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The purpose of this note is to discuss the use of nonlinear optimization tech­
niques to solve approximation problems typical for example in signal identifi­
cation. Different techniques based on classical and modern approaches to time 
series are available. The presented idea considers cases when signals are com­
posed of a finite number of certain nonlinear functions distinct in their param­
eter sets, and realization of an additive random error. The focus is given to 
the sums of parameterized trigonometric functions. As the random error prob­
ability distribution is assumed unknown, the common LSQ criterion is replaced 
with its parameterized generalization. The obtained unconstrained non-smooth 
minimization problem can be solved either directly or after a smooth reformu­
lation to the constrained problem. The initial values for computational pro­
cedures are estimated using heuristics and suitable statistical techniques, e.g., 
periodograms. The ideas are illustrated by simple explanatory examples accom­
panied by figures. Test results are shown for MS Excel Solver, MATLAB is used 
for visualization. 

Problem formulation 

One of important signal processing tasks is signal identification. We denote x = 
(Xl, ... , Xn)T a vector of time points (both equidistant and non-equidistant cases 
are acceptable) and y = (YI, ... , Yn)T a vector of related measurements. Various 
techniques developed for processing of this type of data may be found. There 
are approaches based on: analysis of trend and cyclic behaviour, followed by the 
estimate of random error distribution; analysis of auto correlation structure that 
leads to advanced autoregressive techniques; and harmonic analysis based on 
estimates of frequencies. In our case, we assume that n measurements contained 
in ywere obtained as realizations of the following random vector: 

Tt = (Ttl, ... , Ttnf = (t A(xj,(A) + Cj) T , 

k=l j=l, ... ,n 

where Cj,j = 1, ... , n denote random errors and functions ik, k = 1, ... , K are 
of known types, but unknown vectors of parameters i3k> k = 1, ... , K have to 
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be found. Note that the functions fk can be very complex, so the above addi­
tive model is in fact no limitation. More complex combinations of individual 
functions (like product or composed functions) can always be expressed as one 
complex function. 

Harmonic approximation 

One of traditional tasks utilizing Fourier series is to identify the signal under 
the assumption that fk' k = 1, ... , K are trigonometric functions and proportions 
among unknown frequencies are rational numbers. In this case, the parameters 
of the following trigonometric function are estimated: 

K 

Y = L.Bk1 sin(.Bk2x + .Bd· 
k=l 

As usually, we search for coefficients .B k, k = 1, ... , K in such a way to minimize 
a distance between measurements Y = (Yl, ... , Yn)T and predicted values y = 
(ih, ... , Yn)T where 

K 

Yj = L bkl sin(bk2 xj + bk3 ) 

k=l 

and b k , k = 1, ... , K are estimates of unknown .Bk, k = 1, ... , K. A criterion to be 
minimized can be defined in different ways. We utilize a parametrized distance 

n 

dp(Y, y) = lIy - Yllp = ~I L IYj - YjIP, 
j=l 

where 0 < p < 00. Therefore, we use (dp(Y, y))pas a criterion to get an uncon­
strained optimization problem with unknown variables bk, k = 1, ... , K: 

n I K I

P 

min{~ Yj - t; bk1 sin(bk2 xj + bd }. 

Classical approach to solve this problem is based on the assumption of normal 
distribution of stochastically independent homoskedastic random errors, and 
hence p = 2 is used to get the common LSQ (least square) criterion used in 
regression methods in statistics. An alternative is the direct use of nonlinear 
optimization algorithms to solve the above minimization problem. The main 
problem is how to find an optimal solution when the objective function is in 
general non-differentiable (because of absolute values) and non-convex (because 
of sin function). 
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Illustration of difficulties 

Example 1: The influence of non-convexity, and hence, the importance of 
suitable choice of the initial solution can be seen from the following example. 
Figure 1 shows the negative penalty of a harmonic function approximation. 
The "measurements" were computed by MATLAB [lJ by the formula: y = 
0.5sin(x) + 0.2rand - 0.1 (additive uniform noise) in 30 equidistant points in 
the interval [O,14.5J with the step 0.5 - see the solid line in the Figure 2. The 
approximation function isy = bI sin(b2x). The mesh is based on a matrix with 
dimension 100x100 where the parameter bI changed in the interval [-l,lJ with 
the step 0.02 and the parameter b2 changed in the interval [-l,2J with the step 
0.03. The penalty was computed for p=l as the sum of absolute errors. Figure 
1 shows the negative penalty, so each peak of the "mountain range" represents 
one local minimum where the nonlinear programming search algorithm can end. 
The global minima close to the point bl =0.5, b2 =1 are the two highest peaks. 
The exact coordinates of the global minimum found by the Excel solver are 
bl =0.5157, b2=0.9894. The other global minimum is at the same but negative 
coordinates: sin(x) = -sin(-x). The penalty for this approximation is smaller 
than the penalty of the original 'ideal' function without noise. Figure 10 shows 
the original data and two approximations. The correct one corresponds to the 
global minimum, the wrong one is the left-most local minimum in Figure 9 
(exact coordinates bl =0.2699, b2=-0.7081). 
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Figure 9: Penalty function of harmonic approximation 

0.0 

04 

0.2 

o 

·0.2 

-OA 

-0.6 

Global and Local minima appro~imation 

Figure 10: Harmonic approximation 

18 



The Collection X 19 

Approximation methods 

The introduced problem is closely related to the well known area of regression 
coefficients point estimates in statistics [4]. This widely used technique has com­
putational advantages but in certain cases, it is not sufficient. For example it can 
fail in these cases: unknown random error probability distribution, deviations 
vary with changing x, and periodogram analysis generally fails for signals that 
contain close frequencies. In these cases, modern search techniques as genetic 
algorithms and neural networks are often introduced. These techniques might 
be slow in finding improved values and their global and local convergence is not 
guaranteed. 

Unconstrained optimization techniques 

If the criterion is differentiable (p is even) then the gradient can be computed. 
However the obtained system of equations is nonlinear and can only exception­
ally be solved analytically. Therefore, an iteration procedure based on nonlinear 
optimization has to be built. If the periodogram identifies one dominating fre­
quency, we may decompose the problem complexity starting with K = 1 and 
the functiony = b1 sin(b2x + b3 ) with three unknown coefficients. In such sim­
plest case, the frequency identified by the periodogram is used to initialize b2 • 

Then the initial value for b3 is often set to zero and b1 is initially estimated by 
the LSQ algorithm. Such estimates are often "close enough" to the global opti­
mal solutions. Hence, the optimum can be found by efficient locally convergent 
algorithms. 

When p is distinct from 2 (e.g. p = 1), the specialized nonlinear optimization 
algorithms for LSQ problems, such as the Marquardt - Levenberg algorithm 
combining the advantages of gradient method robustness and Newton's method 
speed, cannot be used. Still, fast conjugate directions algorithms may replace 
them. For example, MS Excel Solver [2] used in the above-mentioned example 
implements both quasi-Newton and conjugate gradient methods using quadratic 
approximation for line search. See [3] for details of these methods. Because two 
choices of approximating gradients numerically are available, the solver is robust 
enough to successfully deal with non-smooth functions in mid-size problems. 

The MS Excel Solver is easy to use, especially for novices in optimization and 
it supports connection of user-friendly data inputs and graphical outputs. A 
more experienced users may use similar sophisticated unconstrained optimiza­
tion procedures using functions from MATLAB Optimization Toolbox [1]. 

If the decomposition is not feasible, the previous ideas can still be used for 
K > 1. However, the problem size and complexity increases and the initial 
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estimates may lead to local minima. In addition to the use of a pure random 
generation and expert's knowledge, we suggest to use exploratory analysis based 
on own heuristics for the initial solution choice. We may give another examples 
based on Excel Solver computations to show that the discussed technique may 
be easily implemented. 

Example 2: Figure 11 shows the results of an approximation by two harmonic 
functions whose frequencies have irrational ratio. The 'measurements' were 
computed by Excel by the formula y = sin(O.lx) +sin(0.1y12x)+randOOA-0.2b 
(additive uniform noise in [-0.2, 0.2]) in 200 equidistant points in the interval 
[1,200] with the step 1 - see the solid line in the Figure 11. The approximation 
function is: 

fj = bll sin(b12x + b13) + b21 sin(b22x + b23) + b31 

The Excel formula shows the 'ideal' values (1,0.1,0,1, 0.1y12, 0, 0) of the 7 ap­
proximation parameters. The values of the approximation parameters were 
found by the Excel solver with criterion computed for p=l (sum of absolute er­
rors). Figure 11 shows one good and one wrong approximations. The good one 
corresponds to a minimum whose exact coordinates rounded to 4 decimal places 
are: bll = 1.0132, b12 = 0.0996, b13 = 0.0312, b21 = 0.9907, b22 = 0.1414, b23 = 
-0.0177, b31 = -0.0064. Criterion of this minimum is better (less) than the 
criterion of the original 'ideal' function without noise. Still it is not guaranteed 
that it is the global minimum. In fact by changing solver parameters the results 
slightly change. This may be caused by several very close minima or (probably) 
the global minimum is fiat and the changes are caused by the solver settings. 
The graph obviously shows no difference. The wrong approximation in Figure 
11 corresponds to one of many local minima. 
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Figure 11: Approximation by two harmonic functions with irrational ratio of 
frequencies 

Example 3: Figure 12 shows the results of an approximation by a sum of a 
harmonic and a linear functions: 

f) = bll sin(b12x + b13 ) + b21 + b22 X 

The 'measurements' were originally computed by Excel by the formula: y = 
100 sin(0.5x + 3) + 1 + 20x in 15 equidistant points in the interval [1,15] with the 
step 1. Then the values were manually modified without any clear pattern to 
simulate for example not accurate measurements - see the solid line in the Figure 
4. Note that the reading for x=13 is very far from the original value that may 
be caused for example by a human error. The Excel formula shows the 'ideal' 
values (100, 0.5, 3, 1, 20) of the 5 approximation parameters. The values of the 
approximation parameters were found by the Excel solver. Figure 12 shows two 
good and one wrong approximations. Note the difference between the criterion 
computed for p=l (sum of absolute errors) and the criterion computed for p=2 
(sum of squared errors). The sum of squares is much more sensitive to excess 
fluctuations than the sum of absolute errors. Again, the wrong approximation 
corresponds to one of many local minima. 
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Figure 12: Approximation by a sum of a harmonic and a linear functions 

Unfortunately, unconstrained optimization solvers using approximations of deriva­
tives cannot be used in general, as their theoretical properties (guaranteed con­
vergence) and numerical behaviour (error influence) can be questionable. There­
fore, something more reliable has to be implemented for large-scale problems. 

Constrained optimization technique 

The above unconstrained minimization problem can be reformulated as a con­
strained one with 2 variables associated with each measurement: 

n 

o < p < 00 : min {L: (dj + djf I dj - d-: = 
j=l J 

K 
Yj - L: h(Xj, bk ), dj 2: 0, dj 2: 0, j = 1, ... , n} 

k=l 

Using a suitable algebraic modeling language, the problem can be described 
using the summation-indexed-based notation. 
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Conclusion 

There are non-linear programming software tools based on robust search algo­
rithms, often with the possibility to select the one that best suits the problem 
solved. These tools are general enough, and hence, very flexible in comparison 
with specialized packages. They can be easily used and require only modest 
programming abilities if any. Especially, they may serve well in the preparation 
step when the user identifies the problem features before choosing specialized 
algorithms and software. 
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