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Abstract

The approach of embedding hardware description lan-
guages in general-purpose languages has been widely
explored in the literature and has been shown to aid
hardware design and verification. In this paper we ex-
plore the use of a meta-functional language reFLect as
a host language for a hardware description language.
We show how this approach aids the development,
analysis and manipulation of embedded objects, whilst
at the same time we keep meta-programming features
largely invisible to the hardware designer. We illus-
trate the use of these techniques in supporting circuit
placement techniques and automatic model checking
of hardware compiler invariants.
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1. Introduction

The embedding of a domain specific language (DSL)
within an existing general purpose programming lan-
guage has been widely researched, and the approach
is well understood and documented. The embedded
language is usually developed as a library within the
host language, providing a number of key benefits.
For instance, there is no need to define a new syntax,
since the embedded language will directly inherit the
syntax of the host language. Actually, the embedded
language inherits all of the features and characteristics
of the host language, such as the type system and
the module system, as well as all of the underlying
tools like compilers, interpreters and debuggers. When
following the embedding approach the constructs that
make up the DSL are defined as first class objects

within the host language, thus creating a two-stage
language approach, with a fully developed program-
ming language sitting above the DSL. This enables the
analysis, transformation, and general manipulation of
the language constructs just like any other data object.
Functional languages, such as Haskell, have proved to
be a popular choice for embedding languages. Features
such as strong typing, lazy evaluation, pattern match-
ing and higher-order functions, make them ideal host
languages offering a variety of abstraction techniques.
One particular domain in which the embedding ap-
proach has been extensively applied to, is hardware
design. Various languages, such as Lava [1] and Hawk
[5] have been embedded within the functional lan-
guage Haskell. These embedded hardware description
languages (HDLs) are able to access the hardware
descriptions as first class objects, in fact the definitions
are actually regarded as circuit generators rather then
just simply circuit descriptions. This abstraction en-
ables the hardware designer, not only to perform circuit
generation, but also to analyse, transform and interpret
the circuit. These features enable the possibility to
gather static information about the circuit, simulate,
test and verify the circuit, as well as apply re-timing
translations and generate netlists. Circuits can be de-
scribed at even higher levels of abstraction by means
of higher-order functions and parameterised circuits.
For example, connection patterns are defined as higher-
order functions, where whole circuit descriptions are
passed as parameters, whilst the size of the circuit is
determined also from the inputs. It has been shown
how this high abstract level can be pushed even further
by having a behavioural description for the hardware
[3]. A behavioural description is more closely related
to the specification of the circuit than the actual
structure, hence this high level description needs to
be synthesised into the structural equivalent. In [3],
Pace and Claessen manage this by parameterising cir-
cuit descriptions with high level language constructs.
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Furthermore, such hardware compilers can be analysed
and verified to satisfy certain properties by means of
finite state model checkers [8].
More recently, the use of meta-programming tech-
niques for the embedding of HDLs has started to be
explored [6], [11], [7]. A meta-programming language
enables the development of programs that are able
to compose and manipulate other programs or even
themselves. This is commonly known as reflection.
Meta-programming provides an opportunity not only to
access the circuits being generated, but even the gen-
erators themselves that created these circuits. There-
fore, reasoning about the circuit generators is made
possible, providing a means to inspect and analyse
the composition of circuits in terms of nested blocks,
thus achieving a level of abstraction higher than when
embedding an HDL in a normal functional language.
In this paper we present Shade, a HDL embedded
within the meta-functional languagereFLect, built upon
our recent results presented in [9]. We show how
the nesting of circuit blocks can provide placement
information for the circuits, that can be combined
with other user defined placement annotations. We also
present the verification approach used on hardware
compilers, and discuss how meta-programming enables
us to access the circuit generators, thus manipulating
and transforming them in such way that the verification
observers can be applied autonomously. This approach
avoids user intervention thus reducing the possibility
of errors.

2. Embedding a HDL in reFLect

Typically, when embedding a DSL, a deep-embedding
is required since one would want not only to generate
programs, but allow the possibility to give them differ-
ent interpretations as may be required, thus complex
data objects are defined to provide access to the
underlying syntax of the DSL. On the other hand,
in a meta-programming language a shallow represen-
tation is sufficient since the language constructs can
be quoted, resulting in having access to the described
programs as data objects.
reFLect [4] is a strongly-typed functional language with
meta-programming capabilities.reFLect was developed
as part of the Forte tool [10]; a hardware verifica-
tion system used by Intel.reFLect provides quotation
and antiquotation constructs, allowing the composition
and decomposition of unevaluated expressions, defined
in terms of thereFLect language itself. These meta-
programming constructs allow a form of reflection
within a typed functional paradigm setting, enabling
direct access to the structure of programs as data

objects. This is made possible by giving access to the
internal representation of the abstact syntax tree of
the quoted expressions. Traditional pattern matching
can even be used on this representation, allowing
the structure of unevaluated expressions to be in-
spected and interpreted according to the developer’s
requirements. Furthermore, by combining the pattern
matching mechanism with the quotation features, the
developer is able to modify or transform the quoted
expression at runtime before evaluation.

2.1. Shade

Shade is a HDL we have developed, embedded in
reFLect. Circuits are strongly typed, but are internally
stored as untyped quotedreFLect terms — simply
maintaining an unevaluated expression of a circuit
definition, effectively providing the actual structural
description which can still be interpreted directly to
obtain its output.

lettype *a sig = ...

high, low :: bool sig
inv :: bool sig -> bool sig
and2 :: (bool, bool) sig -> bool sig
delay :: bool -> bool sig -> bool sig

Internally, the primitive gates are simply quoted ver-
sions of their boolean operator counterparts, using an-
tiquotations to deal with quotations in their parameters.
These primitive functions can be used by the hardware
designer to define larger circuit descriptions by simply
following the functional paradigm. Note that, theand2
gate takes one input stream made up of pairs of boolean
values. This approach of having wires of structures as
used, for instance, in Hawk [5], requires explicit use of
functions, to convert the signal structure back and forth
to the structure values using the polymorphic functions
zipp andunzipp functions1. For instance a two-bit
multiplexer circuit would be defined as follows:

let mux s_ab =
val (s, ab) = unzipp s_ab in
val (a, b) = unzipp ab in
or2 (zipp (and2 (zipp (inv s, a)),

and2 (zipp (s, b))));

Also note that thedelay latch component takes a
boolean value which sets the initial output. To create
loops in a circuit, Shade provides a fix-point opera-
tor illustrated in the following circuit which outputs
whether its input wire has always been high (in the
past, up to and including now):

let alwaysTillNow x =

1. Most of the examples given in this paper will omit the zipping
and unzipping functions
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loop ok . and2 (zipp(x, delay T ok))

Finally note that reuse of user defined circuit compo-
nents is identical to the use of the primitive compo-
nents:

let alwaysInThePast x =
delay T (alwaysTillNow x)

2.2. Circuit Interpretations

Shade provides various interpretations for the circuits
described. Since internally, a circuit is simply a quoted
function denoting the result of evaluating a circuit,
simulation simply involves unquoting the circuit. Other
interpretations involve traversing the circuit using the
meta-programming characteristics found inreFLectand
applying an appropriate interpretation. The possibility
to apply pattern matching over quoted expressions,
enables us to inspect, analyse and translate the struc-
ture into other formats, such as netlist generation from
reFLect circuit descriptions.
Apart from simulation and netlist generation, Shade
also supports circuit verification though the use of
external model checkers. Instead of embedding a prop-
erty language, we take an observer-based approach, in
which properties are described as other circuits which
take the inputs and outputs of the circuit to be verified
and outputs a single boolean output. Although limiting
the verifiable class of properties to safety properties,
this approach avoids the need of an additional em-
bedded language. Currently, Shade is connected to the
NuSMV model checker [2].
For instance, to verify that no matter what the value
of the selector wire is, if both inputs of a multiplexor
are equal, then the output is equal to this value.
This property can be expressed as follows. Note that
equality (===) and implication (==>) operators are
built using the primitive gates.

let obs_mux ((s, (a, b)), o) =
(a === b) ==> (o === a)

Passing this observer as an input to the NuSMV
interpretation functionwriteToSMV generates an
NuSMV model which can be verified.

2.3. Marking Blocks in Circuits

In reFLect, as in most other embedded HDLs such as
Lava and Hydra, one views and defines circuits as
functions. As a circuit description is unfolded, all the
internal structure (implicit in the way the generators
are invoked) is lost, and all that remains is a netlist
of interconnected gates. Structure is thus lost in the

process, which may store information which could be
useful in circuit analysis and processing.
Block tagging can be challenging when the HDL is em-
bedded in a purely functional language. In our case, the
meta-programming features enable a straightforward
approach to block definition — since a circuit is simply
an unapplied function, we simply delay evaluation
of the function by quoting it, leaving the reuse of
the circuit unaffected, and simply involves unshelling
additional quotations for simulation or analysis. The
blocks are then however used in various interpretations.
In particular, when producing netlist descriptions for
placement, all marked blocks are tagged so as to
enable shared placement of multiple copies of the same
block. Similarly, VHDL output of circuits produced
in Shade can share the same block (entity) structure,
maintaining an isomorphism between the Shade and
VHDL description, thus simplifying the use of VHDL
tools on Shade descriptions.

2.4. Placement Annotations

Another area in which we are interested, is how the
marking of blocks can be used to help in the placement
and layout of the final circuit. We approach this by
providing the possibility to add user defined placement
annotations to the circuit description. Having a meta-
language at hand, we can add pieces of information
which can be accessed through the use of meta-
programming constructs, thus have a significant value
when looking the structure. However these annotations
do not interfere with the actual functionality of the
circuit, and are therefore discarded when simulated.
Similar to the marking of blocks, we use the meta-
programming capabilities to enhance the syntax of the
circuit structure without interfering with the semantics.
By doing so, we are able to define non-function
properties and the function of the circuit within the
same description, whilst maintaining a clear distinction
between the two.
In Shade, we provide the means of adding placement
annotations to blocks — currently tagging blocks to
lie beside or below each other. Semantically these
functions are of no significant value, however, these
are maintained within the circuit structure and can
therefore be accessed and interpreted.
This relative placement information describing a cir-
cuit’s layout, are translated into Relative Location
(RLOC) Constraints [12], which are added to the
VHDL description as attributes. These user constraints
are interpreted by the Xilinx development tools and
can be used with most of the Xilinx FPGA series.
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3. Hardware Compilers

The use of embedded languages provides a way of
pushing up the level of abstraction used for circuit
descriptions. In the case of regular circuits, concise de-
scriptions in the host language can be used to describe
large, complex circuits, using modularity and abstrac-
tion techniques from the host language. However, in
most such approaches the abstraction layers still leads
to a structural description of the circuit. An alternative
approach which is nowadays increasingly used, is that
of automatic hardware synthesis or compilation from
a high level algorithmic description directly into a
structural description.
In [3], Pace and Claessen present a framework in
which such algorithmic, or behavioural descriptions
can be merged within the structural descriptions, by
following the embedding approach. The idea is to
develop another layer on top of the already existing
embedded HDL. The behavioural description language
is embedded by specifying the syntax in terms of a
datatype, and the structural description for each of
the language constructs are described. The compilation
procedure corresponds to a circuit parameterised by the
data object representing the language constructs.
One issue with hardware compilation is that the com-
pilation procedure should ideally be verified correct.
In practice this can be a long and tedious process.
As the trend to develop various, but highly domain
specific languages to solve a problem is adopted, the
more frequently this has to be done, sometimes by
the same hardware designer. In [8], Pace and Claessen
showed how certain hardware compiler invariants can
be model checked automatically through the use of
the compiler description and structural induction over
the program type. However, when using a functional
language such as Haskell (as was used in [8]), with
no meta-programming capabilities, transforming the
compiler description into the verification framework
had to be performed by hand, even if it follows a uni-
form pattern. Nonetheless, the disadvantage with this
approach is that the transformation function might not
match exactly the structure of the hardware compiler,
due to user induced errors since the descriptions are
defined separately by the hardware designer. Despite
the relation between the two circuit generators, when
using a language like Lava, there is no possible way to
maintain a programmable connection between the two.
In Shade, by using the meta-programming features
of reFLect, we can automatically allow the designer
writing a domain specific hardware compiler to verify
such properties using a finite state model checker.

3.1. Compiling Flash

We will illustrate the process by looking at the em-
bedding of a hardware compiler in Shade — using the
Flash language from [3], which is a basic language
with imperative programming constructs. Programs in
Flash are simply instances of a datatype inreFLect:

lettype Flash
= Skip
| Shout
| Delay
| Sequential Flash Flash
| IfThenElse (bool sig) Flash Flash
| Parallel Flash Flash
| While (bool sig) Flash;

Note that Flash has the standard imperative language
features, such as sequential composition and condi-
tional, but also supports a fork-join construct. For
simplicity, programs in Flash have a single output
wire low by default, but which can be pushed up to
high (for one clock cycle using theShout instruction.
The basic instructionsShout and Skip terminate
immediately (in the same clock cycle), whereasDelay
takes one clock cycle to terminate. Flash programs will
be compiled into circuits with one input wirestart
(which will be high for one clock cycle to start the
program), and two output wiresshout andfinish
(the first is the output of the program, while the latter
will be high for one clock cycle when the program
has terminated). For more details about Flash and its
compilation refer to [3]. The hardware compilation
schemes for Flash are given in figure 1. In Shade, the
constructs can be implemented directly using pattern
matching over the datatype, and calling the compile
function recursively over the sub-programs. Consider
two of the syntactic cases:

letrec compile Shout start =
let shout = start in
let finish = start in
(shout, finish)

/\ compile (Sequential p q) start =
val (pShout, pFinish) = compile p start in
val (qShout, qFinish) = compile q pFinish in
let shout = or2 (pShout, qShout) in
(shout, qFinish);

3.2. Compiler Invariants

More interesting language properties can be proved by
using structural induction over the language constructs.
By proving that the circuits produced by the compiler
always satisfy the invariant property, as long as the
property is satisfied by the subprograms, we can prove
that any compiled program satisfies the invariant prop-
erty. For instance, for Flash one can prove an invariant
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Figure 1. Hardware designs of Flash

π over a program using structural induction as shown
below:

⊢ π(Skip)
⊢ π(Shout)
⊢ π(Delay)
∀c,P,Q · π(P) ∧ π(Q) ⊢ π(IfThenElse c P Q)
∀P,Q · π(P) ∧ π(Q) ⊢ π(Sequential P Q)
∀P,Q · π(P) ∧ π(Q) ⊢ π(Parallel P Q)
∀c,P · π(P) ⊢ π(While c P)
∀P · π(P)

Since properties are specified as observers, for each
language construct, one has to (i) compile the con-
struct with empty subprograms; (ii) connect the input
and output wires of each empty subcomponent to an
observer circuit; (iii) connect the input and output
wires of the outer block to an observer; (iv) universally
quantifying over the outer circuit inputs, and the inner
block outputs; and (v) prove that the conjunction of the
inner observers implies the outer observer. Consider
the case of sequential composition hand coded below:

let seqCase obs (s, (pSh, pF), (qSh, qF)) =
let qS = pF in
let f = qF in
let sh = or2(pSh, qSh) in
let pOk = obs(pS, (pSh, pF)) in
let qOk = obs(qS, (qSh, qF)) in
let ok = obs(s, (sh, f)) in
and2(pOk, qOk) ==> ok

Similar cases would be written for each syntactic case,
and verifying a compiler invariant then corresponds
to model checking each of the cases. In practice we
strengthen structural induction with temporal induc-
tion, assuming that the subcomponents have always
worked up to now; and that the outer component
always worked in the the past, modifying the last line
of the cases to:

alwaysTillNow(and2(pOk, qOk))
==> alwaysInThePast ok

3.3. Automating Hardware Verification

Note that the design of these cases can become quite
complex and error prone. Furthermore, when devel-
oping a hardware compiler, changes to the compiler
code will have to be reflected faithfully in the syntactic
cases. It is thus very desirable to be able to extract this
information automatically from the hardware compiler
code. Through the use of the host meta-language, it is
actually possible to extract it, reducing user interven-
tion, thus ensuring that the structural induction cases
are automatically and accurately generated.
By quoting the hardware compiler we provide func-
tions to access the structure of the actual compiler code
for the different patterns. For instance, below is the
code used to extract the observer for the sequential
composition inductive case. Note that the function
indCase takes the (quoted) hardware compiler, the
invariant and the language construct as parameters —
Any is a construct used as a place-holder for the
constructor’s parameters:

let verifySequentialCase obs =
indCase compile obs (Sequential Any Any)

Any changes to thecompile function are immedi-
ately, and automatically reflected in the inductive cases
with no further need for modification.

3.4. Flash Invariants

To illustrate the use of this approach, we will show how
Shade has been used to prove invariants of the Flash
compiler relating thestart andfinish wires.

Invariant 1: No finish before start
The first and most basic invariant shown, states that if
a Flash program terminates (it produces a high signal
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over thefinish wire), then the program must have
been started at some point in time:

let flashInv01 (start, (sht, finish)) =
finish ==> sometimeTillNow start;

Invariant 2: One start, one finish
The second invariant strengthens the previous relation
to state that, if a program is started only once, then it
cannot terminate more than once.

let flashInv02 (s, (shout, f)) =
and2
( neverTillNow s ==> neverTillNow f
, onceTillNow s ==>

or2 (neverTillNow f, onceTillNow f)
);

Invariant 3: One finish for each start
The third invariant shows that for each finish, the
program must have a corresponding start. To encode
this property, we define a circuit which returns whether
a circuit (produced by the Flash compiler) is running:

let active (s, f) =
loop active .

let pre = delay F active in
let act1 = and2 (or2 (s, pre), inv f) in
let act2 = and3 (prev, s, f) in
or2 (act1, act2);

let running (s, f) =
or2 (s, delay F (active (s, f)))

It is now possible to define the property:

let flashInv03Test (start, (shout, finish)) =
finish ==> running (start, finish)

Model checking gives a counter example in which the
circuit is started again while active. The compilation
scheme of Flash assumes that this does not arise. To
resolve this, we add an antecedant to the property as
an environment constraint which states that no start
signals will be forthcoming before termination. The
following modified invariant model checks correctly:

let flashInv03 (start, (shout, finish)) =
environment (start, finish) ==>

finish ==> running (start, finish)

4. Conclusions

In this paper we have shown how the use of a meta-
language as a host language for an embedded HDL can
aid manipulation and analysis of embedded programs.
Clearly, one has to ensure that the increased complexity
of using a meta-language is counter-balanced by the
gain in expressivity. In our approach, the hardware
designer using Shade need not be aware of, or use
the meta-programming features ofreFLect, which are
hidden inside Shade. The only exception to this design
principle is the need to quote a hardware compiler
before analysis.

The primary gains in the use of meta-programming
within Shade are marking and manipulation of circuit
blocks, and the analysis of circuit generators. In this
paper we have explored the use of Shade to prove
invariant properties of a simple Flash compiler, which
we are currently extending to prove the correctness
of a simplified Esterel compiler, and to use the block
marking mechanism to generate automatic placement
schemas for compiled Esterel programs.
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