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Abstract. Introducing a monitor on a system typically changes the sys-
tem’s behaviour by slowing the system down and increasing memory
consumption. This may possibly result in creating new bugs, or possibly
even ‘fixing’ bugs, only to reappear as the monitor is removed. Properties
written in a real-time logic, such as duration calculus, can be particu-
larly sensitive to such changes induced through monitoring. The same
problem occurs in other scenarios such as when a system is ported to
a faster machine. In this paper, we identify a class of real-time proper-
ties, in duration calculus, which are monotonic under the slowing down
(speeding up) of the underlying system. We apply this approach to the
real-time runtime monitoring tool Larva, where we use duration calcu-
lus as a monitoring property specification language, so we automatically
identify properties which can be shown to be monotonic with respect to
system re-timing.

1 Introduction

Runtime verification has been steadily gaining popularity, but scepticism still
exists regarding its applicability in real-time systems. The introduction of a
monitor overseeing a system, normally slows down the system, which may prove
to be too detrimental in performance intensive or real-time systems. However,
the introduction of monitors also modifies the behaviour of the system, changes
which may lead to the creation of new bugs, or the eradication of others.1 Such
situations are typically difficult to identify and fix.

One important consideration in such situations is the underlying system, and
what access it has to the underlying machine. For instance, a program which
times its running behaviour and branches accordingly, may exhibit aberrant
behaviour under monitoring as time values are affected by the monitor. However,
the expressivity of the underlying programming model is not the only issue —

∗The research work disclosed in this publication is partially funded by Malta Gov-
ernment Scholarship Scheme grant number ME 367/07/29 and by the Malta National
Research and Innovation (R&I) Programme 2008 project number 052.

1These bugs are known as Heisenbugs, after Heisenberg’s uncertainty principle,
related to the observer effect: the act of observing modifies the system.



2 C. Colombo and G. J. Pace and G. Schneider

another factor is the expressivity of the logic used to express properties from
which the monitors are synthesised.

Not all logics (property languages) are sensitive to such problems. For in-
stance, in single-threaded systems with no references to memory and temporal
properties, the order in which methods are invoked are typically invariant under
monitoring since such order remains unchanged. On the other hand, other logics
(such as real-time logics) are particularly prone to this phenomenon, and thus
one must be careful when verifying properties expressed in such formalisms at
runtime.

There are two sides to monitor-sensitivity: (i) the behaviour of the original
system being monitored may depend on the existence of a monitor (e.g., by
checking memory usage); and (ii) the properties being monitored may change
their truth value depending on the presence of a monitor (e.g., it can slow down
the system to such an extent that a reactivity property may be broken). In
this paper, we investigate system re-timing insensitivity of the second type —
addressing the issue independent of a particular real-time logic, and instantiating
the results in duration calculus. In the rest of the paper, we will thus assume
that the system is itself monitor-insensitive — the order of the events generated
by the system itself is invariant under monitoring. Single-threaded systems, with
no branching based on real-time, memory allocation and other machine-centric
notions, are instances of such systems.

In order to guarantee such monitor-insensitiveness, we need to characterise
which real-time properties are monitor-sensitive. Consider the property ‘No more
than three resets of a user account may occur within any one hour period’.
Clearly, slowing down a system which satisfies this constraint will not break the
property. On the other hand, speeding up such a system may result in breaking
it. We identify two classes of real-time properties, ones which cannot be broken
(if true, they remain true) under slowing down, and ones which cannot be broken
under speeding up. One application of this approach is to enable reasoning about
the effect of adding, or removing a monitor on the system. The approach can
be extended to other applications, such as automatic derivation of temporal
correctness of functionally correct optimisations.

In this paper, we focus on the application of these techniques for runtime-
verification. We integrate the analysis into Larva, a real-time runtime verifica-
tion framework, which can monitor properties expressed using, amongst other
logics, counterexample traces, a subset of duration calculus. The main contribu-
tion of the paper is twofold: (i) we define a formal mathematical framework to
reason about real-time system retiming; and (ii) study the effect of such retiming
for a duration calculus as a real-time logic.

The paper is organised into two main parts: a generic theoretical framework
till section 3.3, and an application of the theory to a subset of duration calculus
from thereon. In section 2 we present background material on duration calculus,
followed by section 3, in which we present the principal results on speedup and
slowdown invariance. In section 4, we outline how counterexample traces can be
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used to synthesize runtime monitors using Larva, and show an application of
the techniques on a small case study in section 5.

2 Background

2.1 Duration Calculus

Duration calculus (DC) [23] is a real-time logic, describing properties which
hold over time intervals, and that speaks about boolean states which change
over time. The calculus is based on two main concepts: integration (measuring
how long a boolean state holds over an interval) and the chop operator (which
splits an interval into two parts). Various other operators can be defined in terms
of these basic ones together with boolean connectives, to enable the expression of
properties such as: (i) �(�Leak� ⇒ � < 1), meaning that any subinterval in which
Leak is continuously true, should not last longer than 1 time unit — leaks should
not last longer than 1 time unit; and (ii) �(�Leak�; �¬Leak�; �Leak� ⇒ � ≥ 30),
meaning that any interval in which there is a falling edge followed by a rising
edge on Leak , has to last longer than 30 time units — there are at least 30 time
units between consecutive leaks.

In DC, time (T) is modelled as the non-negative real numbers. Although
the logic talks about time intervals, the underlying behaviour is modelled using
boolean states, functions from the time domain to booleans (BState = T → B).
Validity of duration formulae is dependant on an underlying interpretation I,
fixing the behaviour of the boolean states: I ∈ Bstate → (T → B). It is assumed
that over any finite interval, state variables have a finite number of discontinuous
points.

Boolean states can be combined into boolean expressions using standard
boolean operators such as X ∧¬Y . An interpretation can be lifted over boolean
expressions by applying the interpretation to the constituent boolean states, e.g.
I(X ∧ ¬Y )(t) = I(X)(t) ∧ ¬(I(Y )(t)).

Duration formulae2 act over time intervals. The basic duration formulae are
∫ P = n (P holds for a total of n time units over a particular time interval),
and the chop operator D; E (the time interval can be split into two such that D
holds over the first part, E on the second). For a given interpretation I, I �[b,e] D
means that the formula D holds for the given interval [b, e], as defined below:

I �[b,e] ∫ P = n
def=

e

∫
b
I(P )(t)dt = n

I �[b,e] D; E def= for some m ∈ [b, e], I �[b,m] D and I �[m,e] E

As with boolean expressions, boolean operators are also lifted over duration
formulae, e.g. I �[b,e] D ∧ ¬E holds exactly when I �[b,e] D and I �[b,e] E.

Based on these operators, other operators are defined syntactically. Compar-
ison operators on the duration of boolean expressions are defined, e.g. ∫ P ≥ n

2By convention we will use X and Y to refer to state variables, P and Q to refer
to state expressions, and D and E to refer to duration formulae.
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is defined as ∫ P = n; true. The other comparators can be similarly defined.
The length of an interval (written �) is defined as ∫ 1 (where 1 is the constantly
true boolean state). The duration formula �P �, meaning that P holds almost
everywhere3 throughout the given interval, is defined as: �P � def= ∫ P = �∧ � > 0.
State expression invariance over an interval is written as �P , defined as: � =
0 ∨ �P � ∨ �¬P �). Based on the chop operator one can define the standard �

and � modalities, which in DC read as “there exists a subinterval” and “for any
subinterval” respectively: �D

def= true; D; true, and �D
def= ¬�¬D.

Various other operators have been defined to simplify the expression of real-
time properties. For instance, the leads-to operator P

n−→ Q, which states that if
P holds for at least n time units then Q must hold immediately afterwards, can
be expressed as: �((�P � ∧ � = n); � > 0 ⇒ � = n; �Q�; true). This can be shown
to be equivalent to ¬�((�P � ∧ � = n); �¬Q�) or even ¬�((�P � ∧ � ≥ n); �¬Q�).

A duration formula is valid under an interpretation if it holds for all time
prefixes: I � D

def= ∀t : T · I �[0,t] D. Finally, a duration formula is said to be a
tautology if it holds under all interpretations: � D

def= ∀I · I � D.

2.2 Counterexample Traces

In general, DC is known to be too expressive to be monitored with a bounded
number of clocks [1]. However, a class of implementable DC formulae (known
as the class of implementables) has been identified [20, 22]. New operators are
added on to DC in counterexample traces [20]. The two operators ↖ P and ↗ P
enable knowing whether a state expression was satisfied just before (or after) a
point in time: I �[b,e]↖ P

def= b = e∧∃m : T · m < b∧I �[m,b] �P �, and I �[b,e]↗
P

def= b = e ∧ ∃m : T · m > e∧ I �[e,m] �P �, respectively. Using these operators,
one can syntactically define others. For instance, � P identifies whether there is
a discontinuity at a point in time: (↖ ¬P∧ ↗ P ) ∨ (↖ P∧ ↗ ¬P ). Conversely,
� � P indicates that P does not change at that point in time: ¬ � P ∧ � = 0.

In counterexample traces, events correspond to a change (or lack of change) of
the value of state expressions: event ::= � P |� � P | event ∨event | event ∧event .

Similarly, phases consist of a conjunction of three constraints: (i) a state
expression which holds uniformly over the interval �P �, or simply true; (ii) a
constraint on the length of the interval of the form � ≤ n, � ≥ n, � < n or � > n;
and (iii) a number of state expressions which are invariant over the interval
�P1 ∧ �P2 ∧ . . . � Pn.

A counterexample trace is the negation of a chop separated sequence of phases
and events: ¬(phase ; (phase | event)∗; true). We say that a counterexample trace
is a lower bound trace if none of the phases refer to � > n or � ≥ n. Similarly it
is said to be an upper bound trace if none of the phases refer to � < n or � ≤ n4.

3It is standard in DC to use the “almost everywhere” since finite (negligible) vari-
ability does not affect the duration formulae, as durations are defined as the integral
of certain variable over time.

4Note that counterexample traces are negated.
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Fig. 1. A stretch and compressed interpretation of a state variable.

Length independent counterexample trace formulae are ones which include no
reference to interval length in the phases.

Consider the leads-to operator given in the previous section. The duration
formula P

n−→ Q, is equivalent to ¬�((�P � ∧ � ≥ n); �¬Q�), or the counterex-
ample trace ¬(true; (�P � ∧ � ≥ n); �¬Q�; true), which is an upper-bound trace.

3 Stretch and Compress Truth Preservation

In DC, the underlying real-time behaviour of a system is encapsulated in the
interpretation of the state variables. A slowed down (or sped up) variant of the
behaviour of a system corresponds to a stretching (or compression) transforma-
tion on the underlying state variable interpretations. Fig. 1 illustrates a state
variable interpretation and its slowed down and sped up variants.

In this section, we build a mathematical framework to model time stretches
and compressions, independent of the real-time logic being considered. Using
this framework, we proceed by characterising the fragment of DC satisfying
these (stretch and compress) preservation properties.

3.1 Time Transforms

We start by characterising time transforms, corresponding to monotonic home-
omorphisms over the positive real number line. Time transforms can be used to
retime real-time variable interpretations in such a way that events are not lost,
created, or reordered.

Definition 1. A total continuous function s ∈ T → T is said to be a time
transform (s ∈ TT ) if (i) s(0) = 0; (ii) limt→∞ s(t) = ∞; (iii) s is monotonic
(t1 < t2 ⇒ s(t1) < s(t2)).

The simplest time transform is the identity function id which, given time t,
returns t as output: id(t) = t. Also note that the functional composition of two
time transforms is also a time transform. Moreover:

Lemma 1. Time transforms are bijective functions.

A näıve way of defining a time transform to be a time-stretch, is to insist
that s(t) ≥ t. However, this would only guarantee that all event timings of
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an interpretation I occur earlier than those of the Is — this is not what we
require, since it does not guarantee that the intervals between events are always
longer in the slow interpretation than the fast counterpart. Consider the case
when the first two changes of a boolean variable X occur at times 5 and 10
under an interpretation I, but at times 9 and 11 under Is. All other events
occur at the same time in the two interpretations. Although all events of Is

occur later than the events in I, if one looks at the time between the first and
second event, it is actually smaller in the case of Is. If causality of events is seen
to start building up from the previous event, we need to look at lengthening
intervals between events, not at delays in the events on an absolute time line —
this requires interval-monotonicity. To formally define concepts related to the
notions of slowing down and speeding up a system we need the formalisation of
what time-stretching and time-compression mean.

Definition 2. A time transform s ∈ TT is said to be a time-stretch (s ∈
←→
TT ) if

it is monotonic on intervals: s(t2) − s(t1) ≥ t2 − t1 (for t1 < t2). Similarly, it

is said to be a time-compression (s ∈
→←
TT ) if it is anti-monotonic on intervals:

s(t2) − s(t1) ≤ t2 − t1 (for t1 < t2).

It can be proved that time-stretches satisfy that s(t) ≥ t. Since time trans-
forms are bijective, one can talk about their inverse, which relates time-stretches
and time-compressions.

Proposition 1. The inverse of every time-stretch transformation is a time-
compress transformation, and vice-versa.

Stretching a time interval increases the integral under a (finitely-variable)
state expression, and conversely, compressing a time interval decreases it.

Proposition 2. Given a time-stretch s and interpretation of state expression α,
∫ s(e)

s(b)
α(t)dt ≥

∫ e

b
α(s(t))dt. Similarly, given a time-compression f ,

∫ f(e)

f(b)
α(t)dt ≤

∫ e

b
α(f(t))dt.

3.2 Duration Calculus and Time Transforms

Through the use of time transforms, we can now define the effect of compression
and stretching on an interpretation, and consequently on the validity of dura-
tion formulae. Applying a time transformation to an interpretation, yields an
interpretation where each point is the output of the time transform function on
the corresponding point.

Definition 3. Given a time transformation s, and an interpretation I, the
transformed interpretation of I w.r.t. s, written Is, is: Is(P )(s(t)) = I(P )(t).

Applying the identity function to an interpretation I gives I: Iid = I. Also,
applying time transforms f and g in sequence on an interpretation, is equivalent
to applying the functional composition g ◦ f : (If )g = Ig◦f .
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Definition 4. A duration formula D is said to be stretch truth-preserving,
strt(D), if for any interpretation on which it is valid, it is also valid under any
stretching of the interpretation. Similarly for stretch falsity-preserving, strf (D):

strt(D) def= ∀s :
←→
TT , I · I � D =⇒ Is � D

strf(D) def= ∀s :
←→
TT , I · I � D =⇒ Is � D

Similarly, we define the corresponding notions for compression comt(D) and
comf (D). A formula D is said to be stretch invariant, stri(D), if it is both stretch
truth and falsity truth-preserving. Similarly, we define the notion of compression
invariance, comi(D).

The above notions consider the validity of a formula — the satisfaction of the
formula on all time prefixes under an interpretation. In order to enable reasoning
about individual stretched or compressed time intervals, we define the following:

Definition 5. A duration formula D is said to be interval-stretch (interval-
compress) truth-preserving istrt(D) (icomt(D)) if, for all interpretations on
which D is satisfied on all subintervals, D also holds for all subintervals un-
der any stretching (compression) of the interpretation:

istrt(D) def= ∀s :
←→
TT , I, (b, e) · I �[b,e] D =⇒ Is �[s(b),s(e)] D

icomt(D) def= ∀s :
→←
TT , I, (b, e) · I �[b,e] D =⇒ Is �[s(b),s(e)] D

Similarly, we define the notions of istrf (D), icomf(D), istri(D) and icomi(D).

Using the surjectivity of time transforms, one can prove that interval truth
preservation is a stronger notion than truth preservation.

Theorem 1. An interval-stretch truth-preserving duration formula is also stretch
truth-preserving: istrt(D) ⇒ strt(D). Similar results follow for the other predi-
cates defined.

In the rest of the paper, we will be using the notion of interval truth (falsity)
preservation, since we know that this guarantees truth (falsity) preservation.

Using the duality of time-stretches and time-compressions (see Proposition
1), and that of truth and falsity preservation, we can show that stretch truth
preservation is equivalent to compress falsity preservation:

Proposition 3. The class of interval-stretch truth-preserving formulae is equiv-
alent to interval-compress falsity-preserving formulae: istrt(D) ⇔ icomf (D).
Similarly: icomt(D) ⇔ istrf(D). It thus directly follows that interval-compress
invariance is equivalent to interval-stretch invariance: icomi(D) ⇔ istri(D).
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3.3 Duration Formulae Under the Effect of Time Transforms

The proposition just proved can be used to relate truth preservation of a formula
and its negation.

Theorem 2. A formula is interval-stretch truth-preserving if and only if its
negation is interval-stretch false preserving: istrt(D) ⇔ istrf(¬D). Similarly,
the negation of a formula which is interval-compress truth-preserving, is interval-
compress false preserving: icomt(D) ⇔ icomf (¬D).

Combining the results of Proposition 3 and Theorem 2, we obtain:

Corollary 1. A formula is interval-stretch truth-preserving if and only if its
negation is interval-compress truth-preserving: istrt(D) ⇔ icomt(¬D).

Hence, the truth of interval-compress and interval-stretch invariance does not
change under negation: icomi(D) ⇔ icomi(¬D). Similarly, istri(D) ⇔ istri(¬D).

Negation switches the parity of the duration formula. On the other hand, a
number of other operators preserve it, as shown in what follows.

Theorem 3. The duration formulae ∫ P > c and ∫ P ≥ c are interval-stretch
truth-preserving duration formulae, while ∫ P < c and ∫ P ≤ c are interval-
compress truth-preserving.

Proof. Consider the proof of istrt(∫ P > c):

I �[b,e] ∫ P > c

=⇒ definition of ∫
∫ e

bI(P )(t)dt > c

=⇒ definition of Is∫ e

bIs(P )(s(t))dt > c

=⇒ proposition 2
∫ s(e)

s(b)Is(P )(t)dt ≥
∫ e

bIs(P )(s(t))dt

=⇒ transitivity of >
∫ s(e)

s(b)Is(P )(t)dt > c

=⇒ definition of ∫
Is �[s(b),s(e)]

∫
P > c

The other proofs follow similarly.

Theorem 4. If D and E are interval-stretch (interval-compress) truth-preserving
duration formulae, then so are the following: (i) true; (ii) false; (iii) � = 0; (iv)
�P �; (v) D; E; (vi) D ∧ E.

Proof. The proofs of (i), (ii) and (iii) follow directly from the definitions. Con-
sider the proof of (iv) istrt(�P �):
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I �[b,e] �P �
=⇒ definition of �−�

∫ e

bI(P )(t)dt = e − b ∧ e > b

=⇒ definition of Is and monotonicity of time transforms
∫ e

b
Is(P )(s(t))dt = e − b ∧ s(e) > s(b)

=⇒ basic calculus
∫ s(e)

s(b)
Is(P )(t)dt = s(e) − s(b) ∧ s(e) > s(b)

=⇒ definition of �−�
Is �[s(b),s(e)] �P �

The proof of (v) (istrt(D; E)) is as follows:

I �[b,e] D; E
=⇒ definition of ;

∃m : [b, e] · I �[b,m] D ∧ I �[m,e] E

=⇒ istrt(D) and istrt(E)
∃m : [b, e] · Is �[s(b),s(m)] D ∧ I �[s(m),s(e)] E

=⇒ monotonicity of f

∃m′ : [s(b), s(e)] · Is �[s(b),m′] D ∧ I �[m′,s(e)] E

=⇒ definition of ;
Is �[s(b),s(e)] D; E

The proof of (vi) follows similarly.

Theorem 5. If D and E are interval-stretch (interval-compress) truth-preserving
duration formulae, then so are the following formulae: (i) �D; (ii) �D; (iii)
D ∨ E; (iv) �D.

Proof. Using the definition of �, and Theorem 4, it follows directly that if
istrt(D), then istrt(�D), and similarly if icomt(D), then icomt(�D).

Recall that �D is defined to be ¬�¬D. Since istrt(D), it follows from Corol-
lary 1 that icomt(¬D), and thus icomt(�¬D). Using Corollary 1 again, we get
istrt(¬�¬D). A similar proof can be used for interval-compresses.

Expressing disjunction in terms of negation and conjunction enables a similar
proof. The proof of �D follows directly from its definition and the other proofs
in this section.

Example 1. Recall the example given in section 2.1 — a leak may not last longer
than 1 time unit: �(�Leak� ⇒ � < 1). This is equivalent to �(¬�Leak�∨

∫
1 < 1).

Using theorem 3, it follows that
∫

1 < 1 is compress truth-preserving. ¬�Leak� is
also compress truth-preserving by Theorem 2 and the fact that �Leak� is stretch
truth-preserving (Theorem 4). Finally, using Theorem 5 for disjunction and the
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always operator, we can conclude that the original formula is compress truth-
preserving. Similarly, one can show that the formula stating that there are at
least 30 time units between consecutive leaks: �(�Leak�; �¬Leak�; �Leak� ⇒ � ≥
30) is stretch truth-preserving.

3.4 Counterexample Traces

Similar results as the ones given in the previous section can be proved about the
two new counterexample trace operators.

Theorem 6. ↖ P , ↗ P are interval-stretch and interval-compress invariant.

From this theorem and Theorem 1, we extend invariance to the operator � P .

Corollary 2. � P , � � P are interval-stretch and interval-compress invariant.

Theorem 7. Upper bound counterexample trace formulae are compress truth-
preserving, while lower bound counterexample traces are stretch truth-preserving.
Length independent formulae are compress and stretch invariant.

This follows using induction on the structure of the counterexample formulae
using the theorems given in this section and the previous one.

Example 2. Recall the definition of the leads-to operator P
n−→ Q, transformed

into a counterexample trace in section 2.2 — ¬(true; (�P � ∧ � ≥ n); �¬Q�; true).
Since the formula is an upper bound counterexample trace, one can conclude by
Theorem 7 that all formulae of the form P

n−→ Q are compress truth-preserving.

All the above theorems enable syntactic analysis of duration formulae to
calculate whether they are compress or stretch truth-preserving or invariant.
Although, obviously, not a full decision procedure, many useful properties can
be proved to fall into one of these categories.

3.5 Summary of Results

A summary of the theorems proved is provided in the table below:5

Property\ Fragment
∫

> c
∫

< c ¬ ; ∧ ∨ � � �
interval-stretch truth preserving � × � � � � � �
interval-stretch false preserving × � � � � � � �
interval-compress truth preserving × � � � � � � �
interval-compress false preserving � × � � � � � �

Note that the preserving fragments for interval-stretch truth preserving are
equivalent to those for interval-compress false preserving. Similarly, the preserv-
ing fragments for interval-compress truth preserving are equivalent to those for
interval-stretch false preserving. These results can be readily extended to other
syntactic extensions to DC.

5� denotes that the fragment preserves the property, × denotes the contrary, while
� signifies that the property is inverted (e.g., if a property is interval-stretch truth
preserving, its complement is interval-stretch false preserving).
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4 Case Study

In this section, we present a specification of an intrusion detection system in
terms of counterexample traces, to show how slowdown and speedup reasoning
can be used on a real specification. Although the specification written in terms
counterexample traces lacks the readability of one written in full DC, it has the
distinct advantage of being automatically implementable as a runtime monitor. It
is well known how to translate such formulae into phase event automata (PEAs)
[9], which we use, in turn, to produce dynamic automata with timers and events
(DATEs) which we have used for runtime verification of real-time properties [6],
and are implemented in the tool Larva. The tool implements a transformation
from PEAs to DATEs which has been proved to be sound and complete. Full
details of the transformation and its proof of correctness can be found in [5].

A number of properties of the network intrusion detection system are ex-
pressed as counterexample traces, and used to detect possible malicious activities
on a network connection. Each of these properties is stretch truth-preserving,
i.e. if the property holds on a system, it will also hold on a slowed-down version
of the system. This fact assures us that inserting monitors in the system, will
not cause a violation of any of the monitored properties: we will not have false
negatives signalled by the monitoring system. In what follows we will give a
detailed account of each property of the case-study. Note that some of the vari-
ables which are external to the system being monitored are not being considered
for the analysis of slowdown and speedup. The section is concluded by a brief
account of the runtime verification process as carried out by the tool Larva.

Initiating Connections For strict security concerns, one may wish to disable
any incoming TCP packets which do not belong to connections initiated by
the host machine being monitored. The initialisation of a TCP connection
requires a complete three-way handshake: first a synchronization packet from
the client, then a synchronization and acknowledgement packet from the
server and another acknowledgement from the client. If the host machine
receives a synchronization packet without having sent one beforehand, then
an outsider is trying to open a connection. This property may be written as
a counterexample trace forbidding and sending of synchronisation packets
(sendSYN) before a synchronisation packet is received (receiveSYN):

¬(� sendSYN; � receiveSYN; true)

Since a TCP connection is a 4-tuple (an address and a port for both the
server and the client), this property has to be monitored for each distinct
tuple.

Redirect Messages In the case of a machine with a routing table, a lot of
ICMP redirect messages can cause the system to slow down. Therefore,
there is a need to control the number of such messages. The property, which
disallows three redirect messages within less than two time units between
subsequent messages, can be written as follows:
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¬(true ; � redirectMsg; �1� ∧ � < 2;
� redirectMsg; �1� ∧ � < 2; � redirectMsg; true)

Note that �1� between the events is not redundant because this ensures that
the length of the interval is greater than zero (by definition of �·�). Allowing
an interval with zero length between two events would mean that the events
are in fact the same. The property can be modified slightly to monitor against
repeated ping messages and other unwanted (malicious) traffic.

Connection Failure Retries A denial-of-service attack can be carried out by
initiating an excessive number of connection initialisations to a server and
then leaving the handshake incomplete. The server will have to wait for each
of these initialisations to timeout. A simple check would be to limit the
number of subsequent failed connection retries originating from the same IP
address. The property, which prohibits three consecutive connection failures
with less than two time units between each subsequent pair of failures, may
be written as follows:

¬(true ; � failedConn; �1� ∧ � < 2 ∧ � successConn;
� failedConn; �1� ∧ � < 2 ∧ � successConn;
� failedConn; true)

To monitor the above property, we can use two sub-properties which define
what it means for a connection to be successful (successConn) or to fail
(failedConn). A successful connection consists of a synchronisation packet
from a client, the acknowledgement from the server and reciprocating ac-
knowledgement from the client. Similarly, a TCP handshake which is not
acknowledged within 5 seconds is considered as a failed connection. A TCP
handshake must be monitored at a connection level with the usual four pa-
rameters (IP addresses and port numbers) while the monitoring of successive
failed connection retries is performed for each individual IP address.

Note that these duration formulae inherently quantify over state variables,
exploiting the inherent parametrisation over tuples of objects used in Larva —
our duration formulae are thus seen as formulae quantified over state variables at
the top-level of the formula. In summary, given a property as a counterexample
trace, the following steps are required to monitor a Java program to detect any
violations of the property: (i) analyse the counterexample trace with the tool
to know whether the counterexample trace is slowdown and/or speedup truth
preserving or none; (ii) use the tool to automatically convert the counterexam-
ple trace into a Larva script; (iii) relate the monitoring events to system events
(such as method calls); (iv) if the property is to be monitored for each object of
a particular class, modify the Larva script accordingly; (v) add any Java code
to be invoked in case of a violation detection; (vi) compile the script to gener-
ate the monitoring system; and (vii) run the Java program with the generated
monitoring files in place.
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5 Related Work

Monitoring of real-time properties is far from new [4, 11, 10, 16, 3, 21], but to
our knowledge, there is no existing work which identifies classes of properties to
ensure invariant behaviour of the monitors under slowing down or speeding up.
Our approach differs from other approaches [19, 8, 7, 2] in that our theory revolves
around the observed behaviour rather than the semantic or syntactic definition
of underlying logic, i.e. we analyse the effect on the observation rather than
modifying the semantics of any logic. The main motivation behind the related
work discussed here is that real-time logic in dense time allows the definition
of properties with arbitrary precision. This is technically impossible to achieve
from an engineering point of view. A possible solution to this problem is to use
a discrete time model to avoid the problem of arbitrary precision. However, this
might not always be desirable. For this reason, a robust interpretation of duration
calculus has been suggested [7] where the satisfaction of a neighbourhood of
formulae is considered rather than that of a single formula. A similar approach
has been applied to timed automata [8] where the language accepted by robust
timed automata is a set of tubes rather than individual trajectories where a tube
is a set of neighbouring trajectories. A robust reachability analysis for timed
automata [19] has been studied such that the analysis is robust with respect to
a given maximum drift of the clocks. Rather than a semantic approach, Alur et
al. [2], suggest MITL as a solution by allowing the specification of an interval of
approximations rather than a constant with arbitrary precision.

Also related to our approach, but in a temporal setting without reference to
real-time quantities, is the notion of stutter-invariant properties, corresponding
to properties invariant under slowdown [13, 17, 12]. In a discrete time setting,
such as LTL and CTL, the family of such properties corresponds to a syntac-
tic restriction on the use of the next operator. As we have seen, the notion of
stretching and compression invariance in a real-time setting introduces consid-
erable more challenges.

Suggesting a more practical approach, Pohlack et al. [18] deal with slowdown
by compensating for the monitoring overheads. The overhead is taken into con-
sideration so that the output of the monitors can be properly adjusted in the
case of proliferation.

The most common approach to monitoring real-time properties [4, 11, 10, 16,
21] is based on simple time constraints where each time constraint compares the
timestamps of two event occurrences. Such a constraint can be used to represent
a delay or deadline constraint where an event should occur after a particular
delay or before a certain deadline.

A recurrent problem with a simple treatment of time is that there is typically
a lag from the moment an event occurs till the moment it is detected. A solution
proposed in [15] is to treat each timestamp as an interval of possible time points
at which the event might have occurred. Summapun et al. [21] have integrated
these time constraints within the existing MaC framework. The idea of inter-
vals is further investigated in [14] where each time constraint also includes a
threshold which the satisfaction probability should exceed. Other approaches to
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monitor real-time properties include the work of Bauer et al. [3] which provides
a monitoring procedure for TLTL3.

6 Conclusions

Real-time properties are notorious for their sensitivity to changes in a system.
Inevitably, overheads are induced when introducing monitoring in a system. This
unintended change, has to be addressed in order to make the verification of real-
time properties more reliable. In our approach, we have identified a class of
DC which guarantees that slowing down (or speeding up) the system would not
break the validity of a formula. These checks have been incorporated in Larva,
together with a sound and complete translation from counterexample traces into
DATEs — the notation used in Larva. The case study presented shows how
this approach can be useful is real scenarios. Though we have instantiated our
definitions and results in DC, the approach could be extended to other real-time
logics.

Our approach has other applications outside runtime verification. For in-
stance, confidence gained through model-checking or testing of a compress truth-
preserving property means that the system may be ported onto a faster machine
with full confidence. Moreover, monitors for compress truth-preserving proper-
ties ensure that removing a system from its testing environment will not induce
it to fail.

An underlying assumption in our work, is that all state variables are affected
by the same time transform. This may not always be the case. For example,
in a distributed real-time system the state variables on different machines may
be differently re-timed. This is much more challenging than simply considering
the affect of a single global time transform. Another limitation of this work is
that the time transforms are allowed to stretch or compress the time-line in
an unbounded manner — this is usually required since it is usually difficult
(possibly impossible) to identify the maximum overhead induced by a runtime
monitor. However, the approach we adopt enables a succinct characterisation of
bounded slowdown, speedup, or even bounded retiming (allowing both speedup
or slowdown to a limited degree), which would be interesting to explore in more
detail.

Our approach addresses property invariance under re-timing. An interesting
research direction is that of looking into the complementary issue of system
analysis to ensure whether a program is also slowdown or speedup insensitive, so
it will still produce the same traces (albeit with different timestamps). Together
with the property analysis, this would enable full analysis of systems under
monitor instrumentation.
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