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-Fibonacci Sequence and The (-;olden Ratio 

Pamela Cohen and Cheryl Zerafa 

Fibonacci, or more correctly Leonardo da Pisa, was born in Pisa in I 175AD. He was 

the son of a Pisan merchant who also served as a customs officer in North Africa. He 

travelled widely in Barbary (Algeria) and was later sent on business trips to Egypt, 

Syria, Greece, Sicily and Provence. In 1200 he returned to Pisa and used the 

knowledge he had gained on his travels to write Liber abaci in which he introduced 

the Latin-speaking world to the decimal number system. 

Fibonacci is perhaps best known for a simple series of numbers, introduced in Liber 

abaci ancllater named the Fibonacci numbers in his honour. 

The resulting sequence is: 

1, 1,2,3, 5, 8, 13,21, 34, 55, ... 

(Fibonacci omitted the first term in Libel' ubaci). This sequence, in which each 

number is the sum of the two preceding numbers, has proved extremely fruitful and 

appears in many different areas of mathematics and science. 
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A problem in the third section of Liher aboci which can be solved using this sequence 

is the following: 

S'UfJPose Cl newly-horn pmr (~f ruhbits, O/le male, one female, are put in a field. 

Rahhits ore able to Jlwte at the age «f one month so that at the end (~f its second 

month ({ .f(>l7lale can produce another poir (d rabbits. Suppose that our rabhits never 

die (lnd I hut the fema le always produces one flew pair (one male, one .J(mwle) every 

lJl(mtlz .ft'om the second lnonth on. The puz.z.le that Fihonacci posed was ... 

How lIlUlIY pairs will there he in one year? 

/IIJ({gine thot there are XII paIrs of rabbits qlier 11 months. The number of pairs in 

lI/olllh n+ I will be XII (in this problem, rabbits never die) plus the number (dnew pairs 

horn. But new pairs ({re onlv horn to pairs at least I lnonth old, so there will he XII'! 

new pairs. 

Which is simply the rule for generating the Fibonacci numbers!!! 

The I'igurc below is a view of the rabbit's family tree showing how the Fibonacci 

sequence is generate: 







Collection VI :; 

The Golden Section 

Taking the ratio of sllccessive terms in the Fibonacci series: (I, 1,2, 3, 5, 8, 13, .. ) and 

dividing each by the number before it, the following series of numbers is obtained: 

III = 1 

2/1 = 2 

3/2 =1-5 

513 = 1-666 ___ , 

8/5 = 1-6 

13/8 = 1-625 

21/13= 1-61538 __ _ 

The graph shows that the values seem to be tending to a limit. This limit is actually 

thc positive root of a quadratic equation and is called the golden section, golden ratio 

or somctimes the golden meall. 
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Note that the golden section is denoted by the Greek letter phi. 

The table below shows properties of the solutions to the quadratic equation: 
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1=1.6180339 .. 

= 1 + <P2 

<PI = (,'/5 + 1)/1 

7 

<p2 - <p - 1 = 0 

<P2 = 0.6180339 .. 

The Fibonacci numbers can also arise from the number <p. The graph below shows a 

line whose gradient is <p, that is the line: 

y=<p.x = (1·6180339 ... )x 
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Th", I~ = Ph i I i n", 

15 

Since <p is irrational, the graph will never go through any points of the form (i,j) where 

are integers. The nearest integer-coordinate points to the <p - line are (0,1), (1,2), 

(2,3), (3,5) ... 

These coordinates are successive Fibonacci numbers. The ratio y/x for each Fibonacci 

point (x,y) approaches <p = 1.618 ... 

This graph also shows that the Fibonacci points are the closest points to the <p - line. 

Problem involving the Golden Ratio: 

Rectmlu/e triongie prohlem .. __ ... ____ c':>.___ _ __ 

Consider a rectangle OABC fmm which you remove three right-angled triangles 

leaving a fourth triangle OPQ as shown in the diagram below. 
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How Illllst you position the points P and Q so that the area of each of the three 

removed triangles is the same? That is, what are the ratios AP : PB and CQ : QB? 

r-----~----------_, 
B 

[f we label the distances AP, PB, CQ and QB as shown above then we can write three 

equations for the areas of the triangles as follows: 

1,. ., 
=-.~·1I,V1 +1".;. I 2. .~ ~ ..... } (1) 

Area DfPEQ =-.::C ..• "'l,.'. .• 
'-I .::, .... .::.. 

L-
(2. ) 

Al1::a of (]CQ 

From ( 1) and (3) : 

xIYI + x1Y2 = xI}'1 + x2.)'1 
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Notice that the two ratios are the same! If we call this ratio r then we can calculate a 

polynomial for r as follows: 

From (1) and (2.) : 

"Il'~1 V,-, 
l+~=r~ 

Yl Yl 
1+r=r2, 

Taking the positive root gives llS the golden ratio: 

1 "I 1<=', 1 '-l'~ .1' = - \ +"\, _',1 :::: ,b ,~; 2. . . 

Billet's Formula i()r the nth Fibonacci Humber 
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The n-th Fibonacci number is the sum of the (n-I )th and the (n-2)th. 

Theorem: A formula for the nth Fibonacci number Fib(n), which contains only nand 

does not need any other (earlier) Fibonacci values involves the golden section number 

(PI and its reciprocal <P2; 

Fib(n) = = 

Pro 0[:-

Since <PI and -<P2 are the two roots of x2 = x+ I, we get the following: 

If x2 = x+ I then, 

Xll = fib(n) x + fib(n-l) 

...... ( I ) for n>O. 

Proving ( I) by induction: 

RTP True for n = I 
x I = ( I"i b ( I ) ) x + fi b ( 0 ) 
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x =1.x+O 

x = X 

Supposc it is trltcfor n = k 

I.C. X k = fi b ( k ) + fi b ( k - I ) 

RTP TrIlc/or n = k + J 

1. c. X k + I = ( fi b ( k + 1 ) ) X + fi b ( k ) 

k + I k 
X = X . X 

= ( fi b ( k ) . X + fi b ( k - 1 ) ). X 

= fi b ( k ) . X 
2 + fi b ( k - 1 ) . x 

) 

But x- = x + I, 

X k + I = fi b ( k ) . ( X + I ) + fi b ( k - 1 ) . x 

= fi b ( k ) . x + fi b ( k ) + fi b ( k - I ) . x 

= ( fi b ( k ) + fi b ( k - I ) ) . x + fi b ( k ) 

BLIt fi b ( k ) + fi b ( k - 1) = fi b ( k + I ) 

Therefore, 

X k + I = fi b ( k + 1 ) . x + fi b ( k ) 

12 

Now the two roots of Xl = x+ I are <PI = (1 +05)12 = 1·6180339 ... ancl-<P2 = (1--05)12 = 
-0·61 ~()339 .... and thus that these are the only two values for which their powers can 

he expressed as Fibonacci multiples of themselves, as given in the formula. 

So, from the formula above, we have: 
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<Pill = fib(n) <PI + fib(n-I) 

and also 

Subtracting (B) from (A) gives: 

and frolll this we derive an initial formula for fib(n): 

fib (n) =~l~.:.ljht 
«PI - (-<H) 

But <PI - (-<P2)=-0S, so we can write this as: 

(A) 

(B) 

(C) 

To get the form of the formula which involves only <PI, we replace <P2 by I/<PI so that: 

The Golden Rectangle, 

fib (n) = ~111 - (-( I / <PJ2t 
-0s 

I" b ( ,h 11 _ (_ ,h -11 
I n) = ~1----=-ciIL - -0s -
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a b :x 

y-x 
y 

The rectangle shown here is a Golden Rectangle with proportions x/y. The section 

labelecl "a" is a square drawn in the rectangle with proportions x/x. The section 

labelecl "b" is another Golden Rectangle, this one with proportions (y-x)/x. fn other 

words, the ratio of the lengths of the sides of section "b" is the same as the ratio of the 

length of Ihe sides of the entire large rectangle. This is the characteristic of Cl Golden 

Rectangle. When you square it (inscribe a square with lengths the same as the length 

of the short side of the rectangle), you are left with another rectangle with the same 

proportions as the original. 
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The Fibonacci Rectangles and ~S'hell Spirals 

Another picture showing the Fibonacci numbers I, I ,2,3,5,8, 13,21 , .. can be achieved 

starting with two small squares of size I next to each other. On top of both of these a 

square of size 2 (=1+1) is drawn. 

15 

Now a new square - touching both a unit square and the latest square of side 2 - so 

having sides 3 units long is drawn; and then another touching both the 2-square and 

the 3-square (which has sides of 5 units). We can continue adding squares around the 

picture, e({ch new square having a side which is as long as the sum or the latest two 

square's sides. This set of rectangles whose sides are two successive Fibonacci 

numbers in length and which are composed of squares with sides which are Fibonacci 

numbers, we will call this set the Fibonacci Rectangles. 

13 

~ B 5 

The next diagram shows that we can draw a spiral by putting together quarter circles, 

one in each new square. This is Cl spiral (the Fibonacci Spiral). A similar curve to this 

occurs in nature as the shape of Lt snail shell or some sea shells. 
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Whereas the Fibonacci Rectangles spiral increases in size by a factor of ep (1.618 .. ) in 

a ((aorter or a turn (i.e. a point a further quarter of Cl turn round the curve is 1.618 ... 

times as far from the centre, and this applies to all points on the curve), the Nautilus 

spiral curve takes a whole turn before points move a factor of 1.618 ... from the centre. 

These spiral shapes are called Equiangular or Logarithmic spirals. 
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The t(}llowin?, are some examples of' {lbonacci spirals in nature 
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Petals Oil {lowers 

On many plants, the number of petals is a Fibonacci number: Buttercups have 5 

petals; lilies and iris have 3 petals; some delphiniums have 8; corn marigolds have 13 

petals; some asters have 21 whereas daisies can be found with 34, SS or even 89 

petals. 

Some species are very precise about the number of petals they have - eg buttercups, 

but others have petals that are very near those above, with the average being a 

Fibonacci number. 
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Fibonacci numbers can also be seen in the arrangement of seeds on flower heads. The 

picture here IS a photograph of a Cone flower. 

You can see that the orange "petals" seem to form spirals curving both to the left and 

to the right. At the edge of the picture, if you count those spiralling to the right as you 

go outwards, there are 55 spirals. A little further towards the centre and you can count 

34 spirals. The pair of numbers are neighbours 111 the Fibonacci series. 

Pine cones 

Pine cones show the Fibonacci Spirals clearly. Here is Cl picture of an ordinary 

pinecone seen from its base where the stalk connects it to the tree. 


