Equivalent Intervals
Peter Borg

To show that the open interval (0,1) and the closed interval [0,1] are equivalent.
Problem posed by Mr. James Borg.
Proof: Required to find a bijection (1 to 1 and onto mapping) from (0,1) to [0,1].

Consider the following diagram: i
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In general, for x € (2—2 + ? + ...+ ?, 2—2 + ?ZT + ..+ S 1,k =2, we have:
: 1 1 1 1 1 1
f(X)=2(?+53—+...+? +2k+]-X=1-Ek—_—l*+—2W-X
1 1
and for x € (0, 52—] we have f(x) = 2—2 - X.
The first thing to note is that we have partitioned (0,1) into an infinite number of intervals I.
1 1 1 1 1 1
This i1s because the sequence (— + — + ...+ —) = (— - —) = — as k — . Also,
E (22 o o ) (2 2 )

we are practically mapping an interval of type (a,b] onto an interval of type [a,b) by mapping
X € (a,b] onto a + (b —x); 1n particular b is mapped onto a. Secondly, one can easily realize
that f is well-defined and injective because, on any interval I, a unique x value is mapped

1 1
onto a unique y value. It remains to prove that f is onto. Lety € [0, E ). Ify € [0, —) then

1
there exists x € (0, 2—2] such that f(x) = y. Otherwise, there exists a k > 2 such that

- . 1 1 1 1 .
(5 - ?) Ly« (5 - e ). Soy should lie in an interval [E - F’ 5 - —2“1 ), but f is
1 1 1 1
defined such that there exists an interval Iy = (= - —, — - ——] which is mapped onto [—
Z2 & 2 zv 2
1 1
Ty S ), i.e. there exists x € I such that f(x) = y.

1 1 1 1
So we have mapped (0, E) onto [0, 5). Similarly, we can map (—, 1) onto (—, 1]. And

1 1 .
finally, we map 5 € (0,1) onto ] € [0,1]. The proof is hence complete.



A second solution by James Borg.

If f maps the irrationals to themselves identically, the rest of the intervals
(0,1) and [0, 1] are equivalent since they are countable.

A third solution by Vincent Mercieca.

This solution is similar to that of Peter Borg. The intervals are divided into
sub intervals with end points expressed in Ternary form.

Let f map the interval [0, 1] to (0, 1).

The interval [0,1] is divided into subintervals [0,0.1), [0.1,0.11),
0.11,0.111),. . . (0.2,1), (0.12,0.2)), (0.112,0.12),. . . Now £(0.1)=0.11,
£(.11)=0.111, . . . and £(0.2)=0.12, £(.12)=0.112, . . .

All other points are mapped identically.



Proof (1a):
Let Ay = {aj;, aj2, @13, ...}, Az ={aa;, ax, a3, ...}, ..., Ax={ax1, ax2, a3...},
For all 1, A; is a countable set. A = Aj\UAUA3U... is a countable union of countable sets.

Hence the elements of A can be listed in the following way:

ap| aj2 a3 a4

a4

i+j-2 3 s 5 L
Letf: A — N be defined by f:aijr—>2(n)+i=(‘+J 2;(1“ 1)+i,wherei,j>o,
n=0

It is required to prove that f is well-defined, one-to-one, and onto, i.e. f is bijective.

f is obviously well-defined since f(a;;) can take only one value

i+j-2 p+gq-2
To prove f is one-to-one suppose that f(a;) = f(a,q). Hence Z(n)—H = Z(n)er.
= n=0

Suppose (i + j) # (p + q). Therefore either (i +j) > (p+ q) or (i +j) < (p + q), but it is

i+j-2 p+q-2

enough to just consider (i +j) > (p + q). f(aj) =f(am) = p—-i= 2 n 2 n). Hence
n=0
i+j-2
p-i= Z(n) 2 p+q-1. Sol—-12q. Buti=1(>0),and hence 0 =2q. This is a
n=p+q-I
i+j-2 p+g-2
contradiction since g =2 1 (q > 0). So (i +]j) = (p + q), and from Z (n +p it
n=0 n=0

follows that i = p. Hence j=q. So apq = a;.

To prove f is onto let us consider any natural number k. We need to find i and j such that

o m 4 m+]
f(a;) =k, where 1, j > 0. Let m be such that 211 = m(m ] <k < 2 @L)(mj_ﬂ

n=0 n=0

m
Hence 0 <i=k —Zn Sm+1 Letj=m-i+2(ie m=i+j-2). Sincem—i=-1]
n=0



then j=(m-1)+22-1+2=1. Hencej>0. So we have found i and j such that
i+j-2
f(a;) = Z(n) +1, where 1, ] > 0 as required.
n=0
However, it was not necessary to prove onto in order to prove that A ~ N. First of all, for
all 1 N ~ A;. Suppose f was not onto N but onto N’, an infinite proper subset of N, then
we have that A ~ N> < N c A. In fact, by definition, an infinite set is equivalent to a
proper subset of itself. So A must be equivalent to N.
Proof 1(b):
Let a; = j/i in proof 1(a). The denominators in Q are elements of N and for all
denominator 1 € N there exists a set A; which is the set of all positive rationals with
denominator i. Hence the union A = A; U A, U Ay U ... covers all the denominators and
hence forms the set of all positive rationals. Hence by result 1(a) Q" is countable. The

set O of negative rationals is equivalent to the set of positive rationals, hence also

countable. Again, by result 1(a), O = Q" U Q" is countable.

2. (a) The set of real numbers, R, is uncountable.

(b) The set of irrational numbers, /, is uncountable.

Proof 2(a):
Suppose R is countable. Therefore R is equivalent to N, and hence its elements can be
listed. Let us just consider the real interval [0,1]. Hence let the elements in [0,1] be
listed as {aj, a, a3, ...}. Also let each rational element in [0,1] be written in its infinite
decimal expansion, e.g. 0.5 = 0.4999... Hence we have the following list:

a;=0.a;;7a12a13214...

ar = 0.a9) agy a3 ag4...

a3 = 0.a3) a3y a3z a34...

cte.

Let b = 0.b;bybs... be a real number in [0,1] such thatb;=1if a;=0and b; =0 if a;; = 1.
Hence b is not in the set {a;, as, a3, ...}. This is a contradiction and [0,1] is therefore

uncountable. So, obviously, R is uncountable.



Proof 2(b):
R =0 Ul Suppose I is countable. Again, by result 1(a), this implies that R is countable

since Q is also countable. So this is a contradiction and / is therefore uncountable.

3. (a) N has measure 0. Q (or any countable set) has measure O.
(b) I [0,1] has measure 1.
Some properties of Measure:
e The measure of the empty set & is 0.
e For any real interval [a,b], b > a, the (Lebesgue) measure is given by (b - a).
e Let My denote the measure of set A. If A =B U C then Ma = Mg + Mc - Mpnc.
Proof 3(a):
Let n € N be covered by a real interval of radius €/(2"), i.e. [n - €/(2"), n + &/(2")]. For any
€ > 0, all natural numbers are covered. Taking all the covers we get that the measure of N

B i—1f2

is less than 2 I 28(;——j= 4e. We can let € tend to O without uncovering any
n=0

natural number, whereby the measure tends to 0. Hence N has O measure.

Since (by definition) any countable set is equivalent to N, then any countable set has O
measure. In particular, Q has O measure.

Proof 3(b):

The (Lebesgue) measure of the real interval [0,1] is given by 1 - 0 = 1. By definition,
I=0°=R\ Q (R without Q), i.e. the set of all real numbers which are not rational
(irrational). R=7 U QandI N Q=0 (empty set).

[0,1]=[0,1]nR=[0,11nTuw @) =((0,1]nD v (0,1] n O).

Let A=[0,1],B=[0,11"N1,C=[0,1]n Q. BN C=. Hence Mp~c =0. Also, since C
is countable, Mc = 0. Therefore Mo = Mg + Mc-Mprc=Mp+0-0=1. SoMg =1, i.e.

the measure of the irrationals in [0,1] is 1.

Problem: If M is an uncountable set in [0.1]. does it necessarily have measure 12?!!

Remark: This will be tackled in a future workshop.



