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Foreward 

The whole problem with the world is that fools and fanatics are 
always so sure of themselves, but wiser people so full of doubts. 

BeTtmnd Russel(1872-1970) 

This workshop has once more brought together staff and students with 
diverse interests in mathematics. We had a taste of classical geometry from 
Japan, interaction between matrices and combinatorics, symmetries and in
ner product spaces as well as the attractive area of prime numbers. Moreover, 
Prof Anton Buhagiar regaled us with yet another encounter with one of the 
myriad powerful applications of eigenvector techniques. I leave it up to you 
to shuffle through the pages of this issue of The Collection to have a glimpse 
of the long and interesting journey that mathematics has travelled since the 
time of the Greeks. 

11'ene Sciriha 
Editor 
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An 0 Id Japanese Theorem 

Roderick Gusman 

The theorem states the following: 

Theorem 1.1. Let a convex polygon (a shape is convex if with every pair of 
points that belong to the shape, the shape contains the whole straight line seg
ment connecting the two points) which is inscribed in a circle, be triangulated 
by drawing all the diagonals from one of the vertices and let the inscribed 
circle be drawn in each of the triangles. Then the sum of the radii of all 
these circles is a constant which is independent of which vertex is used to 
form the triangulation. 

As an illustration of the theorem consider the following figure. 
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R is the radius of the outer circle while T is the radius of the inner circle 
inscribed in the triangle. 

To prove the theorem, we must first prove the following two lemmas. 

Lemma 1.2. To show that T(a + b + c) = 2Ar-ea(ABC) 

Pr-ooj. Consider this diagram: 

A 

Br "'---- . '----<' ~ c 
a 

Then Area(ABC) = ~aT + ~bT + ~cr· = ~(a + b + c) 
.". r-(a + b + c) = 2Area(ABC). 

o 
Lemma 1.3. (Carnot's Theorem) In any triangle ABC, the sum of the 
distances from the cir-cumcenter- 0 to the sides is R + r-, (i. e The sum of the 
cir-cumradius with the inrad1:us). 

o Ma + Olvh + 0 Mc = R + T 

Pr-ooj. Only the case of an acute angle will be considered 
Given that: 

a = BC 

b = AC 

c = AB 

and A1a , Alb and A1c are the intersecting points of the perpendicular lines 
from the origin 0 to the sides of the triangle. 

For the inradius: r-(a+b+c) = 2Area(ABC) , which was proved in lemma 
1. 
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Also: 

Area(ABC) = Area(OAB) + Area(OAC) + Area(OBC) 
III 

= 2cOll{; + 20Jllh + 20Ma 

:. T(a + b + c) = aOMa + bOAh + cOMe 

o begin the circumcenter of ABC, in the isosceles triangle AOB, LAOB = 
2LC. Similarly, LBOC = 2LA and LAOC = 2LB. Equipped with this 
knowledge, one may consider several triples of similar (right-angled) triangles: 

• ABHb, ACHe, and BOMa (or an equal COMa) 

• BAHa, BCHc and COflih (or an equal AOMb) 

• CBHb, CAHa and AOMc (or an equal BOMe) 

This is possible due to the similarity properties of the angles. 
From the first triple one derives: 

AHbl c = AHclb = ° Mal R 

which leads to: OMa(b + c) = R(AHb + AHc) 
Similarly, 

OA:h(a + c) = R(BHa + BHe) 

O1l1e(a + b) = R(CHa + CHb) 

Summing these three up we get: 

OMa(b+c) + OMb(a+c) +OMe(a+b) = R(AHb+AHe+ BHe+ CHa +CHb) 

Grouping like subscript terms on the right hand side we get: 

O1l1a(b+c)+OMb(a+c)+OMc(a+b) = R(BHa + CHa+AHb + CHb+AHe + BHe) 

Thus, 

OMa(b + c) + OMb(a + c) + OMc(a + b) = R(a + b + c) 
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Adding this to (*) and dividing by (a + b + c) implies: 

OMa(a+b+ c) + OA1b (a+ b+ c) + OMc(a + b+ c) = T(a+ b+ c) + R(a+ b+ c) 

i.e.OMa+OA~+OMc=T+R 
o 

We can now proceed with the original theorem: 
First, observe that any triangulation of an n-gon with its diagonals con

sists of (n - 2) triangles. Next assume that the triangles in the triangulation 
are numbered and that the inradius of the circle in triangle i is 7"1:-

From Carnot's theorem, i.e lemma 2, one can prove that R + 7"i = OOi, 
where OOi is equal to the addition of the perpendicular distance from 0 to 
each side of the triangle i. 

That is: 

where 

001 = OOla + OOlb + OOle 

002 = 002a + 002b + 002c 

OOi = 001:a + OOib + OOie 

00(n-2) = 00(n-2)a + 00(n-2)b + OO(n-2)e 

• Ola ... 0(n-2)a are identical to A1a in Cm'not's Theorem. 

• Olb ... 0(n-2)b are identical to A1b in Carnot's Theorem. 

• Ole··· 0(n-2)e are identical to lvfe in Cm'not's Theorem. 

The only difference is that in Carnot's Theorem one is considering one 
triangle, while in the original theorem one is considering a number of triangles 
that are formed by the n-gon. 

n-2 n-2 

:. 2.::>·i + R = :z= OOi 
i=l i=l 
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Thus 1'1 + ... + 'l"n-2 = 001 + .,. + 00'n-2 - (n - 2)R 
But 001 + ... + 0071 - 2 is identical to the perpendiculars of the sides of 

polygon counted once and the perpendiculars to the diagonals counted twice 
since every diagonal is the side of two adjacent triangles. 

Furthermore, considering such internal perpendiculars, each is taken once 
as a positive value and once as a negative value and thus contributes nothing 
to the sum. Therefore, this sum is equal to the perpendiculars from 0 to the 
sides of the polygon. That is the right-hand side is a constant. 

Thus the left-hand side i.e 1'i is also a constant. 
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On Hand Shakes: 
A Combinatorial Problem 

Antoine Grech and Ian George Walker 

The problem is as follows: 

A number n of couples meet at one of the couples' homes. The 
female host (Fh) notices that no two of the people present (ex
cluding herself) shake hands with the same number of people. 
No person shakes hand with the partner. With how many people 
does her husband (Hh) shake hands? 

Solution One 

The first solution will solve the problem for n = 4, where there are in all 
8 persons. Assuming that handshaking never occurs between partners, a 
person can shake hands with at most 6 people. Construct a graph G having 
2n = 8 vertices each representing a single person. Two vertices are adjacent 
if a handshake occurs between these two people. Excluding the Fh, no two 
of the seven people shake the same number of hands. Therefore the possible 
number of handshakes are 6,5,4,3,2,1 and O. Thus there must be some person, 
labelled V6 who shakes hands with 6 people. The partner of V6 is Vo who does 
not shake hands ,,"ith anyone. To see this recall that partners do not exchange 
handshakes; thus Vo is not adjacent to V6. Since all the other people shook 
hands with V6 and since the number of handshakes is unique (excluding Fh), 
then 'Vo must have shaken hands zero times (i.e Vo is disconnected from the 
rest of the graph). Let V5 be the person who shook hands five times. Then 
the person who shook hands once (vd is his/her partner, since apart from 

8 
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Vl, Vo all other persons must have shaken hands at least twice, with V6 and 
v,s. Similarly, if V4 is the person who shook hands four times, then by the 
same argument V2 (the person who shook hands twice) is V4 's partner. The 
remaining vertex is V3 for the person who shook hands 3 times. Who is V3 's 
partner? Choosing any partner from vo, Vl, V2, V3, '04, V5, V6 would contradict 
the premise that no two people (Ph excluded) shake hands the same number 
of times. Thus V3 's partner must be Ph which implies that V3 is Mh, thus 
solving the problem. The following graph illustrates the solution. Note that 
at least two vertices in a graph must have the same degree (number of edges 
incident to a vertex). 

6~ // \ '\. 

1 

2 
00 

3 
Fh Mh 

Solution Two 

The use of adjacency matrices provide a better model for solving the problem 
for a general positive integer n. As before the 2n-l people apart from the Ph 
can be labelled according to the number of handshakes (0 ... 2n - 2) which 
are all distinct by the above premise. Reserve the label 2n - 1 for the Ph. 
Construct a 2n - 1 x 2n - 1 matrix where element (i, j) is labelled if the i'th 
person shakes hands with the j'th person. Using a similar argument to that 
of solution one, 2n - 2,0 form a couple; similarly 2n - 3, 1 form a couple. In 
general, 2n - k, k - 2 will form a couple for n ~ k - 1. Thus, n - 1 couples 
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with (n + 1) - 2 = n - I, which contradicts the uniqueness of the number 
of handshakes, unless this couple represents Fh, and Mh. Thus Mh shakes 
n - 1 hands. 

2n - 2 
2n - 3 

o 

o 1 1 110 
101 100 
1 1 0 000 
110000 
100000 
000000 



.. 

Crystallography and Symmetry 
Groups 

Roberta Micallef 

Introduction 

Crystals are assemblages of very small basic units of matter repeated pe
riodically in 3 dimensions. The connection with group theory is that each 
pattern can be characterized by its symmetry group. It turns out that there 
are only 230 of these so-called crystallographic space groups amongst which 
are 22, which crystallographers prefer to regard as distinct, but which, from 
an abstract point of view, form 11 pairs of isomorphic groups. Thus the 
space groups fall into 219 isomorphism classes. The enumeration of these 
space groups is built upon the 14 lattices determined by Bravais. Since the 
enumeration is quite complicated, we here look at some of the corresponding 
ideas involved in the analogous 2-dimensional problem where 17 groups, no 
two of which are isomorphic, arise. 

First recall that an isometry of the plane ]R2 is a distance- preserving 
mapping of R onto itself. Amongst such isol11.etries are translations, rotations, 
reflections (in lines) and glide reflections. The latter being the result of an 
ordinary reflection in some line 1 followed by a translation parallel to 1. Figure 
1 adequately describes these movements. 

Isometries of the Plane 

Definition 1.4. An isometry of the plane is a distance preserving function 
f : ]R2 -----7 ]R2 

11 
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Here distance preserving means that for points P and Q with position 
vectors p and q, 

If(P)f(Q)1 = IPQI i.e. If(p)f(q)1 = Ipql 

Proposition 1.5. Let f : ]R2 ---'I ]R2 be an isometry which .fixes the origin, 
then F preserves scalar products and angles between vectors. 

Proof : Let u, v be vectors and let U,lI be the points with these as position 
) 

vectors. Let f(U) and f(lI) have position vectors u' = OF(U) and v' = 
) ° F(lI). For every pair of points, P and Q we have: 

If(P)f(Q)1 = IPQI, so lu' - v'I2 = If(U)f(lI)12 = IUlI12 = lu - v12. 
Hence lu'I2 + Iv'I2 - 2u'.v' = lul 2 + Ivl 2 

- 2u.v. 
Since lu'l = 10f(U)1 = If(O)I(U)1 = 10UI = lul and Iv'l = 101(11)1 = 

If(O)f(lI)1 = 10VI = Ivl 
We obtain u'.v' = u.v, which shows that the scalar product of two po

sition vectors is unchanged by an isometry, which fixes the origin. Simi
larly, angles are preserved since the angle between the vectors u' and v' is 

arccos 1:::il~/1 = arccos I~I'I:I' 
o 

Wallpaper Patterns 

The 2-dimensional repeating patterns we consider are commonly called wall
paper patterns. By definition these are patterns in which it is possible to find 
a basic pattern unit repeated periodically but not' continuously' in each of 
two non-parallel directions 

Wallpaper patterns correspond to plane sym.metry groups, generated by 
two linearly independent translations. 

The Crystallographic Restriction 

Imagine you wish to tile your bathroom with only one type of tiles with 
the shape of a regular polygon. 'While this is easily possible with hexagons 
triangles and squares, you run into trouble with pentagons,say. 

This is due to crystallographic restriction. Since the vertex angles of 

1 1 1 1 t (2n-4) right angles . d' '1' . regu ar po ygons are eac 1 equa 0 ~,' a peno lC tl mg lS 
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possible only if these are integral fractions of 3600 degrees. This requires 
that 112~2 is a positive integer. 

Let G be a plane symmetry group. Each rotation of G necessarily has 
order I, 2, 3, 4 or 6. There are only 5 basic types of lattice, which can 
underlie a plane syrnmetry group. Lattices possessing reflectional symrnetry 
in a line must be made up of rectangles or rhombuses. Also if a lattice has 
glide-reflection symmetry it is necessarily of centered rectangular type. Thus 
there are only 5 kinds of lattices, which these are the 2-dimensional analogues 
of the 14 Bravais lattices. 

• .. "' • • .. • " 

" .. .. .. • 
.. .. 

.. .. .. .. .. .. .. 
Oblique pax"O..Ueiogfum He)(CtgohC.d t3q,~e 

" 
., .. .. .. .. .. .. .. " 

'" .. .. 
'" .. ... .. .. " .. .. .. ~ .. .. .. 
Recto..n~nr Centred recto.ngu i ClV"' 

Definition 1.6. : A 2-dimensional crystallographic point group K is a group 
of isometries of lR, which fixes a point P and maps a 2-dimensional lattice 
containing P into itself. 

In any such group there can be neither translations nor glide reflections. 
Consequently either all the elements of K are rotations or one half of them 
are rotations and the other half reflections. It follows that K is isomorphic 
to one of the cyclic (rotational) groups en or one of the dihedral groups 
(with two orthogonal axes of rotational symmetry), Dn where n = 1,2,3,4 
or 6. Each plane group G determines a crystallographic point group as a 
homomorphic image. 

.. 
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Frieze Patterns 

These are 2-dimensional repeating patterns whose syrnmetry groups are dis
crete and infinite but also leave a line in ]R2 fixed. In such groups the sub
group of translations must be isomorphic to the infinite cyclic group. There 
are seven distinct frieze patterns; their symmetry groups fall into four iso
morphism classes. 

!'t'iu( P~Hh>l'H\ 
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':;' 'W tt"ll"li'" I"jl ;'ft ............. ! (i!o-,,...:;~:.~!~·~,·,~.~i.l 
; f . 1 .. :::.:,:.~_j 1 i i L:::=~ .~ . , ............. __ 1 ~_ .. __ ""j 1 ~."_ •• ,; 
.......... ~ ......... M ...... ~=.J ... _____ l 

(\"t'n j~~, f\~j, iua tmn"' 

"'I' : I "',.,,-..............,"!' . , !, -.-.~ H l' I' l;l "'-"', i, 
t ; L ......... _.., I H ..... ~::;ll Jl L......, J 1 j 
L~~ L=:::::-j ~~~" dll~ 
~'.ljh I 11~: \ rrltuW.n il:H);" h;:H nun 

11~lliIFnilIII~'11 
f'.diO"tt h; Uhd,)jl\~i.ll'dl" qnt 

l~~~~§ 
1'.:lh'<'tl,~. ! h)"\'l' t'~'n" \1',';1' (h\l, ,.~'ni";L, ~ln> i:.jt'i/t;tll d, 

New Models for Quasicrystals 

In 1984 a group of experimentalists has discovered diffraction patterns for 
electrons diffracted at the atoms of an alloy composed of an Aluminium and 
Manganese. 

The striking features are: 
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1. A rotational symmetry around a lO-fold axis, called 'Forbidden Sym
metry' in crystallography because it cannot occur in crystals 

2. Non-translational symmetry: it is not possible to construct the whole 
pattern by gluing together identical copies of one shape (called the 
'Unit Cell' in crystallography) 

3. Long-range order: One observes a well-ordered pattern, which may be 
extended over the entire space according to a well-defined prescription. 

These observations imply that, the new object cannot be described rnathe
matically by the laws of usual crystallography and is called Quasicrystal. 

Mathematical Models for Quasicrystals 

There are new mathematical models (affine extensions of noncrystallographic: 
Coexeter groups) for quasicrystals, which use a projection from a higher di
mensional periodic lattice to construct a periodic point set of lower dimen
sions. The vertex of particular tilings of the plane e.g. the Penrose tiling is 
an example of aperiodic point sets compatible with lO-fold symmetry. 



Generation of Prime Numbers 

Mark Anthony Caruana 

Introduction 

Introduction Prime numbers are by definition numbers which are only di
visible by one and by themselves. It can be proved that such numbers are 
infinite, as are after all, the Real Numbers, or the Natural numbers. In the 
following pages will be trying to shed some light over the following unan
swered question: 

"Is it possible to come up with some form of equation with which 
one can generate such numbers?" 

It is interesting to know that ever since Antiquity, mathematicians have 
always been haunted by this infamous question which, in virtue seems to 
have no straight forward answer. 

History 

Mathematicians like Eratosthenes (275-194 B.C., Greece) managed however 
to come up with interesting methods of how to find prime numbers. One 
of these methods is known as 'The Sieve of Eratosthenes'. The method is 
rather crude and time consuming but rather efficient. All one must do is to 
build up a chart, or a list containing the natural numbers. Then one must 
simply follow the set of simple instructions listed below: 

• Cross out 1, (as one is not prime). 

16 
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• Circle 2, because it is the smallest positive even prime. Now crosS out 
every multiple of 2 present in the chart. 

• Circle 3, the next number in the list, and again, cross out all the mul
tiples of 3. 

• Omit 4,(as four has four has been already crossed out). 

• Circle 5, etc. 

In later years the mathematician Euler came up with an equation which 
could generate 40 primes, which for the time was a break through. The 
equation is y = x 2 + X + 41 and could generate prime numbers for x between 
o and 39. In recent times, someone, whose identity is not known, came up an 
equation which could generate 45 prime numbers; this equation is presently 
the record breaker. The equation is y = 36x2 

- 810x + 2753, and can generate 
primes for x between 0 and 44. 

Prime Number generation 

There are various algorithms by which prime numbers can be created (one of 
them is the Sieve of Eratosthenes); however we are after an algebraic equation 
which can generate such numbers. 

Approximations 

These equations have not been conceived to created EXACT sequences of 
prime numbers but rather a sequence of numbers which are approximately 
prime i.e. such equations will generate numbers such as: 1.99, 2.87, 4.98 . 
. . These sequences when rounded off very often will give us a very good 
sequence of prime numbers. 

• The Linear Approximation 

In this method we will derive a linear equation which will relate the 
Natural Numbers to the Prime Numbers. 
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From the above table, the following scatter plot is constructed. 
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From the above figure and table we can obtain the line of best fit 
Y = m.'E + c, where 

n 2:~_~1 XiYi - (2:~=1 Xi) (L~~l Yi) 
rn, = ~n ,2 ("'71. )2 

n Di=1 Xi - L..ti=1 Xi 
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1 71. m 71. 

c = - ~ Yi - - ~ Xi 
n 1:=1 n i=1 

After having carried out the necessary computations, the following re
sults are obtained: 
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The line of best fit is Y = rnX + C, where m = 4.97381078290650, 
C = -23.20729772607083. 

(The vertical lines represent the distance from the line of best fit to the 
pOints) 

The main limitation of this approach is that in various cases the line 
of best fit is quite distant from the points. Thus, the approximation in 
these particular cases will be quite poor . 

• The Second Order Approximation 

In this method we shall attempt to bend the line of best fit so as to try 
to accommodate all the given points. 

Build up the table and draw the scatter plot 

Calculate the coefficients m, c for line of best fit 

Calculate the vertical distance from each point to the line of best 
fit 

If we have 90 nurnbers, say, in the x-values row, namely 1,2,3,,90; 
then sub divide this interval into three intervals, each of equal 
size. Say first interval contains numbers 1, 2, 3 ... 30; the second 
interval contains the numbers 31, 32, 34 60. Similarly for the third 
interval. 

From each interval choose: 1. the point which is closest to the 
line, 2. the point which is most distant from the line. In so doing 
we would end up with three points which are closest to the line in 
their respective intervals, a1, a2, a3, and three points which are 
the most distant from the line 1, 2, 3 

Now we want a quadratic equation of the form y = ax2 + bx + C 

Now we can insert (Xl, (X2, (X3 in the above equation and find the 
values of a, b, C which we shall be calling aI, bl , Cl (recall the fact 
that (Xi is a point which contains an x- value and ay-value). 

The same procedure can be done with /31, /32, /33 in this case the 
values we shall obtain are a2, b2, C2. Now to find the actual values 
of a, b, c simply compute the following: 

CL = al + a2. b = b1 + b2. C = Cl + C2 

2' 2' 2 



The Collection VII 20 

The equation which can generate the first 300 primes is, 

y = ax2 + bx + c 

where: a = 0.02070189842422, b = 3.68979741019214, c = -10.55260457177425 

In the following figures, we can see that the curve now fits the given 
points much better. 
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Equations Which can Generate Exact sequences 
of Prime Numbers 

These equations have been created to generate exact sequences of prime 
numbers. However one must say that although these equations can do this 
remarkable job, such equations can become very long and rather messy to 
work with. For example, to generate the first 6 prime numbers we would 
require a polynomial of order 6. Similarly, to generate the first 100 primes, a 
polynomial of order 100 would be required. The method used is rather easy 
and in fact it uses Gaussian elimination. 

• Decide for the number of primes that the equation will generate. 

• Let the equation be of the form: 

y = O:nxn + O:n_1Xn-1 + ... 0:1:1; 

(where n is the number of primes that the equation is capable of gen
erating) 
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• To find the coefficients 0'1,0'2, ... , an Gaussian elimination can be used. 

As an illustration, the equa.tion required to derive the first six prime 
numbers is: 

where 

Y = a::c6 + bx5 + c::c4 + dx;3 + ex2 + fx; 

a = -0.020833333 

b = 0.3625 

c = -2.39583 

d = 7.520833333 

e = -11.083 

f = 7.616666667 



Discriminating between two 
groups using eigenvectors 

Introd uction 

Anton Buhagiar 
Department of Mathematics. 

Consider 9 populations or groups, 9 2:: 2. The object of discriminant analysis 
is to allocate an individual to one of these 9 groups on the basis of his/her 
measurements on the p variables Xl, 1';2, ... ,Xp. It is desirable to make as few 
'mistakes' as possible in classifying these individuals to the various groups. 

For example, the populations might consist of different diseases and the p 
variables 1';1, X2, ... ,xp might measure the symptoms of a patient, ego blood 
pressure, body temperature, etc. Thus one is trying to diagnose a patient's 
disease on the basis of his/her symptoms. As another example, one can 
consider samples from three species of iris. The object is then to allocate a 
new iris to one of these species on the basis of its measurements ego sepal 
length, sepal width, etc. 

In the case of two groups, 9 = 2, in the univariate case, when p = 1 and 
Xl is the only variable measured, it is quite easy to see when the two groups 
are well separated from each other. For this purpose, one can perform a 
t-test on 1';ltO see whether the two groups have significantly different means. 
Equivalently, one can define the ratio: 

the difference between the means of the two samples 
deviations within the samples 

A large value for this ratio, which is proportional to the t-statistic, would 
indicate that the means of the samples are well separated from each other; 

22 
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conversely, a small value for this ratio would imply that within sample varia
tions are relatively large, and that readings from the two samples would tend 
to overlap. This would in turn lead to poor discrimination between the two 
groups in terms of .1:1, and to a non-significant difference between the sample 
means for ;£1. 

In the case when 9 ~ 2, that is for two or more groups, and when p = 

1, one-way analysis of variance, the F-test, can be performed to examine 
whether the mean of Xl differs significantly over the groups. Equivalently, 
one can define the ratio: 

Variation between the means of the samples 
Variation within the samples 

(1.0.0.1) 

Again in this case, a large value for this ratio, which is closely related to 
the F-statistic, signifies good separation between the groups and a significant 
difference for x1between the groups. In fact, in the case of two groups (g = 

2), the F-test and the t-test are equivalent to each other, with F = t2 for a 
given problem. 

In the case when the number of variables is larger than one, p > 1, one can 
perform separate univariate tests on each of the p variables Xl, X2, ... ,xp. For 
purposes of discrimination, however, it is often preferable to define a linear 

p 

combination y of the Xk'S, namely y = L akXk, with the object of maximis-
k=l 

ing the ratio defined in equation (1). Finding the best linear combination 
which maximizes this ratio is equivalent to maximizing the statistical dis
tance between the groups. This in turn would guarantee greater success in 
discriminating between the different groups. As shown below, the problem of 
finding the optimum choice of the coefficients ai can be reduced to a suitable 
eigenvalue problem. 

Partitioning the total variation of y 

We will now discuss briefly a very important identity in the context of dis
crimination and analysis of variance. '''le will assume that there are 9 dif
ferent groups in all, and that there are ni cases in the i'th group, where 
i = 1,2, ... ,g. For each case, the p variables Xl, X2, '" ,Xp are measured. We 
then denote by Xijk the value of the kih variable (Xk) for the j'th case in the 
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i'th group. Note here that the suffixes have the following bounds: 

:r:1:jk: 1 ~ k; ~ p, 1 ~ j ~ nj, 1 ~ 1: ~ g. 

value of variable Xk for case j in sample i. 
It is then easy to write down the mean of the k;'th variable over the i'th 

sample, and the grand mean of the k;'th variable over all groups: 

1 71.; 

Xi.k = - '\' Xijk 
n·L.t 

1, j=1 

1 9 71.; 

X .. k = -g--~ ~ Xijk 

'\' n· i=l j=1 L.. 1, 

i=1 

In an analogous fashion, the linear combination Y for the i'th case in the j'th 
p 

sample can be written as Yij = L akXijk. Its mean over the i'th sample and 
k=1 

its overall (grand) mean are then given as: 

1 71.; P P 

Yi .. = ;:. ~ ~ akxi.jk = ~ akXi.k 

1. j=l k=l k=1 

1 9 71; P P 

Y .. = -g-~ L L akXijk = ~ ak·'E .. k 

L ni i=1 j=1 k=1 k=l 
i=l 

The sum of the square of the deviations of the values of Yij for each case from 
their overall (grand) mean Y .. is then given by 

9 71.; 9 71.; [p ] 2 

t;j~ (Yij - y . .)2 or t;i.r; :; ak(Xijk - X .. k) 

This quantity is often referred to as the total variation of y, or equivalently 
as the total sum, of squares, often abbreviated as SST. Algebraic manipula
tion of the SST will result in a very important partitioning of this variation 
into two separate parts as follows: 
SST == Total sum of squares 

gn;[p ]2 
= i~j~ ~ ak(Xijk - X .. k) 

interchange order of surnmation: 

a/ant 9 71,1 

= L L L (Xijl - .'E .. I) (Xijrn - X .. m) 
1~I,m0J i=1 j=1 

add and subtract mean of sample from which reading 1:S taken, leaving sum 
unchanged: 
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a/am 9 71.i 

'\' '\''\'(X X -1:1' X )(X x' +X x') L.. L.. L.. . ,:jl - . i.l -. 'i.! -· .. 1 . ijm - '1:.m i.m - ' .. m 
l";;l,m";;pi=lj=l 

multiply out the terms in pain' 

a,am. 9 71.i alarn 9 n 1" 

'\' '\' '\' (X'''I - X'I)(X" - x· ) + '\' '\' '\' (X'I - X 1)(X' - X ) L.. L.. L.. . '1.]. • 1... . 1.]m . 1 .. m L.. L.. L.. 1... ...' un .. m 
1 ";;l,m";;p i=lj=l l";;l,m~ i=l j=1 

+ the other two cross terms which each equal zero using the definition of 
the sample means 

s1:mplify second term since brackets are independent of suffix j: 

a,am. 9 ni alam. 9 
- '\' '\' '\' (x "I - X· I) (X, . - X· ) + '\' '\' n· (x . I - X I) (x . - x ) - L.. L.. L.. 'J. 1... 1Jm 1 .. m L.. L.. ".. .., Lm .. m 

1";;I,m~i=1j=1 l";;l,m~i=l 

== SSW + SSB 

The first term in the penultimate line, often abbreviated as SSW, esti
mates the size of deviations of the readings from their own sample mean, 
and is often called the within-variation or within sum of squares. The sec
ond term, often abbreviated as SSB, estimates the size of the deviations of 
the sample means from the overall mean and is referred to as the between
variation, or the between sums of squares. The above identity can be therefore 
written as 

SST = SSVl + SSB (1.0.0.2) 

or total variation = variation within samples + variation between samples 
This important identity is often referred to as partitioning the sums of 

squaT'es. It is important to note that the terms SSB and SSW are, respec
tively, the numerator and denominator in the ratio defined by equation (1). 
The groups are more easily separated if the ratio in equation (1), XX!, is 
large or equivalently ~~~ is small. Statistical tests have been devised using 
these ratios to determine whether the sample means are significantly different 
from each other. 
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Matrix formulation 

The sums of squares, SST, SSW and SSB are all quadratic forms in the 
coefficients ak 

and can be elegantly represented in matrix form. Rearranging the p 
coefficients ak as thep x 1 column vector a, one can rewrite the partitioning 
identity (2) as 

atTa = atWa + alBa 

SST = SSW + SSB 

where T, HI and B are symmetric p x p matrices, the l, m'th entry of 
which are given by the terms multiplying alam in the corresponding sum of 
squares. Thus, 

9 71; 

the l, m,'th entry of T is ~ ~ (Xijl - X . .l) (Xijm - x .. m) ; 
i,=l j=l 

9 71.; 

the l, m'th entry of 1-V is ~ ~ (Xijl - Xi.l)(Xijm - Xi .. m); (3) 
i=l j=l 
9 

the l, m'th entry of B is ~ ni(Xi.l - :r .. l)(Xi,m - X.:rn). 
1:=1 

The matrices T, VV and B are called sums of squaTes and cross-product 
matrices. Since the partitioning holds for any arbitrary vector a, these three 
matrices satisfy the identity 

T=W+B (1.0.0.4) 

In fact, B is usually calculated from B = T - W in practise. 

Maximising the ratio of between to within vari
ation 

For optimum separation of the groups, we would therefore seek to maximise 
the ratio ffff,!. In matrix form, we would like to find a suitable column vector 

a with entries aI, a2, .... , ap , such that ::l!~ is a maximum. Equivalently, 
since multiplying a by a scalar would not change the ratio, we can maximise 
the numerator, subject to the constraint that the denominator is one. Using 
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Lagrangian multipliers, we maximise the function cp(a)defined by 

cp(a) = aiBa + A(l- a/\iVa). 

27 

This function cp( a) can then be differentiated with respect to each of the ak's, 
k = 1, 2, ... , p, and the derivatives aa'P(a) are each set to zero. 'iVhen the 

CLk 

resulting set of p equations are rearranged in matrix form, one obtains the 
homogeneous linear system 

ocp(a) 
oa 

= 2Ba - 2AWa = 0, 

where 0 is the p x 1 column vector of zeros. Dividing by 2 and factorising, 
we then obtain the condition: 

(B - AVV)a = 0, or equivalently 

(1-1/ - 1 B - AI)a = O. 

(1.0.0.5) 

(1.0.0.6) 

Therefore a is an eigenvector of 1-1/- 1 B and A is its corresponding eigen
value. Further, pre-multiplying equation (5) by at, we get 

at(B - AW)a = 0, that is 

at Ba = Aal;lVa or 
atBa 

A=--. 
at"Wa 

(1.0.0.7) 

From equations 6 and 7, one can therefore conclude that the maximum 
possible value of the ratio :/:r~ (= %%:r) is the largest eigenvalue A of lV-1 B 
and the optimum choice of a is the eigenvector of A. The linear combination 

p 

y = I.: akXk can be written in matrix form as atx. For this particular choice 
k=l 

of the vector a, this linear combination is the one which best separates the 
groups. It is called Fisher's discriminant function (Fisher, 1936) after its 
inventor. 

An example on discrimination between two groups 

To illustrate the above, we now give an example of discrimination between 
two groups (g = 2) on the basis of two variables (p = 2). The following 
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'botanical' example is inspired by Fisher's classic paper on discrimination 
(Fisher, 1936), which is described in Mardia et al. (1979), \vhilst the numer
ical data are derived from Tacq (1997). 

The datafile in our example contains measurements on two types of iris. 
The variables Y, Xl and X 2 are defined as follows: 

{ 
0 if iris is of the setosa type (group 1); 

Y = type of iris = 1: if iris is of the veTsicoloT type (group 2). 

Xl = sepal length and X 2 = sepal width. 

Xl and X 2 are assumed to be normally distributed with similar covari
ance structure in the two groups (Tacq, 1997). 

The data-file contains 15 cases in all, 6 in the first group (setosa), and 9 
in the second group (veTsicolor-). For each individual case (flower), we give 
its group membership (Y), its sepal length and sepal width (Xl and X 2 ). 

The data-file is listed in Table 1. 



Table 1: The datafile and its statistical description. 
Calculation of the matrices W, rand E, using equations (3) and equation (4). 

y 
Setosa 0 

Versi
color 

o 

o 
o 
o 

o 

1 

1 

1 

1 

1 

1 

1 

1 

Xl 
1 

2 

4 

5 

5 

4 

4 

5 

6 

6 

7 

8 

9 

9 

X2 

1 

4 

1 

5 

5 

9 

2 

4 

6 

3 

6 

6 

7 

7 

8 

Groups 1 and 2 together: 

Group 1: Setosa 

Cases in sample: 111 =6 

Mean: XI = 3.000 Xl = 4.166 

Variation: L(XI-XY =18.000 L(X2 -XJ2 =44.833 

Covariation: L(XI -XI)(X1 -X2 ) = 22 

(
18 22) :. W, == ; within variation in group I. 
22 44.833 

Group 2: Versicolor 

Cases in sample: n2 =9 

Mean: XI = 6.444 X2 = 5.444 

Variation: L (XI - xy == 30.222 L (X2 - xS = 32.222 

Covariation: L(XI -XJ(X1 -Xl) = 25.222 

(
30.222 25.222) 

:. W, == ; within variation in group 2. 
- 25.222 32.222 

_ _ I I _ (48.222 47.222). -1 _ ( 0.052 -0.032) 
.. W-11 +11,- ... W - . 

1 - 47.222 77.056 -0.032 0.032 

variation within samples; inverse of W. 

Total number of cases: n = 111 + 112 = 15 

Overall mean: XI = 5.067 Xl = 4.933 

Total Variation: L(XI _XI)2 =90.933 L(X2 -X2)2 =82.933 

Total Covariation: L (XI - XI )(X2 - X 2 ) = 63.067 

. = (90.933 63.067) .. T . 
63.067 82.933 

total variation 

(
42.711 15.844) 

B=T-W= . 
15.844 5.858 

variation between samples 
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In Table I, we also give the statistical description of each group sepa
rately, and of both groups pooled together. In particular, we give the means 
of the two variables Xl and X 2 , namely Xl and X 2 , for each sample sep
arately, and the within sums of squares for each sample, 1V1 and 1V2 , from 
which the within sum of squares matrix liV for both groups could be simply 
calculated using W = VV1 + 1V2 . The groups are then pooled together, to ob
tain the grand means of Xl and X 2, and hence the total sum of squares matrix 
T. The between sum of squares matrix B is then calculated as B = T - "\IV. 
The reader is referred to Table I for the calculation of the 2x2 matrices HI, 
B, T and VV-l. 

One can then calculate 1/V-1 B as follows: 

1,11- 1 B 
(

0.052 -0.032) (42.711 15.844) 
-0.032 0.032 15.844 5.858 ( 

l.711 0.635 ) 
-0.843 -0.313 . 

This matrix has non-zero eigenvalue ,\ =l.399, with unit eigenvector a 

(
0.897 ) 
-0.442 . 

Fisher's discriminant function is therefore given by atx = 0.897 Xl -
0.442X2 . This is the linear combination which gives the largest value (=,\) 
of the ratio %%l! in equation (2), namely, the ratio of the variation between 
samples to the variation within samples. 

Test of significance on the eigenvalue. 

One normally performs Hotelling's T2 test to see whether the mean of the 
discriminant function atx differs significantly between the two groups. 

The T2 statistic is defined as 

T2 = (n - 2),\, 

where n = nl + n2 is the total number of cases in the two samples. 
T2 should be 'large' if the means of the two groups are well separated. 
Conversely, T2 is 'small' if there is no significant difference between the 

two sample means. In this case, Hotelling showed that the quantity (;C:~~)T2 
should be distributed according to the F-distribution with p, n-p-1 degrees 
of freedom, where p is the number of variables featuring in the discriminant 
function and n is the total number of cases in the two groups. 
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In this application, p = 2, 11 = 'ILl + n2 = 6 + 9 = 15, 

T2 = (n - 2)'\ = (15 - 2)(1.399) = 18.182, 

F = (TL - P - 1)T2 = (15 - 2 - 1) (18.182) = 8.392. 
p(n - 2) 2(15 - 2) 

Degrees of freedom for F-test = p, 11 - P - 1 = 2, 15 - 2 - 1 
= 2,12. 

31 

In our case therefore, if there is no significant difference between the 
groups, the F-statistic should be distributed according to the F-distribution 
with 2, 12 degrees of freedom. 

From the tables, the critical F-value for 2, 12 degrees of freedom with 
a= 0.05 is 3.89. Since 8.392 > 3.89, we can conclude that the means of the 
two groups are significantly different. For this reason, discriminant analysis 
could be done profitably on this dataset. 

A typical statistical package would also include the following items in the 
output of a discriminant analysis: 

1. a classification rule to determine the group to which a given case is 
assigned; 

2. application of this classification rule to the cases whose group member
ship is known a priori, so as to obtain an estimate of the misclassifica
tion rate; 

3. application of this classification to classify cases of unknown type. 

We now describe briefly the classification rule and its application. 

The Classification Rule 

The discriminant function is often used to establish a classification rule 
whereby group membership of a given case can be determined. This could 
be done both for cases whose group membership is known a pTiori, and also 
for cases with unknown group membership. 

One classification rule can be set up in the following way. 
The value of the discriminant function atx is first calculated at the cen

troid of each group: 
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Group 1: 0.897(3.000)-0.442(4.167) = 0.849, 
Group 2: 0.897(6.444)-0.442(5.444) = 3.374. 
The cut-off is then taken to be the average of these two values: 

0.849 + 3.374 = 2.112. 
tc = 2 

32 

Then any case (Xl, X 2)is assigned to Group 1 if 0.897XI - 0.442X2 < 2.112, 
and to Group 2 otherwise. 
Using this rule, one can classify the original cases to find how good the 

discriminant analysis is. Prior group membership could be compared to the 
posterior grouping predicted by the classification rule. This comparison is 
summarized in a classification table. One can also use this rule to classify new 
cases for which group membership is not known. The use of the classification 
rule is illustrated in Table n. 



Table I1: Use of the classification rule: 
i) to classify original cases and hence 
ii) to obtain a prior versus post classification table; and 
iii) to classify new cases with unknown group membership. 

i) Ciasstfication of original cases: 

y Xl X2 0.897XI -0.442X2 Posterior 

Classification 
Setosa 0 1 1 0.455 0 

0 1 4 -0.871 0 
0 2 1 1.352 0 
0 4 5 1.378 0 
0 5 5 2.275 1 
0 5 9 0.507 0 

Versi- 1 4 2 2.704 1 
Calor 1 4 4 1.820 0 

1 5 6 1.833 0 
1 6 3 4.056 1 
1 6 6 2.730 1 
1 7 6 3.627 1 
1 8 7 4.082 1 
1 9 7 4.979 1 
I 9 8 4.537 1 

if) Classification Table: 
Posterior Classification: 
Group 1 Group 2 

Prior Classification: Group 1 5 I 
Group 2 2 7 

80% of the cases are classified correctly. 

iii) Class[fication of new cases with unknown group membership: 

y XI X2 0.897 Xl - 0.442X2 Postelior 

Classification 
? 6 5 3.172 1 
? 5 6 1.833 0 
? 3 7 -0.403 0 
? 4 3 2.262 1 
? 6 4 3.614 1 
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Conclusion and suggestions for further reading 

Discriminant analysis is a very popular multivariate technique. Like many 
other techniques in multivariate statistics, the method is based on the alge
braic eigenvalue problem. In this respect it is very similar to principal corn
ponent analysis, factor analysis, correspondence analysis and multivariate 
analysis of variance (Manova), in all of which one ha.s to find the eigenval
ues and eigenvectors of a suitable matrix (Lebart, Morineau and \iVarwick, 
1984). The eigenvalue problem defined by equation (5) is also important in 
the solution of vibrational problems of mechanics (Lunn, 1990 and Segerlind, 
1983) and in the buckling of structures (Dawe, 1983). 

Discriminant analysis is also related to linear regression and logistic re
gression, where group mell1.bership, y, is regressed on the mea.sured variables 
.Xi, (Flury and Riedwyl, 1993). 

Most books on multivariate statistics have a chapter on discriminant anal
ysis. The books by Tacq (1997), Manly (1986), and Flury and Riedwyl 
(1993) are very readable and should be reasonably easy to an undergraduate 
in mathematics or statistics. 

For students who wish to read further on discriminant analysis, one can 
suggest more mathematical texts such as Morrison (1990), Everett and Dunn 
(1991), Johnson and VJichern (1992) and Ivlardia, Kent and Bibby (1979). 
In addition to the statistical theory, these books also give many practical 
examples of this technique. 
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