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Foreward 

Is Mathematics a tool? If a tool means an instrument indispensable for the 
effective, efficient and logical optimisation of the evolution in computer science, 
physics, chemistry, the natural sciences and the social sciences, then it is a 
priceless tool to the promoted with care. "Mathematics seems to have almost 
magical power to predict new phenomena in modern particle physics" according 
to Jesper Ltzen, professor of the History of Mathematics, at the University of 
Copenhagen. 

In his book, Proofs and Refutations, the mathematical creativity starts with a 
conjecture, usually suggested by natural occurrences, that need an explanation 
and may be shown to be UNTRUE by counter examples. This results in a 
new and finer conjecture after which the process of proofs and refinement is 
repeated, until a final conjecture is proved true. This research-type dynamic 
contrasts with the simple cumulative process of mathematics development and 
paints an essentially internal process. It is an idyllic world that injects energy 
and inspiration into the creative mathematician. The transfer of the creations 
and discoveries to the physical world usually takes decades. Why does this breed 
of mathematicians have in common with painters and engineers like Leonardo da 
Vinci and Anton Gaudi? I do not need to help the reader to reach conclusions. 

Mathematics continually receives apparently insignificant impressions form the 
outside world that lead to a total decisive path determining the course of science 
and discoveries. May there be a variety of scientific mathematicians that work 
on the interface of mathematics and science, accelerating the process translating 
signals from either field into tangible prototypes. 

1. Sciriha 
Organiser 
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The Collection IX 

Faculty of Science 

Department of Mathematics 

Date: 16th November 2004 

Time: 15.00 - 17.00 

Venue: MP 316 

A seminar/workshop is being held on Tuesday 16th November 2003 at 1500. 
Students and staff from the Department of Mathematics, Faculty of Science 
will present ideas from various fields of mathematics. 

Keynote speakers: 

Dr Jaroslav Sklenar Note on Approximation by Nonlinear Optimization 

Mary Rose Bonello 
Sylvana Camilleri 

Teaching Mathematics Using Excel 

Andrew Duncan Abelian Sandpiles 

Dominic Cortis A Financial Model 

We shall end with a brief session for spontaneous problem posing. You are 
cordially invited to attend. 

Abstracts of possible proofs or conjectures which you wish to share with us in 
this meeting, or in a future one, may be sent to Dr. I. Sciriha or Ms. A. Attard, 
Department of Mathematics, (marked The Collection), at any time of the year. 

Dr. I. Sciriha 

Organizer 
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Teaching Mathematics Using 
Excel 

Mary Rose Bonello & Silvana Camilleri 

Introduction 

4 

'Technology is essential in teaching and learning mathematics; it influences the 
mathematics that is taught and enhances students' learning.' 

(Principles and Standards for School Mathematics-NCTM April 2000) 

Aims of using Excel 

• Observing patterns and creating sequences 

- Sequences 

• Seeing connections 

- Comparing equations 

• Investigating collected data 

- Exerting graphs from statistical data 
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Observing Patterns & Creating Sequences 

• Excel gives students the opportunity to explore sequences and patterns 
from a variety of situations 

• Observing patterns 

- Variables and Function Machines Program 

• Creating sequences 

- Sequences Program 
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Seeing Connections 

• Spreadsheets could be used to help students explore equations and their 
graphical representations 

• See connections between different equations 

• Comparing graphs program 
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Investigating Collected Data 

• Spreadsheets could be used 

- to display and analyse the collected data 

- to simulate randomly occurring events 

• Simulf).ting dice program 

Simulating the probability of scoring a number with a six-sided dice. 

Scores: 
532 2 5 4 6 1 1 2 
554 1 424 6 1 3 
2216562 4 4 3 
3 2 2 5 6 1 6 6 2 3 
4 522 5 344 2 5 
2 5 5 3 6 6 4 2 5 1 
3 5 261 1 3 6 3 4 
6616466 1 3 2 
6 4 541 6 6 5 5 4 
5 1 3 1 142 5 5 5 
5 5 631 444 4 6 
1 4 5 2 2 424 4 2 
5 6 5 5 6 1 2 5 4 3 
2 3 651 434 6 1 
2 4 641 5 1 145 

Dice 
35 

30 

25 

{2O 
!15 

10 

Scores 

Press F9togeta new set of throWS] 

I Throwsl 
150 

mean 3.6467 
mode 5 
median 4 
range 5 

P(i) 0.1533 
P(2) 0.1667 
P(3) 0.1067 
P(4J 0.2 
P(5) 0.2 
P(6) 0.17331 

7 
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Conclusion 

• We have briefly shown how Excel can be a powerful tool during the math
ematics lesson. Still this program cannot be used as an aid for all mathe
matics topics . 

• Apart from Excel, one can find other software packages which can be used 
in the mathematics class, such as: 

- Derive 

- Cabri Geometry 

- MSW Logo 
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A Financial Model 
Dominic Cortis 

This short model sets out a study on a non-existent product which obeys eco
nomic norms. The number of products produced and demand are interdepen
dent in this example and they affect the cost price and selling price which in 
turn affect the profit. When talking about demand it is important to state the 
amount of products demanded in a period of time for a given price (for example: 
The demand for item X is 500 items per week at a selling price of Lm4). In this 
example, the period of time will be fixed for all cases. 

e(l!) 

250 

200 

150 

100 

50 

100 200 300 400 x 

Figure 1: Production Cost 

The costs of producing an item are classified as both variable and fixed costs. 
In my first definition of this product I took into consideration variable costs 
directly related to the production of the item (no transport costs). I wanted 
this item to cost Lm30 if one is produced and it reaches its optimum cost price 
(per item) when 100 items are produced and that would be Lm5 per item. So 
the cost price would diminish up to when 100 items are produced but it starts to 
increase when producing more than this number. Obviously a quadratic graph 
would fit this description with its minimum being at x=100. When solving 
simultaneously an equation c(x) = ax2 + bx + c such that c(l) = 30, c(100) = 5 
and c'(100) = 0 it was found that the equation is c(x) - ...l!L X

2 - .§QQQx+ 299005 - 9801 9801 9801 
where x represents the number of items produced and c(x) represents the cost 
price per product. The graph representing this equation is shown in Figure 1. 
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As mentioned above there are also post-production costs and fixed costs -named 
other costs in this example. Requiring the product to have an initial such cost 
of Lmll and this diminishing gradually to LmlO and staying at that cost at a 
certain amount, it was clear that an exponential function was required to dis
play this. The function o(x) = -e1Zo + 10 where o(x) represents other costs 
(per item) and x represents the number of items produced, shown in Figure 2. 

o(x) 
11.2 

11 

10.8 

10.6 

10.4 

10.2 

10 

9.8 IX 

0 50 100 150 200 250 300 

Figure 2: Post-Production Cost 

There is the common notion that the cheaper an item is the greater is the 
demand. This is true but not in all cases since even demand has its optimum. 
The selling price per item changes with respect to the amount of items produced 
and the cost price. When not considering the cost price, the optimum selling 
price was to be when 200 items are produced and this would be at Lm 60. 
Similarly to the production cost price, a quadratic equation was needed and 
this was found out to be s(x) = - 40100X2 + fox + 50 where s(x) represents 
the selling price. The graph depicting this quadratic is shown in Figure 3 on 
Page 11. 
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sex) 
70 
60 

50 
40 
30 
20 
10 
o +1 ---,-------,----,-------,--------, 

o 100 200 300 400 500 
x 

Figure 3: Selling price depending on the amount of products produced 

11 

The selling price was also determined to depend on the cost price such that 
s(x) = Bf-. So the selling price depends on the items produced and the cost 
price. This provides room for a 3-D diagram which would be helpful in many 
cases. The cost price however depends on the number of items produced and 
thus the above-mentioned 3-D diagram can be set to be a 2-D diagram as 
illustrated in Figure 4. 

Sex) 

120 
100 
80 
60 --
40 
20 
0+-----,-----,-----,----, 

o 100 200 300 400 

x 

Figure 4: Selling price of each item depending on number of products produced 
and the latter's effect on the cost price 

The profit per item would then be p(x) = s(x) - c(x) - o(x). The maximum 
profit per item is reached when 110 items are produced and the profit at this 
amount is Lm 42.47. The total Profit, denoted q(x), is equal to the profit per 
item multiplied by the number of items produced. Therefore q(x) = x x p(x). 
The maximum profit occurs when 153 items are produced at a profit Lm 5693. 
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Similarly the total cost is x x c(x) and the total sales is x x s(x). The graphs 
denoting these equations are shown in Figures 5 to 8. 

45 
40 
35 
30 
25 
20 
15 
10 
5 
0 

0 

6000 

5000 

4000 

3000 

2000 

1000 

50 100 150 200 

Figure 5: Profit per item 

O~ \ 
o 50 100 150 200 

Figure 6: Total Profit 
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250 
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90000 
80000 
70000 
60000 
50000 
40000 

30000 
20000 
10000 

0 
0 100 200 300 400 

Figure 7: Total Cost 

25000 ,----------------------------, 

20000 

15000 

10000 

5000 

o f' 
o 100 200 300 400 

Figure 8: Total Sales 
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The conclusion is not necessarily obtained when the maximum profit is reached. 
The company that is doing this study may not necessarily have capitalist aims. 
It might be that it is a government company whose aim is so that the citizens 
have access to this particular product. Therefore in this case the company is 
interested in keeping the product selling price as low as possible without making 
a loss. In another circumstances this company could be a subsidiary and the 
mother company is only interested in investing a certain amount in it. Therefore 
it would set the total cost price at a maximum and see the maximum profit given 
that restriction. The conclusions and needs for this study are infinite and the 
use of 3-D graphing programs can be used in most cases in order to ease the 
reaching of a conclusion. 
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Note on Approximation by 
Nonlinear Optimization 

J aroslav Sklenar 
Department of Statistics and Operations Research 

University of Malta 

Introduction 

15 

The purpose of this note is to discuss the use of nonlinear optimization tech
niques to solve approximation problems typical for example in signal identifi
cation. Different techniques based on classical and modern approaches to time 
series are available. The presented idea considers cases when signals are com
posed of a finite number of certain nonlinear functions distinct in their param
eter sets, and realization of an additive random error. The focus is given to 
the sums of parameterized trigonometric functions. As the random error prob
ability distribution is assumed unknown, the common LSQ criterion is replaced 
with its parameterized generalization. The obtained unconstrained non-smooth 
minimization problem can be solved either directly or after a smooth reformu
lation to the constrained problem. The initial values for computational pro
cedures are estimated using heuristics and suitable statistical techniques, e.g., 
periodograms. The ideas are illustrated by simple explanatory examples accom
panied by figures. Test results are shown for MS Excel Solver, MATLAB is used 
for visualization. 

Problem formulation 

One of important signal processing tasks is signal identification. We denote x = 
(Xl, ... , Xn)T a vector of time points (both equidistant and non-equidistant cases 
are acceptable) and y = (YI, ... , Yn)T a vector of related measurements. Various 
techniques developed for processing of this type of data may be found. There 
are approaches based on: analysis of trend and cyclic behaviour, followed by the 
estimate of random error distribution; analysis of auto correlation structure that 
leads to advanced autoregressive techniques; and harmonic analysis based on 
estimates of frequencies. In our case, we assume that n measurements contained 
in ywere obtained as realizations of the following random vector: 

Tt = (Ttl, ... , Ttnf = (t A(xj,(A) + Cj) T , 

k=l j=l, ... ,n 

where Cj,j = 1, ... , n denote random errors and functions ik, k = 1, ... , K are 
of known types, but unknown vectors of parameters i3k> k = 1, ... , K have to 
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be found. Note that the functions fk can be very complex, so the above addi
tive model is in fact no limitation. More complex combinations of individual 
functions (like product or composed functions) can always be expressed as one 
complex function. 

Harmonic approximation 

One of traditional tasks utilizing Fourier series is to identify the signal under 
the assumption that fk' k = 1, ... , K are trigonometric functions and proportions 
among unknown frequencies are rational numbers. In this case, the parameters 
of the following trigonometric function are estimated: 

K 

Y = L.Bk1 sin(.Bk2x + .Bd· 
k=l 

As usually, we search for coefficients .B k, k = 1, ... , K in such a way to minimize 
a distance between measurements Y = (Yl, ... , Yn)T and predicted values y = 
(ih, ... , Yn)T where 

K 

Yj = L bkl sin(bk2 xj + bk3 ) 

k=l 

and b k , k = 1, ... , K are estimates of unknown .Bk, k = 1, ... , K. A criterion to be 
minimized can be defined in different ways. We utilize a parametrized distance 

n 

dp(Y, y) = lIy - Yllp = ~I L IYj - YjIP, 
j=l 

where 0 < p < 00. Therefore, we use (dp(Y, y))pas a criterion to get an uncon
strained optimization problem with unknown variables bk, k = 1, ... , K: 

n I K I

P 

min{~ Yj - t; bk1 sin(bk2 xj + bd }. 

Classical approach to solve this problem is based on the assumption of normal 
distribution of stochastically independent homoskedastic random errors, and 
hence p = 2 is used to get the common LSQ (least square) criterion used in 
regression methods in statistics. An alternative is the direct use of nonlinear 
optimization algorithms to solve the above minimization problem. The main 
problem is how to find an optimal solution when the objective function is in 
general non-differentiable (because of absolute values) and non-convex (because 
of sin function). 
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Illustration of difficulties 

Example 1: The influence of non-convexity, and hence, the importance of 
suitable choice of the initial solution can be seen from the following example. 
Figure 1 shows the negative penalty of a harmonic function approximation. 
The "measurements" were computed by MATLAB [lJ by the formula: y = 
0.5sin(x) + 0.2rand - 0.1 (additive uniform noise) in 30 equidistant points in 
the interval [O,14.5J with the step 0.5 - see the solid line in the Figure 2. The 
approximation function isy = bI sin(b2x). The mesh is based on a matrix with 
dimension 100x100 where the parameter bI changed in the interval [-l,lJ with 
the step 0.02 and the parameter b2 changed in the interval [-l,2J with the step 
0.03. The penalty was computed for p=l as the sum of absolute errors. Figure 
1 shows the negative penalty, so each peak of the "mountain range" represents 
one local minimum where the nonlinear programming search algorithm can end. 
The global minima close to the point bl =0.5, b2 =1 are the two highest peaks. 
The exact coordinates of the global minimum found by the Excel solver are 
bl =0.5157, b2=0.9894. The other global minimum is at the same but negative 
coordinates: sin(x) = -sin(-x). The penalty for this approximation is smaller 
than the penalty of the original 'ideal' function without noise. Figure 10 shows 
the original data and two approximations. The correct one corresponds to the 
global minimum, the wrong one is the left-most local minimum in Figure 9 
(exact coordinates bl =0.2699, b2=-0.7081). 
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Figure 9: Penalty function of harmonic approximation 
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Figure 10: Harmonic approximation 
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Approximation methods 

The introduced problem is closely related to the well known area of regression 
coefficients point estimates in statistics [4]. This widely used technique has com
putational advantages but in certain cases, it is not sufficient. For example it can 
fail in these cases: unknown random error probability distribution, deviations 
vary with changing x, and periodogram analysis generally fails for signals that 
contain close frequencies. In these cases, modern search techniques as genetic 
algorithms and neural networks are often introduced. These techniques might 
be slow in finding improved values and their global and local convergence is not 
guaranteed. 

Unconstrained optimization techniques 

If the criterion is differentiable (p is even) then the gradient can be computed. 
However the obtained system of equations is nonlinear and can only exception
ally be solved analytically. Therefore, an iteration procedure based on nonlinear 
optimization has to be built. If the periodogram identifies one dominating fre
quency, we may decompose the problem complexity starting with K = 1 and 
the functiony = b1 sin(b2x + b3 ) with three unknown coefficients. In such sim
plest case, the frequency identified by the periodogram is used to initialize b2 • 

Then the initial value for b3 is often set to zero and b1 is initially estimated by 
the LSQ algorithm. Such estimates are often "close enough" to the global opti
mal solutions. Hence, the optimum can be found by efficient locally convergent 
algorithms. 

When p is distinct from 2 (e.g. p = 1), the specialized nonlinear optimization 
algorithms for LSQ problems, such as the Marquardt - Levenberg algorithm 
combining the advantages of gradient method robustness and Newton's method 
speed, cannot be used. Still, fast conjugate directions algorithms may replace 
them. For example, MS Excel Solver [2] used in the above-mentioned example 
implements both quasi-Newton and conjugate gradient methods using quadratic 
approximation for line search. See [3] for details of these methods. Because two 
choices of approximating gradients numerically are available, the solver is robust 
enough to successfully deal with non-smooth functions in mid-size problems. 

The MS Excel Solver is easy to use, especially for novices in optimization and 
it supports connection of user-friendly data inputs and graphical outputs. A 
more experienced users may use similar sophisticated unconstrained optimiza
tion procedures using functions from MATLAB Optimization Toolbox [1]. 

If the decomposition is not feasible, the previous ideas can still be used for 
K > 1. However, the problem size and complexity increases and the initial 
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estimates may lead to local minima. In addition to the use of a pure random 
generation and expert's knowledge, we suggest to use exploratory analysis based 
on own heuristics for the initial solution choice. We may give another examples 
based on Excel Solver computations to show that the discussed technique may 
be easily implemented. 

Example 2: Figure 11 shows the results of an approximation by two harmonic 
functions whose frequencies have irrational ratio. The 'measurements' were 
computed by Excel by the formula y = sin(O.lx) +sin(0.1y12x)+randOOA-0.2b 
(additive uniform noise in [-0.2, 0.2]) in 200 equidistant points in the interval 
[1,200] with the step 1 - see the solid line in the Figure 11. The approximation 
function is: 

fj = bll sin(b12x + b13) + b21 sin(b22x + b23) + b31 

The Excel formula shows the 'ideal' values (1,0.1,0,1, 0.1y12, 0, 0) of the 7 ap
proximation parameters. The values of the approximation parameters were 
found by the Excel solver with criterion computed for p=l (sum of absolute er
rors). Figure 11 shows one good and one wrong approximations. The good one 
corresponds to a minimum whose exact coordinates rounded to 4 decimal places 
are: bll = 1.0132, b12 = 0.0996, b13 = 0.0312, b21 = 0.9907, b22 = 0.1414, b23 = 
-0.0177, b31 = -0.0064. Criterion of this minimum is better (less) than the 
criterion of the original 'ideal' function without noise. Still it is not guaranteed 
that it is the global minimum. In fact by changing solver parameters the results 
slightly change. This may be caused by several very close minima or (probably) 
the global minimum is fiat and the changes are caused by the solver settings. 
The graph obviously shows no difference. The wrong approximation in Figure 
11 corresponds to one of many local minima. 
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Figure 11: Approximation by two harmonic functions with irrational ratio of 
frequencies 

Example 3: Figure 12 shows the results of an approximation by a sum of a 
harmonic and a linear functions: 

f) = bll sin(b12x + b13 ) + b21 + b22 X 

The 'measurements' were originally computed by Excel by the formula: y = 
100 sin(0.5x + 3) + 1 + 20x in 15 equidistant points in the interval [1,15] with the 
step 1. Then the values were manually modified without any clear pattern to 
simulate for example not accurate measurements - see the solid line in the Figure 
4. Note that the reading for x=13 is very far from the original value that may 
be caused for example by a human error. The Excel formula shows the 'ideal' 
values (100, 0.5, 3, 1, 20) of the 5 approximation parameters. The values of the 
approximation parameters were found by the Excel solver. Figure 12 shows two 
good and one wrong approximations. Note the difference between the criterion 
computed for p=l (sum of absolute errors) and the criterion computed for p=2 
(sum of squared errors). The sum of squares is much more sensitive to excess 
fluctuations than the sum of absolute errors. Again, the wrong approximation 
corresponds to one of many local minima. 



The Collection X 22 

400 

350 

300 

250 
----- Y (p=1) 

200 - - - Y (p=2) 

150 

100 

50 

0 

-50 

-100 

Figure 12: Approximation by a sum of a harmonic and a linear functions 

Unfortunately, unconstrained optimization solvers using approximations of deriva
tives cannot be used in general, as their theoretical properties (guaranteed con
vergence) and numerical behaviour (error influence) can be questionable. There
fore, something more reliable has to be implemented for large-scale problems. 

Constrained optimization technique 

The above unconstrained minimization problem can be reformulated as a con
strained one with 2 variables associated with each measurement: 

n 

o < p < 00 : min {L: (dj + djf I dj - d-: = 
j=l J 

K 
Yj - L: h(Xj, bk ), dj 2: 0, dj 2: 0, j = 1, ... , n} 

k=l 

Using a suitable algebraic modeling language, the problem can be described 
using the summation-indexed-based notation. 
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Conclusion 

There are non-linear programming software tools based on robust search algo
rithms, often with the possibility to select the one that best suits the problem 
solved. These tools are general enough, and hence, very flexible in comparison 
with specialized packages. They can be easily used and require only modest 
programming abilities if any. Especially, they may serve well in the preparation 
step when the user identifies the problem features before choosing specialized 
algorithms and software. 
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Abelian Sandpiles 
Andrew Duncan 

• The Abelian Sand pile (AS) is a model originally introduced by physicists 
to simulate what is known as "self-organized complexity". 

• Models exhibiting this phenomenon typically have some form of "avalanche 
dynamics" , where "stress" is built up until system becomes unstable. On 
reaching instability, the system reorganizes itself quickly to re-attain sta
bility. Examples are sandpile or avalanche. 

• Although the AS is primarily a physical model, it has a very interesting 
algebraic structure which merits investigation. 

The One Dimensional Case 

Consider a large table, with n people seated along one side of it. Each person 
seated at the table holds at most two indistinguishable coins. At each side of 
the table is a bottomless bin. 

Another person (not seated at table) then enters the room, and hands a coin to 
someone at random. Any person with> 2 coins must give one to the person on 
the left and one to that on the right. The people at the edges of the table must 
give one coin to the adjacent person, and throw one in the bin. 

Example. Consider the initial configuration 22222. Giving the person on the 
left edge a coin: 

32222 ---t 13222 ---t 21322 ---t 22132 ---t 22213 ---t 22221. 

The final configuration is stable in the sense that no person has > 2 coins, thus 
no further transfer of coins is required. 

Representing the current configuration as a mapping T) :{l, ... , n} ---t N then 
the updating rule can be expressed as: 

T) (j) f-- T) (j) - f:.ij 
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where 

/:"ij = 2 if i = j } . _ ( 2 -1) 
/:"ij = -1 if !i - j! = 1 I.e. /:,. - -1 2 

The General Sandpile Model 

Definition. Let V C Zd be a finite lattice, and V is simply connected. A 
Toppling Matrix is a !V! x !V! matrix /:,. indexed by x, yE V, with the following 
properties: 

1. For all x, y E V, /:"xx ?::2d, /:"xy ::; 0 for x =I y 

2. /:"xy = /:"yx. (Symmetry) 

3. I:y/:"xy ?:: 0 (Dissipativity) 

4. I:xI:y/:"xy > 0 (Strict Dissipativity) 

Definition. A Height Configuration is a function 7] : V -; N where 7](x) is 
interpreted to be the height (number of grains) at x. Given a toppling matrix 
/:,., a configuration 7] : is said to be stable if 7](x) ::; /:"xx \:Ix E V. The set of 
all stable configurations is denoted by n. A node x is s.t.b unstable in 7] if 
7] (x ) > /:"xx. 

The Toppling Transformation TxO 

For x E V, the toppling transformation is a transformation Tx NV -; NV, 
where 

(Tx7])(y) = 7](Y) if x is stable 
(Tx 7]) (y) = 7] (y) - /:"xy if x is unstable 

Due to the dissipativity properties of the toppling matrix, there is always a 
finite sequence Xl,.' .,xn E V, for which Txl ... Txn7] is stable. Clearly, if x and 
y are unstable nodes of 7], then TxTy7] = TyTx7] 
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Definition. The Toppling Operator is a function Y : NV -> n defined by 

N 

Y(7)) = TI Tx,(7)) 
i=l 

where Xl is an unstable vertex of 7), and for any i = 2, ... , N; Xi is unstable in 
i-I 

j[I1 Txj (7)). 

Theorem The toppling operator Y is well defined. 

Addition Operators 

Definition. The addition operator is a map ax : n -> n defined by 

aX (7)) = Y(7) + ox). 

The addition operator adds a single "grain" to the node X and stabilizes the 
new (possibly unstable) configuration. 

Property 1. ("Closure Relation") 

at:.xx = IT a-t:.xy 
x y 

X=FY 

Property 2 (Abelian Property) 

axay = ayax 



The Collection X 27 

Recurrent Configurations 

There are numerous ways to define recurrent configurations which can be shown 
to be equivalent. We shall work with the following definition: 

Definition. A configuration T) E n is called recurrent if there exist nx :2: 1 such 
that 

IT a~~T) =T). 

xEV 

The set of recurrent configurations is denoted by R 

Is 3t = 0? No. 

Let T = I1 ax . Since the set of stable configurations is finite, there must be 
xEV 

some tl < t2 such that TtlT) = T t 2T), and so T t
2-

t lTt lT) = TtlT), and thus TtlT) 

is recurrent. 

Lemma 1. If T) E 3t, then axT) E 3t. 

Proof. Follows from Abelian property of addition operator. 

Corollary. The maximal configuration '(J, defined by'(J(x) = ~xx is recurrent. 

Proof. There is at least one T) E 3t. Obtain the maximal configuration through 
repeated application of the addition operator. Thus maximal configuration is 
recurrent by previous lemma. 

Define the relation rv on 3t as follows: T) rv e iff::le E NV such that I1 a~(x)T) = e. 
xEV 

The relation is an equivalence relation on 3t, and thus divides 3t into disjoint 
equivalence classes. But every T) is related to '(J, the maximal configuration, 3t 
is partitioned into only one equivalence class. 
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The Group acting on ~ 

Lemma. For any non-empty set A of configurations which has the property 
axA C A\;7'x E V, A contains ~. 

Let 1] E ~, then by definition, ::Inx ~ 1 such that IT a~%1] =1]. 
xEV 

Let A be the set of configurations ~ E ~ such that IT a~% ~ =~. A is non-empty 
xEV 

since 1] E A. Also, if ~ E A, then 

IT a~%ay~ = ay( IT a~%~) = ay~, 
xEV xEV 

and so ay~ E A. Thus by previous lemma, ~ c A. But A c ~, so A = ~. 

Thus \;7'1] E ~, IT a~%1] = a; IT a;- a~%-l1] = 1], which implies that ax is in-
xEV y~x 

vertible and a;l = (IT a;Y)a~%-l. 
y:;fx 

Thus the set of all possible products IT a~% forms an abelian group G under 
xEV 

composition. This group acts on the set of recurrent configurations, R 

What does G look like? 

Clearly, the orbit of an element ~ E A corresponds to the equivalence class [~l of 
the relation defined previously. But [~l = ~. Thus by Orbit Stabilizer Theorem 
IGI=I~I· 

However, we would like a specific value for ICI = IRI in terms of the toppling 
matrix. 

Using the "closure relation" on ~ one obtains: 

IT a~XY = e, where e is the identity element of C. 
y 

By commutativity we get: 

IT a~c,.n)% = e, for any n E NV, where (.6.n)x = By.6.xyny. 
x 
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Definition. We call a mapping m E NV a multiple of /:, if m = /:'n, for some 
nE NV. 

Thus, we have, m is a multiple of /:, if and only if: 

IT a;'x = e (*) 
x 

Consider the mapping III : NV -. G , defined by 1lI(77) = TI a~x. Clearly, III is a 

surjective homomorphism and so G ~ K =~\f!) . 
But by (*), Ker(llI) = /:,Nv = {/:'n: nE NV} 

Thus, 

which has order det(/:'). 

Conclusion 1 

NV 
G ~ /:,Nv 

x 

From the previous result we obtain the following interesting rule: 

Each coset of :;v can be associated with a unique recurrent configuration. 

Thus if 77 E ~ and we add to 77 a configuration ~ (through a sequence of group 
actions) and 3( E ~,a E NV which satisfy: 

77 + ~ - /:'a = ( 

then this means that: if we add to 77 according to the configuration ~, then we 
topple to (, and the number of topplings of node x is a x . 
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Conclusion 2 

We can choose the toppling matrix as follows: 

A = 2d 
L...l.

xx {-I 
!::"xy = 0 

x, y are neighbours, 
otherwise. 

30 

Since the lattice has no loops, the toppling matrix corresponds to the combina
torial Laplacian of the lattice. 

Considering the lattice as a graph H = (V, E), define a new graph H* by adding 
a new vertex v and connecting it to all the boundary vertices of H. Clearly, !::,. is 
a principal submatrix of the Laplacian of H*. Thus we can invoke the Matrix
Tree Theorem which states that the number of rooted (with root v) spanning 
trees is det(!::"). Thus we have as many recurrent configurations as spanning 
trees. 
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