
StaRVOOrS: A Tool for Combined Static and
Runtime Verification of Java?

Jesús Mauricio Chimento1, Wolfgang Ahrendt1, Gordon J. Pace2, and Gerardo
Schneider3

1 Chalmers University of Technology, Sweden.
ahrendt@chalmers.se, chimento@chalmers.se

2 University of Malta, Malta.
gordon.pace@um.edu.mt

3 University of Gothenburg, Sweden.
gerardo@cse.gu.se

Abstract. We present the tool StaRVOOrS (Static and Runtime Verifi-
cation of Object-Oriented Software), which combines static and runtime
verification (RV) of Java programs. The tool automates a framework
which uses partial results extracted from static verification to optimise
the runtime monitoring process. StaRVOOrs combines the deductive the-
orem prover KeY and the RV tool LARVA, and uses properties written
using the ppDATE specification language which combines the control-flow
property language DATE used in LARVA with Hoare triples assigned to
states. We demonstrate the effectiveness of the tool by applying it to the
electronic purse application Mondex.

1 Introduction

In this paper we present StaRVOOrS, a tool for the specification and verification
of data- and control-oriented properties combining static and runtime verification
techniques. A detailed motivation for the combination along these two dimensions
(data- vs. control-oriented, and static vs. dynamic verification) has been reported
in [3, 4] and will not be repeated here. For this paper, we only emphasise that
this combination allows us to get a richer specification language able to express
both data- and control-oriented properties, proving some properties once and for
all statically, letting others to be checked at runtime.

The tool is a fully automated implementation of the theoretical results
presented in [3, 4]. Given a property specification and the original program, our
tool chain produces a statically optimised monitor and the weaved program to
be monitored. This includes the automated triggering of numerous verification
attempts of the underlying static verification tool, the analyses of resulting partial
proofs, and the monitor generation.4

? Supported by the Swedish Research Council under the StaRVOOrS project (Unified
Static and Runtime Verification of Object-Oriented Software), no. 2012-4499.

4 The implementation of StaRVOOrS, its user manual, and a video showing how to
use StaRVOOrS, are available from [2].



Program'P'

ppDATE'

Deduc&ve(
Verifier(

Specifica&on(
Transla&on(

Pre6/post6
Condi&on(
Generator(

(Par.al)'
Proofs'

Code(
Instrumenta&on(

S'

Par&al((
Specifica&on(
Evalua&on(

ppDATE'

S’'

Program'P’'

DATE'

D' Run&me(
Verifier(

Monitored'
program'

Fig. 1. High-level description of the StaRVOOrS framework workflow

2 The StaRVOOrS Framework

The StaRVOOrS framework (Static and Runtime Verification of Object-
Oriented Software) was originally proposed in [4] and its theoretical foundations
further developed in [3]. Object oriented software provides an abstract manner
in which we replicate properties for every instance of a class, but many of the
features in the framework that we discuss in this paper are not specific to object
oriented software. The workflow of StaRVOOS is shown in Fig. 1, and is explained
in detail in [3]. Here we give a brief overview of the deductive verifier KeY [5],
the runtime monitoring tool Larva [6], and the specification language ppDATE.
The static verifier KeY. KeY is a deductive verification system for data-
centric functional correctness properties of Java programs [5]. It features (static)
verification of Java source code annotated with specifications written in the Java
Modelling Language (JML) [7]. JML allows for the specification of pre/post-
conditions of methods, and loop invariants. KeY translates the different parts of
the specification to proof obligations in Java dynamic logic (DL). At the core of
KeY is a theorem prover for Java DL, a modal logic for reasoning about programs.
KeY uses a sequent calculus following the symbolic execution paradigm.
The runtime verifier Larva. Larva (Logical Automata for Runtime Verifi-
cation and Analysis) [6] is an automata-based runtime verification tool for Java
programs. Larva automatically generates a runtime monitor from a property
written in a formal language, which in the case of Larva is an extension of timed
automata called DATEs (Dynamic Automata with Timers and Events). At their
simplest level DATEs are finite state automata whose transitions are triggered
by system events and timers. Further details and the formalisation of DATEs
can be found in [6]. Given a system to be monitored (a Java program) and a
set of properties written in terms of DATEs, Larva generates monitoring code
together with AspectJ code to link the system with the monitors.
ppDATE: A Specification Language for Data- and Control-Oriented
Properties. StaRVOOrS uses ppDATEs as its property input language, which
enables the combination of data- and control-based properties in a single for-
malism. ppDates are a composition of the control-flow language DATE, and of
data-oriented specifications in the form of Hoare triples with pre-/post-conditions.



q : {true}transferFile(f){bytes == old(bytes)}start

q′ :
{true}transferFile(f){bytes == old(bytes) + size(f)}
{write ∈ rights(f)}rename(f, n){name(f) == n}

bad

login↑ | sessionIsOpen() 7→ c = 0

transferFile↓ | c > 10 7→

transferFile↓ | c ≤ 10 7→ c ++

logout↓ | 7→

Fig. 2. A ppDATE limiting file transfers

Consider the ppDATE shown in Fig. 2. The structure of the automaton,
less the information given in the states, provides the control-flow aspect of the
property in the form of a DATE, in which transitions are tagged with triples:
e | c 7→ a — indicating that (i) they are triggered when event e occurs and
condition c holds; (ii) and apart from changing the state of the property, action
a is executed. For instance, the reflexive transition on the middle state is tagged:
transferFile↓ | c ≤ 10 7→ c++, means that if the automaton is in the middle
state when the system enters the function named transferFile and counter
variable c does not exceed 10, then the counter is incremented by 1. Some states
are identified as bad states, denoted using a double-outline in the figure, and used
to indicate that if and when reached, the system has violated the property in
question. The property represented in Fig. 2 can thus be understood to ensure
that no more than 10 file transfers take place in a single login session.

In ppDATEs the data-oriented features of the specification appear in the
states. A state may have a number of Hoare triples assigned to it. Intuitively,
if Hoare triple {π}f{π′} appears in state q, the property ensures that: if the
system enters code block f while the monitor lies in state q and precondition
π holds, upon reaching the corresponding exit from f, postcondition π′ should
hold. Pre-/post-conditions in Hoare triples are expressed using JML boolean
expression syntax [7], which is designed to be easily usable by Java programmers.
For instance, the Hoare triple appearing in the top state of the property given
in Fig. 2, ensures that any attempted file transfer when in the top state (when
logged out), should not change the byte-transfer count. Similarly, while logged in
(in the middle state of the property) (i) the number of bytes transferred increases
when a file transfer is done while logged in; and (ii) renaming a file does indeed
change the filename as expected if the user has the sufficient rights.

To ensure efficient execution of monitors, ppDATEs are assumed to be deter-
ministic by giving an ordering in which transitions are executed.

3 The StaRVOOrS Tool Implementation

StaRVOOrS takes three arguments: (i) The Java files to be verified (the path
to the main folder), (ii) A description of the ppDATE as a script (a file with



q q′

add entry↓ | users.contains(o,key) < 0 7→ •

q contains ‘{size < capacity && key > 0} add {post}’ post ≡

(∃ int i; i ≥ 0 && i < capacity ; h[i] == o)

Fig. 3. ppDATE specification for adding a user.

extension .ppd), and (iii) The path of the output folder. The output of the tool
is the runtime monitor (this file is placed in the output folder together with an
instrumented version of the Java files).

To describe our implementation, we use as working example a login scenario,
where users attempt to login into a system. The set of logged users is implemented
as a HashTable object, whose class represents an open addressing hash table
with linear probing as collision resolution. The method add, which is used to
add objects into the hash table, first tries to put the corresponding object at
the position of the computed hash code. However, if that index is occupied then
add searches upwards (modulo the array length) for the nearest following index
which is free. Within the hash table object, users are stored into a fixed array h,
meaning that the set has a capacity limited by the length of h. In order to have
an easy way of checking whether or not the capacity of h is reached, a field size

keeps track of the number of stored objects and a field capacity represent the
total amount of objects that can be added into the hash table.

In a nutshell, the tool works following these steps: (1) A property is written
using our script language for ppDATEs; (2) Hoare triples are extracted from the
specification of the property, are translated into JML contracts to be added to
the Java files; (3) KeY attempts to verify all JML contracts, generating (partial)
proofs, the analysis of which results in an XML file, (4) The ppDATE is refined
based on the XML file; (5) Declarative pre/post-conditions are operationalised;
(6) The code is instrumented with auxiliary information for the runtime verifier;
(7) The ppDATE specification is encoded into DATEs; (8) The Larva compiler
generates a runtime monitor. We will now describe some of the above steps in
more detail by describing them using our running example.

3.1 ppDATE Property: Adding a User

For simplicity we do not present the full specification for the login example but
rather focus on the operation of adding a user to the hash table. Fig. 3 depicts
the ppDATE specification. The property is written as the following script.

EVENTS {

add_entry(Object o,int key) = {HashTable users.add(o, key)}

}



PROPERTY add {

STATES { NORMAL{q2;} STARTING{q1 (add_ok);} }

TRANSITIONS { q1 -> q2 [add_entry\users.contains(o, key) < 0] }

}

CINVARIANTS {

HashTable {h.length == capacity}

HashTable {h != null}

HashTable {size >= 0 && size <= capacity}

HashTable {capacity >= 1}

}

CONTRACTS {

CONTRACT add_ok {

PRE {size < capacity && key > 0 }

METHOD {HashTable.add}

POST {(\exists int i; i>= 0 && i < capacity; h[i] == o)}

ASSIGNABLE {size, h[*]}}

}

Invariants (section CINVARIANTS) are described by class name {invariant}.
Section CONTRACTS lists named Hoare triples (CONTRACT). The predicate in the
post-condition follows JML-like syntax and pragmatics. The second semicolon is
semantically an ‘and’, but conveys a certain pragmatics. It separates the ‘range
predicate’ (i >= 0 && i < capacity) from the desired property of integers in
that ‘range’, (h[i] = o). The constraint add ok specifies that, if there is room
for an object o in the hash table and the received key is positive, then after
adding that object into the hash table it is found in one of the entries of the array
h. Finally, the PROPERTY section represents the entire automata, which in this
tiny example has only two states, q1 and q2, the second being initial (STARTING).
The syntax q1 (add ok) assigns the Hoare triple add ok to q1.

3.2 Proof Construction and Partial Proof Analysis

The first step in our work-flow is to annotate the Java sources with JML contracts
extracted from the Hoare triples specified in the ppDATE. We automatically
generate such JML annotations and insert them just before the corresponding
method declaration. Once the JML annotations are in place, the tool performs
static verification, checking whether, or to which extent, the various JML contracts
(each corresponding to a Hoare triple in ppDATE) can be statically verified. KeY
is used to generate proof obligations in Java DL for each contract, and attempts
to prove them automatically. Although we could have allowed for user interaction
(using KeY’s elaborate support for interactive theorem proving), we chose to use
KeY in auto-mode, as StaRVOOrS targets users untrained in theorem proving.

For each Hoare triple KeY’s verification attempt will result in either a full
proof, where all goals are closed, or a partial proof, where some goals are open
while others are closed. Partial proofs are analysed by our tool, and results are
collected in an XML file. Most importantly, this file contains, for each Hoare
triple specifying a method, say m, additional assumptions on the state in which m



is called, telling whether or not this Hoare triple needs to be checked at runtime
for executions of m.

3.3 ppDATE Transformation: Hoare Triple Refinement

Our tool uses the output of our previous step for refining, in the ppDATE, all
Hoare triples based on what was proved/unproved. Hoare triples whose JML
translation was fully verified by KeY are deleted entirely. On the other hand,
each Hoare triple not fully proved by KeY is refined. The new precondition is a
conjunction (&&) of the old precondition and a disjunction of new preconditions
corresponding to open proof branches.

In our example, the precondition of add ok will be strengthened with the
condition for the one goal not closed by KeY, !(h[hash function(key)] ==

null). The Hoare triple will thus be refined as follows:

CONTRACT add_ok {

PRE {size < capacity && key > 0

&& !(h[hash_function(key)] == null)}

METHOD {HashTable.add}

POST {(\exists int i; i>= 0 && i < capacity; h[i] == o)}

ASSIGNABLE {size, h[*]} }

Once all Hoare triples in the original ppDATE are refined this way, reflecting
the results from static verification, the tool will translate the resulting ppDATE
into the pure DATE formalism, to be processed by Larva further on.

3.4 Translation to DATE and Monitor Generation with Larva

Once the refinement is performed, the tool syntactically analyses the specifi-
cation for declarative assertions in pre/post-conditions which may need to be
operationalised i.e. transformed into algorithmic procedures. This includes, for
instance, transforming existential and universal quantification into loops. The
next step in the work-flow is to instrument the source code by adding identifiers
to each method definition and additional code to get fresh identifiers. These
identifiers will be used to distinguish between different calls to the method.

After these modifications, the statically refined (see section 3.3) ppDATE
specification is translated into the pure DATE formalism, enabling monitor
generation by Larva. The control part of the ppDATE is already in automaton
form, and can be interpreted directly as a DATE, but we still have to encode the
Hoare triples into DATE. We refer to [3] for details of this translation.

The final step is the generation of the monitor by the Larva compiler,
taking as input the DATE obtained in the previous step. The compiler not only
generates the monitor but also generates aspects, and weaves the code with the
Java programs subject to verification. See [6] for further explanation on Larva.



4 Case study: Mondex

Mondex is an electronic purse application for smart cards products [1]. We
consider a variant of the original presentation, strongly inspired by the JML
formalisation given in [8]. One of the main differences with respect to the the
original presentation is that we consider a Java implementation working on a
desktop instead of the Java Card one for smart cards. The full specification and
code of this case study can be found from [2].

Mondex essentially provides a financial transaction system supporting trans-
ferring of funds between accounts, or ‘purses’. Whenever a transaction between
two purses is to take place, (i) the source and destination purses should (indepen-
dently) register with the central fund transferring manager; (ii) then a request
to deduct funds from the source purse may arrive, followed by (iii) a request
to add the funds to the destination purse; and (iv) finally, there should be an
acknowledgement that the transfer took place, before the transaction ends.

Besides specifying the protocol, one has to specify the behaviour of the involved
methods, which obviously changes together with the status of the protocol. For
instance, transfer of funds from a purse to another should succeed once both
purses have been registered, but should fail if attempted before registration or if
an attempt is made to perform the transfer multiple times. This behaviour is
encoded by different Hoare triples assigned to different S states.

The control-oriented properties ensure that the message exchange goes as
expected. In contrast, the pre/post-conditions (in total, there are 26 Hoare triples
in the states of the ppDATE) ensure the well-behaviour of the individual steps.

We feed StaRVOOrS with the above ppDATE and the source code of Mondex.
Our tool automatically produces a runtime monitor which is then run in parallel
with the application. Initially, the ppDATE automaton consisted of only one
automaton with 10 states and 25 transitions. Except for two Hoare triples related
to the initialisation and termination of a transaction which were fully proven by
KeY, all the other 24 triples are only partially verified by KeY. The automated
analysis of these proofs leads to a refined ppDATE as explained in section 3.3.
Besides, it is necessary to deal with the operationalisation of the JML operator
\old. This is done by adding a fresh variable at the automaton level, saving the
value of the variable annotated with \old before the method (associated to its
Hoare triple) is executed. Then, when analysing the postcondition, if the value
of the variable has changed, it can be compared with its previous value store
in the automaton level variable. The obtained DATE (following the procedure
explained in section 3.4) consists on 25 automata, one automaton to control the
main property and 24 replicated automata to control postconditions, with 106
states and 196 transitions in total. Also, due to the operationalisation of \old, it
were added four new variables at automata level in the main automaton.

The whole process to generate the monitor for Mondex took our tool 2 minutes
30seconds on PC Pentium Core i7, where most time is used in KeYs static
analysis of the Hoare triples (2 minutes 15 seconds). Our original implementation
of Mondex weighted 23.5 kB. After, running the tool, the total weight of all the
new generated files related to the implementation of the monitor is 177.8 kB.



We have compared the execution times of: (a) the unmonitored implementa-
tion, (b) the monitored implementation using the original specification S and
translating it unoptimised into a DATE, and (c) the monitored implementation
using the specification S′, obtained from S via application of StaRVOOrS.
The concrete performance numbers of this experiment are the same as the ones
reported in [3, sect. 5]. To summarise the results, the addition of a monitor (case
(b)) causes an overhead on the execution time w.r.t. the unmonitored version (a),
between 15 and 1000 times. However, this overhead is dramatically reduced by
using our approach (case (c)), only doubling the execution time (again w.r.t. (a)).
The saving comes from only triggering post-condition checks in states satisfying
pre-conditions from open branches in KeY proofs.

5 Conclusions

A key feature of our work is that everything is done fully automatic: StaR-
VOOrS is a push-button technology taking as input a specification and a Java
program and given as output a partially verified program running in parallel with
a runtime monitor. Our current experiments are encouraging as we drastically
improve the time complexity of the runtime verifier Larva. Both the efficiency
gain for monitoring and the confidence gain can only increase along with future
improvements in the static verifier used. For instance, if ongoing work on loop
invariant generation in KeY leads to closing some more branches in typical
proofs, this will have an immediate effect that is proportional to the frequency of
executing those loop at runtime. For related work on the combination of static
verification and static verification, we refer the reader to [3].

Acknowledgements. We would like to thank C. Colombo and M. Henschel for their
support concerning implementation issues about Larva and KeY respectively.

References

1. MasterCard International Inc. Mondex. www.mondexusa.com/.
2. StaRVOOrS. www.cse.chalmers.se/~chimento/starvoors.
3. W. Ahrendt, J. Chimento, G. Pace, and G. Schneider. A specification language for

static and runtime verification of data and control properties. In FM’15, volume
9109 of LNCS, pages 108–125. Springer, 2015.

4. W. Ahrendt, G. Pace, and G. Schneider. A Unified Approach for Static and Runtime
Verification: Framework and Applications. In ISOLA’12, LNCS 7609. Springer, 2012.

5. B. Beckert, R. Hähnle, and P. Schmitt, editors. Verification of Object-Oriented
Software: The KeY Approach, volume 4334 of LNCS. Springer, 2007.

6. C. Colombo, G. J. Pace, and G. Schneider. LARVA - A Tool for Runtime Monitoring
of Java Programs. In SEFM’09, pages 33–37. IEEE Computer Society, 2009.

7. G. T. Leavens, E. Poll, C. Clifton, Y. Cheon, C. Ruby, D. Cok, P. Müller, J. Kiniry,
and P. Chalin. JML Reference Manual. Draft 1.200, 2007.

8. I. Tonin. Verifying the Mondex case study. The KeY approach. Technical Report
2007-4, Universität Karlsruhe, 2007.

View publication statsView publication stats

https://www.researchgate.net/publication/295375264



