The Eigenvalues of Self Complementary Graphs

Angela Lombardi

Abstract

Self complementary graphs have many interesting properties with reference to their main and non-main eigenvalues. Eigenvalues are a special set of scalars associated with a linear system of equations (i.e., a matrix equation) that are sometimes also known as characteristic roots, proper values, or latent roots. We consider the spectra of self complementary graphs.

A graph has a set $\mathcal V$ of vertices $\{1,2,\dots,n\}$ and a set $\mathcal E$ of edges joining distinct pairs of vertices.

Graph Complement The complement of a graph G is the graph \overline{G} with the same vertex set but whose edge set consists of the edges not present in G (i.e., the complement of the edge set of G with respect to all possible edges on the vertex set of G).

Example:

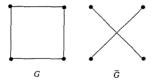


Figure 3: Graph G and its Complement Graph

Self Complementary Graphs : A self-complementary graph is a graph which is isomorphic to its graph complement.

Next are three examples of self-complementary graphs.

Example 1:

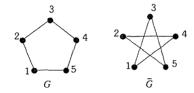


Figure 4: $G = C_5$ and its compliment \overline{G}

$$\mathbf{P}: \quad \begin{array}{ccc} 1 \rightarrow 3 \\ 2 \rightarrow 5 \\ 3 \rightarrow 2 \\ 4 \rightarrow 4 \\ 5 \rightarrow 1 \end{array}$$

Example 2:

Figure 5: $G = P_4$ and its complement \overline{G}

$$\begin{array}{ccc} \mathbf{P} \colon & 1 \to 2 \\ 2 \to 4 \\ 3 \to 1 \\ 4 \to 3 \end{array}$$

Example 3:

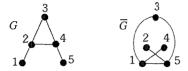


Figure 6: $G = A_G$ and its compliment \overline{G}

$$\mathbf{P}: \quad \begin{array}{c} 1 \to 4 \\ 2 \to 1 \\ 3 \to 3 \\ 4 \to 5 \\ 5 \to 2 \end{array}$$

An interesting property follows from the definitions given below of the adjacency matrix and its complement.

A is the adjacency matrix of a graph G, if it is the $n \times n$ symmetric matrix such that

$$a_{ij} = \begin{cases} 1 \text{ {i,j}} \text{ is an edge of G;} \\ 0 \text{ otherwise.} \end{cases}$$

 $\overline{\bf A}$ is the adjacency matrix of the complement \overline{G} of G if it is an $n\times n$ symmetric matrix such that

$$a_{ij} = \left\{ \begin{array}{l} 0 \ \{\mathrm{i,j}\} \ \mathrm{is \ an \ edge \ of \ G;} \\ 1 \ \ \mathrm{otherwise.} \end{array} \right.$$

If J is the all 1 matrix and I is the identity matrix then

$$\overline{\mathbf{A}} + \mathbf{A} = \mathbf{J} - \mathbf{I} \tag{1}$$

Finding an Antimorphism and an Automorphism

Example1: The adjacency matrix of C_5 is denoted by $A(C_5)$.

As we have shown before the mapping from C_5 to its complement may be represented as the permutation $P = (1\ 3\ 2\ 5)$ (4). By entering the matrices below into Mathematica and using the command Transpose[P].A.P we obtain the following matrices.

$$P = \begin{pmatrix} 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 & 0 \end{pmatrix}$$

$$P^T = \begin{pmatrix} 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$\mathbf{A}(\mathbf{C})_5 = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 \\ 1 & 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 1 \\ 1 & 0 & 0 & 1 & 0 \end{pmatrix}$$

So
$$P^T$$
.A. $P = \overline{A}$

Therefore $\, {\bf P} \,$ is an $\, antimorphism \,$ since it represents a mapping from $\, {\bf A} \,$ to its complement $\overline{\bf A} \,$

Let
$$Q = P^2 = (4) (1325) . (4) (1325) = (4) (12) (35)$$

then

$$Q = \begin{pmatrix} 0 & 1 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 1 & 0 & 0 \end{pmatrix}$$

So
$$Q^{-1}$$
.A. $Q = A$.

Therefore \mathbf{Q} represents an automorphism since it is a mapping from A onto itself.

Example 2: The adjacency matrix of P_4 is denoted by $A(P_4)$.

The mapping from \mathbf{P}_4 to its complement maybe represented as the permutation

$$P = (1243).$$

So
$$P^T$$
.A.P = \overline{A}

Let
$$\mathbf{Q} = \mathbf{P}^2 = (1243) \cdot (1243) = (14)(23)$$

So
$$Q^{-1}$$
.A. $Q = A$

Example 3: The adjacency matrix of the graph A_G of Figure 6 is denoted by $A(A_G)$.

The mapping from \mathbf{A}_C to its complement may be represented as the permutation

$$P = (1452)(3).$$

So
$$\mathbf{P}^T$$
.A.P =

Let
$$\mathbf{Q} = \mathbf{P}^2 = (3)(1452).(3)(1452) = (3)(15)(42)$$

So
$$Q^{-1}.A.Q = A$$

Special Eigenvalues Properties For Self Complementary Graphs:

An eigenvector is said to be main if it is not orthogonal to j.

Example 1: For $A(C)_5$,

```
the eigenvalues are: \{2, -1.61803, -1.61803, 0.618034, 0.618034\}, and the eigenvectors are : \{1, 1, 1, 1, 1\}, \{-1.61803, 1.61803, -1, 0, 1\}, \{-1, 1.61803, -1.61803, 1, 0\}, \{0.618034, -0.618034, -1, 0, 1\}, \{-1, -0.618034, 0.618034, 1, 0\}
```

Checking if eigenvectors are main:

Since C_5 is regular the only main eigenvector $\{1, 1, 1, 1, 1\}$

 $A(C_5)$ has non-main eigenvalues λ_2 , λ_3 , λ_4 and λ_5 , which can be paired off as follows:

$$\lambda_2 + \lambda_4 = \lambda_3 + \lambda_5 = \lambda_2 + \lambda_5 = \lambda_3 + \lambda_4 = -1$$

This follows from equation 1.

Example 2: For $A(P_4)$

```
the eigenvalues are equal to: \{-1.61803, 1.61803, -0.618034, 0.618034\}, and the corresponding eigenvectors are: \{-1, 1.61803, -1.61803, 1\}, \{1, 1.61803, 1.61803, 1\}, \{1, -0.618034, -0.618034, 1\}, \{-1, -0.618034, 0.618034, 1\}
```

Checking if eigenvectors are main:

```
For \lambda_2 = 1.61803, the eigenvector \mathbf{x_2} is \{1, 1.61803, 1.61803, 1\} If \mathbf{j} = \{1, 1, 1, 1, \} then \langle \mathbf{j}, \mathbf{x_2} \rangle \neq 0. Hence \lambda_2 is main.
```

The non-main eigenvalues are λ_1 and λ_3 , which can be paired off as follows:

$$\lambda_1 + \lambda_3 = -1$$

Example 3: For $A(A_G)$

the eigenvalues are: $\{2.30278, -1.61803, -1.30278, 0.618034, 0\}$, and the corresponding eigenvectors are: $\{1, 2.30278, 2, 2.30278, 1\}, \{-1, 1.61803, 0, -1.61803, 1\}, \{1, -1.30278, 2, -1.30278, 1\}, \{-1, -0.618034, 0, 0.618034, 1\}, \{1, 0, -1, 0, 1\}$.

The only non-main eigenvalues are λ_2 and λ_3 which can be paired off as follows:

$$\lambda_2 + \lambda_3 = -1$$

Justification of the results obtained:

$$\overline{A} + A = J - -I$$

$$\Rightarrow A = J - -I - \overline{A}$$

$$\Rightarrow \mathbf{A}\mathbf{x}_i = \mathbf{J}\mathbf{x}_i - -\mathbf{I}\mathbf{x}_i - -\overline{\mathbf{A}}\mathbf{x}_i$$

If λ_i is non-main, then $\mathbf{x}_i.\mathbf{j} = 0$

Thus $\lambda_i \ \mathbf{x}_i = \mathbf{0} - \mathbf{x}_i - \overline{\mathbf{A}} \mathbf{x}_i$ corresponding to a non-main eigenvalue λ_i

So
$$\overline{\mathbf{A}}\mathbf{x}_i = (\lambda_i - 1)\mathbf{x}_i$$

Since G is self complementary, the set of eigenvalues of $\overline{\mathbf{A}}=$ set of eigenvalues of A

For each λ_i , there exists $\lambda_j = -(\lambda_i + 1)$

So in self complementary graphs non-main eigenvalues are paired s.t. $\lambda_j + \lambda_i = -1$. Therefore by just looking at the eigenvalues and by pairing them off, we may find the non-main eigenvalues.