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Abstract 

T he intervals between successive notes in the major and minor 

scales are not equal so that difficulties arose when modulating 

to new keys. Adjustment to the tempered scale, in which all 

intervals are equal, ensured portability in all keys. The tem­

pered intervals form a group under multiplication. Moreover, 

t he musical notes can be partitioned into equivalence classes by 

t he octave. A homomorphism can be defined on the set of tem­

pered intervals. The kernel is the set of exact number of octave 

and the range isomorphic to C12 . 

Introduction 

This article deals with applying group theory to musical notes. We start by 

t aking note of their mathematical and physical properties. 

1. The pitch of a musical note is defined by its frequency, that is the number 

of vibrations per second. 

2. The frequencies of pure musical tones form an infinite set of real numbers. 

The range between 20 and 20 ,OOOHz is within the lower and upper limits of 

audibility. 

3. Instruments with discrete musical tones are finite subsets of this infinite 

set. The pianoforte, for example, has a subset with 88 elements . 
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4. Instruments with continuous musical tones are infinite subsets of this 

infinite set. Examples of these are the string instruments and some wind 

instruments like the trombone. 

5. There is an order relation, >, defined on the musical notes which IS 

antisymmetric and transitive. Given t hree musical notes a, band c: 

i. a < b does not imply b < a (antisymmetric) 

11. however, if a < band b < c, t hen a < c (transitive) 

6. Musical notes can also be divided into equivalence classes. 

Recall that if A is a set and rv is an equivalence relation, then the equivalence 

class of a E A is the set: {x EA: a rv x}. 

Also recall that three properties define an equivalence relation rv . 

'<la, b, c EA, 

La rv a (reflexive) 

2.a rv b ====? b rv a (symmetric) 

3.a rv b & b rv c ====? a rv C (transitive). 

Classes of Notes 

In music, notes with the same name are part of the same equivalence class. 

The reason behind this is that notes with the same name are related by the 

following equivalence relation: a rv b if ~ = 2n , n E Z. 

1. rv is reflexive, since a = 20a 

2. rv is symmetric, sincea = 2x b ====? b = 2-x a 

3. rv is transitive, since a = 2x b & b = 2Yc ====? c = 2x+Ya given that x, yE Z. 

Thus the frequencies of successive notes in one equivalence class are in the 

ratio of 2: 1 and are said to be an octave apart. They sound similar since 

they have common vibrations, the higher note doing an extra vibration in 

between each of two consecutive vibrations of the lower note. Notes in the 

same class are given the same name. Middle C on the piano is 256 Hz and 
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the frequencies 128Hz and 512Hz are also C notes. On the tempered scale 

Middle C is adjusted to 261.6Hz. 

Problems on Modulating 

DEFINITION 0.0.3 . The interval beween two notes aHz and bHz with b > a 

is the ratio Q a' 

Of the seven Greek modes, the Ionian and Aeolian modes developed into the 

natural major and minor scales respectively, because the tonal symmetry 

among the intervals contributes to the ear 's ready acceptance of the scale. 

Tl . - . 1 -' 1 1 9 5 4 3 5 15 d 2 1 1 d 1 le mtelva s gIven )y I' 8'4' 3' 2' 3' if an T lave )ecome accepte as t le 

ones most pleasing to the ear and correspond to unison, major 2nd, major 

3rd, perfect 4th, perfect 5th, major 6th, major 7th and the octave resp. 

The function L1 : lR x lR --) lR defined by Ll : (a, b) 1-7 log2 ~ gives the 

interval in octaves. Thus if a rv b then ~ = 2n , n E Z, the notes a, bare n 

octaves apart and belong to the same equivalence class. Now if we have an 

interval of 12 perfect fifths starting from C, we expect to obtain C again 7 

octaves up, that is the interval 27 = 128. But one perfect fifth is ~ which 

when compounded gives (~)12 = 129.7, so that successive multiplication 

by ~ is not closed under successive multiplication by 2. The discrepancy 

represents the interval between BU and C which does not figure on the piano. 

Even with just intonation where each of the major triads F-A-C, C-E-G 

and G - B - D are in the ratio 4 : 5 : 6, the interval between two notes, one 

tone, is sometimes * (e .g.C - D) and sometimes 19°, (e.g. D - E), whereas 

one semitone (e.g. B - C) is i~. 

The interval between two notes, say C and D, is divided into two semitones 

which, in the natural scales, are not exactly equal in size since (i~) 2 1= * or 
10 
g' 

The function Lh2 : lR x lR --) lR defined by Lh2 (a, b) 1-7 log2i2 ~ gives 

the interval in semitones. 
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In the scale of C Major the 7 semitones from C to G form the interval ~ 

whereas the 7 semitones from D to A form the interval t = ~~ < ~. Thus 
8 

modulating to the scale of D reults in a slightly flat fifth which is therefore 

out of tune. 

The Solution: The Tempered Scale 

A keyboard instrument in which the scales in all keys have equal intervals 

would solve this problem. The tempered scale was thus constructed in which 

there are 12 equal semitones in an octave. These intervals are obtained by 
1 

placing eleven geometric means between 1 and 2. Since 212 is irrational, 

none of the intervals (except the octave) agree with those of the natural 

scale. However, although the scales in all the keys are slightly out of tune, 

the average ear is unable to detect a discrepancy of such small dimensions. 

The great advantage of the tempered scale is that the set of intervals {ah} is 

now a group under multiplication. Notes of the same name are octaves apart 

and equivalent intervals in the same class are in a ratio of 2r : 1, r E N. 

The interval from a, to b is equivalent to that between a and 2b. Thus a:2" rv 

.!!. bx2" 
Q. a 

The log scale L1( {ah}) gives fractions of octaves and equivalent inter­

vals differ by an integer. The log scale Lh2 (~) = 12 x L1 (~) is the 

simplest and the values form a group under addition homomorphic to 

C12 = {O, 1,2,3, , 4,5, , 6,7 ,8,9,10,11}x mod 12. 

The CYCLIC GROUP C12 

Consider the set of consecutive notes: 

C,C~,D, D~,E,F,F~,G,G~,A,A~,B, ..... Their set of frequencies is not a 

group; however the set of intervals: 
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FIGURE 0.3 . Musical intervals on a dodecahedron. 

c l c,c I CI,c ID ,C IDI,c I E,c IF ,c IFhc I e,c Je~,c IA ,c IA I,c IB , .... is a 

group Gc. If the intervals are taken relative to any note N, then GN will 

be the same group on the tempered scale . This is the great advantage of 

tempered intervals: Modulation produces a set of intervals compatible with 

the default set. 

Such a group G will always be of the form : 

1 2 3 4 5 G 7 8 9 10 11 . . 
{20, 212,212,212,212 ,212,212, 212 , 212,212 , 212 , 212, ... } under multiplica-

tion and is a subgroup of (Z, x). 

A Homomorphism on the Set of Intervals 

The homomorphism cjJ : 2-fi f--+ n mod 12 maps the infinite set G of intervals 

to their equivalence classes { c l c,C IChCID, ... ,C IB} ' The kernel Ker( cjJ) 

is t he set consisting of a whole number of octaves. Since G is Abelian, a 

subgroup is normal. The isomorphism theorems imply that 

i) cjJ( G) is isomorphic to C12, the set of rotational symmetries of the regular 

dodecagon; 

ii ) every normal subgroup of C12 corresponds to a normal subgroup of G. 

Such a subgroup and its cosets represent equivalent chords. 

The points on a dodecagon, starting from zero, that are ;~ 2f and 2p 
apart form subgroups of C12 . These are C12, {O, 2, 4, 6, 8, 10} and {O, 3, 6, 9} 

respectively. The cosets of the latter are t he chords of Diminished seventh. 

F inally we can define a mapping f : G ---7 Z by 

n l n J .f : 212 f--+ 12 . 

The first twelve elements of the cyclic group G are mapped onto 0, the 

second twelve elements of the cyclic group mapped onto 1, and so on. The 
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range {l ;2 J} corresponds to the octave above the default (that of middle 

however , is not a 

" 


