Equivalent Intervals Peter Borg

 $^{\circ}$

A second solution by James Borg.

If f maps the irrationals to themselves identically, the rest of the intervals $(0,1)$ and $[0,1]$ are equivalent since they are countable.

A third solution by Vincent Mercieca.

This solution is similar to that of Peter Borg. The intervals are divided into sub intervals with end points expressed in Ternary form.

Let f map the interval $[0,1]$ to $(0,1)$.

The interval $[0, 1]$ is divided into subintervals $[0, 0.1)$, $[0.1, 0.11)$, $[0.11, 0.111],$ $(0.2, 1), (0.12, 0.2]), (0.112, 0.12],$ \ldots Now $f(0.1)=0.11$, f(.11)=0.111, ... and f(0.2)=0.12, f(.12)=0.112, ...

All other points are mapped identically.

Proof (1*a*):

Let $A_1 = \{a_{11}, a_{12}, a_{13}, ...\}$, $A_2 = \{a_{21}, a_{22}, a_{23}, ...\}$, ..., $A_k = \{a_{k1}, a_{k2}, a_{k3}...\}$, ... For all i, A_i is a countable set. $A = A_1 \cup A_2 \cup A_3 \cup ...$ is a countable union of countable sets. Hence the elements of A can be listed in the following way:

Let f: A \rightarrow N be defined by $f : a_{ij} \mapsto \sum_{i=1}^{i+j-2}(n) + i = \frac{(i+j-2)(i+j-1)}{2} + i$, where i, j > 0. $n=0$ 2

It is required to prove that f is well-defined, one-to-one, and onto, i.e. f is bijective. f is obviously well-defined since $f(a_{ii})$ can take only one value.

To prove f is one-to-one suppose that $f(a_{ij}) = f(a_{pq})$. Hence $\sum_{i=1}^{i+j-2} (n+i) = \sum_{i=1}^{p+q-2} (n)+p$. $n=0$ $n=0$ Suppose $(i + j) \neq (p + q)$. Therefore either $(i + j) > (p + q)$ or $(i + j) < (p + q)$, but it is enough to just consider $(i + j) > (p + q)$. $f(a_{ij}) = f(a_{mn}) \implies p - i = \sum_{i}^{i+j-2} (n) - \sum_{i}^{p+q-2} (n)$. Hence $n=0$ $n=0$

$$
p - i = \sum_{n=p+q-1}^{i+j-2} (n) \ge p + q - 1.
$$
 So $1 - i \ge q$. But $i \ge 1$ $(i > 0)$, and hence $0 \ge q$. This is a

 $i+j-2$ p+q-2 contradiction since $q \ge 1$ ($q > 0$). So ($i + j$) = ($p + q$), and from $\sum_{n=1}^{n} (n) + i = \sum_{n=1}^{n} (n) + p$ it $n=0$ $n=0$

follows that $i = p$. Hence $j = q$. So $a_{pq} = a_{ij}$.

To prove f is onto let us consider any natural number k. We need to find i and j such that $f(a_{ij}) = k$, where i, j > 0. Let m be such that $\sum_{i=1}^{m} n = \frac{m(m+1)}{2} < k \le \sum_{i=1}^{m+1} n = \frac{(m+1)(m+2)}{2}$. Hence $0 < i = k - \sum_{m=1}^{m} n \le m + 1$. Let $j = m - i + 2$ (i.e. $m = i + j - 2$). Since $m - i \ge -1$ $n = 0$

then $j = (m - i) + 2 \ge -1 + 2 = 1$. Hence $j > 0$. So we have found i and j such that $f(a_{ij}) = \sum_{j}^{i+j-2} (n) + i$, where i, j > 0 as required. $n = 0$

However, it was not necessary to prove onto in order to prove that $A \sim N$. First of all, for all i $N \sim A_i$. Suppose f was not onto N but onto N', an infinite proper subset of N, then we have that $A \sim N' \subset N \subset A$. In fact, by definition, an infinite set is equivalent to a proper subset of itself. So A must be equivalent to N.

Proof J(b):

Let $a_{ij} = {}^{j}V_{i}$ in proof 1(a). The denominators in Q are elements of N and for all denominator $i \in N$ there exists a set A_i which is the set of all positive rationals with denominator i. Hence the union $A = A_1 \cup A_2 \cup A_3 \cup ...$ covers all the denominators and hence forms the set of all positive rationals. Hence by result 1(a) Q^+ is countable. The set Q of negative rationals is equivalent to the set of positive rationals, hence also countable. Again, by result 1(a), $Q = Q^+ \cup Q^-$ is countable.

2. (a) The set of real numbers, *R,* is uncountable.

(b) The set of irrational numbers, I , is uncountable.

Proof2(a):

~

Suppose *R* is countable. Therefore *R* is equivalent to *N,* and hence its elements can be listed. Let us just consider the real interval [0,1]. Hence let the elements in [0,1] be listed as $\{a_1, a_2, a_3, ...\}$. Also let each rational element in [0,1] be written in its infinite decimal expansion, e.g. $0.5 = 0.4999...$ Hence we have the following list:

$$
a_1 = 0.a_{11} a_{12} a_{13} a_{14}...
$$

\n
$$
a_2 = 0.a_{21} a_{22} a_{23} a_{24}...
$$

\n
$$
a_3 = 0.a_{31} a_{32} a_{33} a_{34}...
$$

\netc.

Let $b = 0.b_1b_2b_3...$ be a real number in [0,1] such that $b_i = 1$ if $a_{ii} = 0$ and $b_i = 0$ if $a_{ii} = 1$. Hence b is not in the set $\{a_1, a_2, a_3, ...\}$. This is a contradiction and $[0,1]$ is therefore uncountable. So, obviously, *R* is uncountable.

Proof 2(b):

 $R = O \cup I$. Suppose I is countable. Again, by result 1(a), this implies that R is countable since O is also countable. So this is a contradiction and I is therefore uncountable.

3. (a) *N* has measure 0. Q (or any countable set) has measure 0.

(b) $I \cap [0,1]$ has measure 1.

Some properties of Measure:

• The measure of the empty set \emptyset is 0.

- For any real interval $[a,b], b > a$, the (Lebesgue) measure is given by $(b a)$.
- Let M_A denote the measure of set A. If $A = B \cup C$ then $M_A = M_B + M_C M_{B \cap C}$. *Proof* 3(*a):*

Let $n \in N$ be covered by a real interval of radius $\mathcal{E}/(2^n)$, i.e. $[n - \mathcal{E}/(2^n)]$, $n + \mathcal{E}/(2^n)$]. For any ϵ > 0, all natural numbers are covered. Taking all the covers we get that the measure of N

is less than $2\sum_{n=0}^{\infty} \frac{\varepsilon}{2^n} = 2\varepsilon \left(\frac{1}{1-1/2} \right) = 4\varepsilon$. We can let ε tend to 0 without uncovering any

natural number, whereby the measure tends to 0 . Hence N has 0 measure.

Since (by definition) any countable set is equivalent to N , then any countable set has O measure. In particular, Q has 0 measure.

Proof 3(b):

The (Lebesgue) measure of the real interval [0,1] is given by $1 - 0 = 1$. By definition, $J = Q^c = R \setminus Q$ (R without *Q*), i.e. the set of all real numbers which are not rational (irrational). $R = I \cup Q$ and $I \cap Q = \emptyset$ (empty set).

 $[0,1] = [0,1] \cap R = [0,1] \cap (I \cup Q) = ([0,1] \cap I) \cup ([0,1] \cap Q).$

Let $A = [0,1]$, $B = [0,1] \cap I$, $C = [0,1] \cap Q$. $B \cap C = \emptyset$. Hence $M_{B \cap C} = 0$. Also, since C is countable, $M_C = 0$. Therefore $M_A = M_B + M_C - M_{B \cap C} = M_B + 0 - 0 = 1$. So $M_B = 1$, i.e. the measure of the irrationals in [0,1] is 1.

Problem: If M is an uncountable set in [0,1], does it necessarily have measure 1??!! **Remark:** This will be tackled in a future workshop.