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Equivalent Intervals 
Peter Borg 

To show that the open interval (0,1) and the closed interval [0,1] are equivalent. 
Problem posed by Mr. James Borg. 

Proof Required to find a bijection (l to 1 and onto mapping) from (0,1) to [0,1]. 
Consider the following diagram: 

be defined by 

.L 
2 

.1. 
1 

_ 1 
f: x H +-T - x X E (0, - 2 ] = 11 

2 
1 1 1 1 1 1 

-1 + ( - 2 + - 3 - x) X E (-2 ,-? + - 3 ] = 12 
2- 2 2 ' 2 2- 2 

1 I 1 11 11111 
- - + - + (- + - + - - x) X E (- + - - + - + -] = 13 
2 2 2 3 22 2 3 24 22 2 3 '2 2 2 3 24 . 

etc. 
1 1 1 1 1 1 

In general, for x E ( - ? + - 3 + ... + - " ' - 2 + - , + ... + -k -I ] ,k ~ 2, we have: 
2- 2' 2' 2 2 " 2 + 

1 1 1 1 
f(x) = 2( - ? + - 3 + ... + -, ) + -k - I - X = 

2- 2 2' 2 '+ 

1 1 
l - --+--- x 

2k - 1 2k+1 

1 1 
and for x E (0, -2 ] we have f(x) = -2 - X. 

2 2 
The first thing to note is that we have partitioned (0,1) into an infinite number of intervals Ik . 

1 I I 1 1 1 
This is because the sequence (-2 + - 3 + .. . + -k ) = (- - -k ) ~ - as k ~ 00 . Also, 

2 2 2 2 2 2 
we are practically mapping an interval of type (a,b] onto an interval of type [a,b) by mapping 
x E (a,b] onto a + (b - x); in particular b is mapped onto a. Secondly, one can easily realize 
that f is well-defined and injective because, on any interval Ik, a unique x value is mapped 

1 I 
onto a unique y value. It remains to prove that f is onto. Let y E [0, - ). If y E [0, -2 ) then 

2 2 
1 

there exists x E (0, - 2 ] such that f(x) = y. Otherwise, there exists a k ~ 2 such that 
2 

1 1 11 1111 
( - - -) ::; y < ( - - --). So Y should lie in an interval [- - - - - -- ) but f is 

2 2k 2 2k+1 2 2k ' 2 2 k+I ' 

1 1 I 1 1 
defined such that there exists an interval h = ('2 - 2!' '2 - 2 k+1 ] which is mapped onto [ '2 

1 I 1 - 2! ' '2 - 2k+1 ), i.e. there exists x E h such that f(x) = y. 

1 I 1 1 
So we have mapped (0, - ) onto [0, - ) . Similarly, we can map ( -, 1) onto (-, 1]. And 

2 2 2 2 

fi nally, we map ~ E (0,1) onto ~ E [0, 1]. The proof is hence complete. 
2 2 
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A second solution by James Borg. 

If f maps the irrationals to themselves identically, the rest of the intervals 
(0,1) and [0,1] are equivalent since they are countable. 

A third solution by Vincent Mercieca. 

This solution is similar to that of Peter Borg. The intervals are divided into 
sub intervals with end points expressed in Ternary form. 

Let f map the interval [0,1] to (0,1). 

The interval [0 , 1] is divided into sub intervals [0,0.1), [0.1,0.11), 
[0.11,0.111) , ... (0.2,1) , (0.12,0.2]), (0.112,0.12]' ... Now f(O.l)=O.l1, 
f(.11)=0.111, ... and f(0.2)=0.12, f(.12)=0.112, . 

All other points are mapped identically. 

1 



Proof (] a): 

Let A I = {al I, a12, aJ3, ... }, A2 = {a21, a22, a23, ... }, ... , Ak = {akl' ak2, ak3 ... }' ... 

For all i, Ai is a countable set. A = A luA2uA3u .. . is a countable union of countable sets. 

Hence the elements of A can be li sted in the following way: 

a l I al2 al3 al4 

a21 /.22 a23 

a31./' a32 

~I /.. etc. 

Let f: A -7 N be defined by f : a ij H iI,2(n) + i = (i + j - 2 Xi + j -1) + i , where i, j > O. 
n~ 2 

It is required to prove that f is well-defined, one-to-one, and onto, i.e. f is bijective. 

f is obviously well-defined since f(aij) can take only one value. 

i+ j-2 p+q-2 

To prove f is one-to-one suppose that f(aij) f(apq). Hence I (n)+ i = I (n)+ p . 
11=0 11=0 

Suppose (i + j) ::F (p + q) . Therefore either (i + j) > (p + q) or (i + j) < (p + q), but it is 

i+j- 2 p+q -2 

enough to just consider (i + j) > (p + q). f(aij) = f(amn) => p - i = I (n) - I, (n). Hence 
11=0 n=O 

i+j-2 

P - 1 = I (n) 2': p + q - 1. So 1 - i 2': q. But i 2': 1 (i > 0), and hence 0 2': q. This is a 
l1 =p+q-1 

i+j-2 p+q-2 

contradiction since q 2': 1 (q > 0). So (i + j) = (p + q), and from I,(n)+i = I,(n)+p it 
11=0 11 =0 

follows that i = p. Hence j = q. So apq = aij-

To prove f is onto let us consider any natural number k. We need to find i and j such that 

111 111(m + 1) 111+1 (m + 1X111 + 2) 
f(aij) = k, where i, j > O. Let 111 be such that In = < k :s; I11 = . 

11 =0 2 11 =0 2 

m 

Hence 0 < i = k - I, n :S; 111 + 1. Let j = 111 - i + 2 (i .e. III = i + j - 2). Since 111 - i 2': -1 
11 =0 
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then j = (m - i) + 2 :2: -1 + 2 = 1. Hence j > O. So we have found i and j such that 

;+j-2 

f(a ;j) = I (n) + i, where i, j > 0 as required. 
11 =0 

However, it was not necessary to prove onto in order to prove that A-N. First of all , for 

all i N - Ai. Suppose f was not onto N but onto N', an infinite proper subset of N, then 

we have that A - N' c N c A. In fact, by definition, an infinite set is equivalent to a 

proper subset of itself. So A must be equivalent to N. 

Proof J(b) : 

Let aij = J/ j in proof 1 (a). The denominators in Q are elements of N and for all 

denominator i E N there exists a set Ai which is the set of all positive rationals with 

denominator i. Hence the union A = AI U A2 U A3 U ... covers all the denominators and 

hence fo rms the set of all positive rationals. Hence by result 1 (a) Q+ is countable. The 

set Q- of negative rationals is equivalent to the set of positive rationals, hence also 

countable. Again , by result 1 (a), Q:= Q+ U Q- is countable. 

2. (a) The set of real numbers, R, is uncountable. 

Cb) The set of irrational numbers, J, is uncountable. 

Proof2(a): 

Suppose R is countable. Therefore R is equivalent to N, and hence its elements can be 

li sted. Let us just consider the real interval [0,1]. Hence let the elements in [0,1] be 

li sted as {ai, a2, a3, ... }. Also let each rational element in [0,1] be written in its infinite 

decimal expansion, e.g. 0.5 = 0.4999_ .. Hence we have the following list: 

al = O.all al 2 a13 aI4· ·· 

a2 = 0.a21 a22 a23 a24··· 

a3 = 0.a3 1 a32 a33 a34··. 

etc. 

Let b = 0.b lb2b3 ... be a real number in [0,1] such that bi = 1 if aii = 0 and bi = ° if aii = 1. 

I-Ience b is not in the set {ai , a2, a3, ... }. This is a contradiction and [0,1] is therefore 

uncountable. So, obviously, R is uncountable. 



Proof 2(b): 

R = Q u 1. Suppose J is countable. Again, by result 1 (a), this implies that R is countable 

since Q is also countable. So this is a contradiction and J is therefore uncountable. 

3. (a) N has measure 0 . Q (or any countable set) has measure 0. 

(b) J n [0,1] has measure 1. 

Some properties of Measure: 

• The measure of the empty set 0 is 0. 

• For any real interval [a,b], b > a, the (Lebesgue) measure is given by (b - a). 

• Let MA denote the measure of set A. If A = B u C then MA = Ms + Mc - Msnc. 

Proof 3( a): 

Let n E N be covered by a real interval of radius £I(2n), i.e. [n - £/(2'), n + £/(2n)] . For any 

£ > 0, all natural numbers are covered. Taking all the covers we get that the measure of N 

is less than 2 t ~ = 2E(_I_/_) = 4E. We can let £, tend to ° without uncovering any 
11=02 1-1 2 

natural number, whereby the measure tends to 0. Hence N has ° measure. 

Since (by definition) any countable set is equivalent to N, then any countable set has ° 
measure. In particular, Q has ° measure. 

Proof 3(b): 

The (Lebesgue) measure of the real interval [0,1] is given by 1 - ° = 1. By definition, 

J = QC = R \ Q (R without Q), i.e. the set of all real numbers which are not rational 

(irrational) . R = J u Q and J n Q = 0 (empty set) . 

[0,1] = [0,1] n R = [0,1] n (1 u Q) = ([0,1 ] n 1) u ([0,1] n Q) . 

Let A = [0, 1], B = [0, 1] n J, C = [0,1] n Q. B n C = 0. Hence Msnc = 0. Also, since C 

is cou ntable, Mc = 0. Therefore MA = Ms + Mc - Msnc = Ms + ° -° = 1. So Ms = 1, i.e. 

the measure of the irrationals in [0,1] is 1. 

Problem: If M is an uncountable set in [0,1] , does it necessarily have measure 1 ??!! 

Remark: This will be tackled in a future workshop. 


