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Basic Properties of Cayley Graphs 

Andrew Duncan and Andrew Cortis 

Introduction 

Cayley Diagrams are one of many representations of finite groups. They provide a 

means of representing a group diagrammatically and various properties of groups 

including commutativity can be extracted from the graph. The Cayley diagram also 

provides sufficient information to test for isomorphism between groups, and thus is a 

useful tool for recognizing the type of a given group. This technique of representing 

groups as graphs was introduced by CayJey in 1878. The Cayley diagrams described 

below are a variant of the actual Cayley diagram and are referred to as Cayley 

Digraphs. 

Let S = {gI, g2, ... , gn} be a set of distinct elements and let G = < gl, g2, ... , ~>, i.e. G 

is the group generated by the set S. 

We can define a relation ~ on G such that a ~ b iffb = gja, where gi E S. Thenthe 

Cayley Digraph Cay(G,S) is the digraph formed from. the relation ~, where the vertex 

set of the graph is the group G. 

Informally, the Cayley Digraph is a digraph with the elements of G as vertices, and 

there is an edge from a to b if b = gia, where gi is some gener.nor of G. 

' .. ' ~ 

a 

An example of a Cavlev Diagram: Cc 



Collection V/ 

Here are various simple properties of Cayley Digraphs: 

1. Let a be a vertex in Cay(G, S), and ISI = n, then deg+(a) = deg-(a) = n. 

Proof: 

Let a E G, then gl-I a, g2-la, g3-la, ... , gn-1a are n distinct elements in G (by 

closure), since suppose that: 
-1 -I S gi a = gj a, gi, gj E , 

-I -I 
~ gi = gj ~ gi = gj, 

since inverse elements are unique, contradicting the premise that elements of 

S are distinct. 

Similarly, 

g1a, g2a, ... , gna are n distinct elements in G (by closure), and a ~ gia , 

lor all i = 1... n. 

2. Cay(G,S) is strongly connected (ie. there is a path from a to b andft-om b to a 

whenever a and b are vertices in the graph) 

Proof: 

Let a, bEG. 

b = (ba-1)a and ba-1 
E G (closure in G) 

Now since S is the generator set for G, ba-I can be expressed as : 

b -I 1, 2, 3, b h h I, k, S Co d") a = a a a ... a suc t at a , ... ,a E not necc. lstmct. 

Therefore, one can follow the edges defined by the sequence of 

generators a],a2'a3
' ... ak

', starting from vertex a to fonn a path from a 

to b. 

Using the same approach one can also find a path from b to a 

3. IfG:;f{e} then ~ is irreflexive i.e. Cay(G,S) has no loops 

so 
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Proof: 

IfG -:f. {e}, then {e} -:f. S, and so a -:f. gia for any gi E S. 

Thus, a is not related to itself, and so there are no reflexive loops in 

Cay(G,S). 

4. If for all gE S, g-l E S, then ~ is a symmetric relation, ie Cay(G,S) is an 

undirected graph. 

The following proposition is stated without proof. This proposition can be 

possibly used as a test to check whether two groups are not isomorphic from their 

Cayley Digraph. 

5. Let G1 = <SI>, G2 = <S2> be isomorphic groups, \SI! ~ \S2\, then Cay(G1,Sl) is 

isomorphic to a sub graph of Cay(G2,S2). 

Paths in Cayley Digraphs 

Definition: A Hamiltonian Path in a directed graph is a path passing through every 

vertex exactly once. 

It was noted that there appeared to be Hamiltonian paths in all the Cayley diagrams 

sketched. As of yet, however, no proof or disproof exists that every Cayley diagraph 

has a Hamiltonian path. To make matters worse, searching for Hamiltonian paths in a 

graph is intractable, thus making testing of large Cayley diagrams for Hamiltonian 

paths prohibitive. 

This is known as Lovasz conjecture and is stated as follows: 

Conjecture: (Lovasz) All Cayley Diagrams have a Hamiltonian path. 

ie. For any group G = <S>, Cay(G,S) has a Hamiltonian path. 

By exhaustively testing various Cayley digraphs, Willis [3] found a group (C2~) 

which doesn't have a Hamiltonian path for a particular generating set. However, 

choosing a different generating set for the above will yield a Cayley Diagram with a 

Hamiltonian path. 

SI 
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The conjecture should thus be revised to the following form: 

Conjecture: Let G be a finite group, then Cay(G,S) has a Hamiltonian path for some 

appropriate choice of the generating set S. 

The following propositions prove the conjecture for various classes of groups. Many 

stronger proofs are available, usually using complex graph theory. For more 

information see [2] 

Prop 1: Cay( Cn, { a} ) has a Hamiltonian cycle, for any n E 0+. 

Proof: 

Basis: Cay( Cd a} ) is Hamiltonian since it consists of a single vertex. 

Assume Cay(Ck, {a}) is Hamiltonian where Ck = re, a, a2
, a3

, ... , ak
-
1

} 

We can construct Cay(Ck+l,{a}) from Cay(Ck, {a}) by inserting a vertex ak 

between ak-I and e. Inserting this element does not affect Hamiltonicity, hence by 

inductive hypothesis, Cay(Ck+l,{a}) is also Hamiltonian. 

e 
a 

The Dihedral group D3 

Dn can be regarded as two n-polygons inset in each other 

Prop 2: Cay(Dn,S), S= {a,b} is Hamiltonian 

Proof: 

Dn = <a,b>, st o(a) = n 

o(b) = 2 
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o(Dn) = 2n 

From the definition ofDn, we can also derive: 

(abi = e 
(bai) = an-ib * 

We can identify two cyles in Cay(Dn, S), namely 
2 3 n-I e ~ a ~ a ~ a ~, ... , ~ a 

and 

The number of elements in these two cycles totals to 2n, so every element 

must be a member of one of the cycles. In fact, every element must be a member of 

exactly one of these cycles. 

Since suppose :3 d E Du such that d = ai 
= ~b, 0 < i -:j:. j < n 

=> ~ = aib using * 
=> ai = aib2 

=> ai = ~ but this only holds when ij = 0 or n, 

which is a contradiction. 

In the case where i = j , then 

ai 
= ~b => e = b, which is also a contradiction 

Also, we have au-I ~ ab since (bau-l = ab by *), and b ~ e (since b2
= e). 

We can now define the following path: 

e -----7 a -? a2 
-? ... -7 au-I 

-? ab -? ;b -? a3b -7 ... -7 au-1b -? b -? e, which is a cycle 

containing every vertex in Cay(Du,S) exactly once, hence it is a Hamiltonian Path. 

Prop 3: Cay(Cm x Cn, S), S = {(a,e) , (e,b)} is Hamiltonian 

Proof: 

Let H = <a>. Then H < Cm x Cn and o(H) = m. 

Therefore we can partition Cm x Cn into n cosets: H, H(e,b), ... , H(e,bU
-
I
) 

Clearly in each coset we have (a\bi) -7 (ai+l,bi). Thus each coset forms a 

cycle within itself as shown in the diagram below. Between consecutive cosets we 
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also have that (a\~) -7 (al

, b1 
). These relations impose a directed grid on the set set 

of elements in Cm x Cn. 

( a2,h+--+----r--. 

(a3,b) 

H H(e,b) 

--l-------H. (a2,b"-1) 

(a3,bn
-
1
) 

In fact, the graph Cay(Cm x Cn, S) can be regarded as a directed grid on a torus in 3D 

space_ Each ring in the torus represents a coset in the group. Finding a Hamiltonian in 

Cay(Cn x Cm, S) is reduced to finding a Hamiltonian path along the surface of this 

torus. 
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For each i EN, 0< i<m, we can define path Pi as: 

Pi represents a Hamiltonian path of the ith row of the Cayley digraph and contains n 

vertices 

Also for all iJEN, O:S;i<m,O:S;j<n, (ai,bi) ~ (ai+\bi) 

Using these edges we can join each Pi, i = 1 ... m-I to form a Hamiltonian path for the 

entire graph as illustrated in the diagram below: 

An illustration of the path taken to fonn a Hamiltonian path on the surface of a 

toms 

The path (e,e)~(e,b)~(e,b2)~ ... ~(e,bn-l)~ Pj ~ P2 --+ P3~ ... ~Pm-j contains mn 

= o(Cm x Cn) elements, each element exactly once, therefore it is a Hamiltonian path 

as required. 

While this proof only applies for the direct products of 2 cyclic groups, it could be 

used as a basis for a proof for the direct product of an arbitrary number of elements. 

Instead of considering a grid of vertices on a torus in 3D space, one must search for a 

Hamiltonian path in a grid of vertices on an n-dimensional torus. Since every Abelian 

group a direct product of cyclic groups, proving Hamiltonicity for an arbitrary direct 
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product will automatically imply the Hamiltonicity of all Abelian groups. 

Applications 

One application of Cayley Diagrams is in that on binary representation of data, 

namely Gray Codes. A gray code of length n is a sequence of n bit binary strings, 

with the property that consecutive words differ by at most one element Gray codes 

are useful in mechanical encoders since a slight change in location only affects one 

bit. Using a typical binary code, up to n bits could change, and slight misalignments 

between reading elements could cause high levels of error since flipping a bit will 

increase/ decrease the value by a power of two. For example, an error flipping the 

MSB of an 8-bit word will change the value by 27. 

Gray Codes can be represented by the direct product (C2t The difference between 

Gray Code and normal binary code is the ordering of the elements. In Gray code the 

"greater than" relation :2: is defined as follows: 

For ::i, b E (C2t, a:2: b iff a ~ *b 

The fact that «C2)", ~) is a totally-ordered set follows from that we can always find a 

Hamiltonian path in Cay«C2t,S) (since every two elements in the path are 

comparable) Thus «C2t, :2:) is a well ordered set by choosing the starting vertex 

(element) of the Hamiltonian path as the least element. 
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