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An Upper Bound for the Nullity
of Trees and Edge-Colourings

Stanley Fiorini

Abstract

A necessary and sufficient condition for the non-singularity of the ad-
jacency matrix of a tree is given in terms of the existence of a 1-factor in
the tree. The result is used to give an upper bound for the nullity of the
troe via edge-colourings of bipartite graphs.

Illustrating the basic concepts

011010
101100
110001
A(G) = 010011
100101
001110
1 5
2 4
3 6

Figurc 1: A graph G and its adjacency matriz A (G)

Edges {12, 46} in G arc independent because they share no vertex; they arc also
called a matching.

Independent edges {15, 24, 36} arc a I-factor of G becausc they cover all ver-
tices; they form a mazimal matching.

An edge-colouring of G is a partitioning of the edge set E (G) of G into match-
ings, called colour-classes. The least number of colour-classes is the chromatic
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indez x/ (G). In the example given ¥/ = 3 and the partitioning (the only onc
possible) is {13, 24, 56} (coloured &), {12, 36, 45} (coloured B) and {15, 23,
46} (coloured 7).

If A (G) is the maximum valency of G, then, clearly A (G) < x/ (G); it has been
shown by Vizing [2, pp. 30-32] that x/ (G) < A(G) + 1.

The graph G (above) has odd circuits (1231}, (124651). If all circuits arc cven,

then G is said to be bipartite and the vertex set V (G) of G can be partitioned
into V(G)=AUB, ANB =g¢suchthat F(G)C Ax B.

A tree T is a connected graph with no circuits and hence bipartite. If |V (T)] =
n, then |E(T)| = n — 1 and it must have a vertex of valency 1.

Figurc 2: A tree T and its bipartition:

Kénig (1916) proved that for a bipartite graph of maximum valency A, x/ = A.
(2. p.25]

The spectrum spec(G) of a graph G is the sct of cigenvalues of A(G); since
A(G) is real and symmetric, spec(G) is rcal. Coulson and Rushbrook (1940)
proved that the spectrum of a bipartite graph is symmetric about 0. [1, p. 87]
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Main Theorem: A tree T has a 1-factor if and only if A (7} is non-singular.
Theorem 1: If a trec T has a I-factor, then A (T} is non-singular.

Proof: T bipartite = spec(T) symmetric about 0

=  A(T) singular if n(T) is odd.

But T has a 1-factor = n(T") even, n (T) = 2k.

Proceed by induction on k.

For k = 1, there is only onc trec on 2 vertices and det (A (7)) = l

hence non-singular.

Assuming the asscrtion is true for k& and considering a vertex v of valency 1 with
neighbour w in a trec with 2k + 2 vertices, we label its vertices v = v, w = w2
01 o
sothat A(T) =1 10 u
oul A(T—v—w)

. . R;— R; — R
By a scquence of row and column operations of the kind: C; : c, - C]1

vectors u and u” can be ‘killed’ without affecting the sub-matrix A (T — v — w)
and without changing the value of {A (T)}.

A final row-operation R; < R, changes the sign of the resulting determinant
and yields |[A(T)| = ~ |A (T — v — w)| # 0, by the inductive hypothesis.

Thus A (T') is non-singular. B



Theorem 2 If a trec T has a matching M of maximum size g (covering 2 p
vertices vy, ..., vz,) and if v is any other vertex, then the row R, in A (T) cor-
responding to v is linecarly dependent on the rows R,, . ..., R,,, corrcsponding
to the vertices in the matching.

Proof: Let v have ncighbours vy, ..., v;, -

If some v;, (1 €t € 8) is not covered by M, then the edge v v;, could have been

added to M, contradicting maximality. Thus all of v;,,...,v; arc in M and
deleting v from T yields a disconnected graph with s components C,,...,C,
with

v;, € Cy (1 <t <s). Thus, A{T) can be represented by:

A(Cy) 0 0 0
0 A(Cy) 0 0
0 0o . 0 |I=
0 0 0 A(C)
1 1 1 |0

for an appropriate labelling of its vertices.

Onc notes that the top right-hand submatrix must be zero; otherwise if there
exist v; (in Cy say) that is not covered by this matching, then there exists a
path in G starting in v ending in v; with cdges alternately "not in™ / "in” the
matching, contradicting the maximality of M.

But by Theorem 1, the principal sub-matrix of size 2p X 2u is non-singular so
that by suitable elementary row-operations the first 2u rows of A (T') can be
reduced to

B:= (]2/1]*)

Thus the (2u + 1)”" row corresponding to v in scen to be the sum of the rows
Rv, + Rviy+ ...+ Ru; of B. B
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Since the vertex v was arbitrarily chosen from V (T)\V (M), we have the fol-
lowing:

Corollary: The rank 7k (T) of T cquals 2. B
The main theorem follows from this corollary and Theorem 1.

Now let A = A(T) and n = |V (T)]. Since T is bipartite, T has an cdge-
colouring with A colours (by K&nig), that is, E (T} can be partitioned into A
colour-classes I'1,...,a. It is clear that a colourclass consists of independent
cdges which form a matching. Hence the size of the largest colour class in the
graph is less than that of a maximum matching.

A
- —_ — £ | < N
Thus (n - 1) = |E(T)] =5, T4 < Afi’%" T < Ap,

<u
2 n-1

2

= (251
= rk (T)

~

Thus, the nullity of T is at most n — 1"‘,’2'['31 |

Open Problem: Investigate the nullity of bipartitc graphs.
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