatic configuration of actions to generate a compensation in
terms of lower-level activities, is the same characteristic which restricts their flexi-
bility. In particular case studies, the compensation mechanism does not achieve an
elegant solution, or possibly no solution at all (see for example [Greenfield et al.
2003]). Having said this, compensations are still useful both as a way of modelling
many real-life scenarios as the current interest in compensations confirms.

An open discussion is whether compensations should be limited to failure re-
covery. In practice, a program with compensations is simply a program which
remembers the execution trace in a stack so that when required, the program can
perform particular actions by going through the stack. For example, consider re-
source management at the end of a program execution, the programmer might use
the compensation stack to remember what resources have been claimed and auto-
matically releases the resources by executing the stored compensations. However,
if compensations are not used for recovery purposes, one might rightly question the
appropriateness of the term “compensations”.
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