Boolean Rings

Louise Casha and Alexander Vella

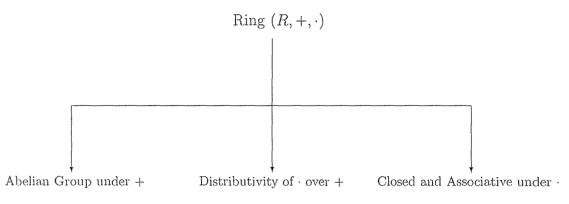


Figure 1: The definition of a Ring.

Definition of a Ring:

A ring is a triple comprising a set R and two binary operations + and \cdot satisfying the following properties (refer to Figure 1):

- 1. R is an Abelian group under +
- 2. R is closed and associative under \cdot
- 3. \cdot is distributive over +

Remark: We write ab for $a \cdot b$ and x^2 for $x \cdot x$.

Definition of a Boolean Ring:

R is said to be a Boolean Ring if $x^2 = x \ \forall x \in R$

Theorem 1 Let R be a Boolean Ring. Then $\forall x \in R, -x = x$

Proof: It can be proved that if R is a ring, then $\forall a, b \in R, (-a)(-b) = ab$ and $(-x)^2 = (-x)(-x) = (x)(x) = x^2$.

From the definition of a Boolean Ring, $x^2 = x$ Thus $(-x)^2 = -x$ But $(-x)^2 = x^2$ $\Rightarrow x = -x$, as required.

Theorem 2 Let R be a Boolean Ring. Then R is commutative under \cdot

The Collection III

Proof: Let $x, y \in R$. We need to show that xy = yx.

$$(x + y)(x + y) = (x + y) \text{ from } x^2 = x$$

$$x^2 + xy + yx + y^2 = x + y$$
But $x^2 = x$, $y^2 = y$

$$\Rightarrow x + y + xy + yx = x + y$$

$$\Rightarrow xy + yx = 0$$

$$\Rightarrow yx = -xy$$
But $x = -x$ from Theorem 1
Hence $yx = xy$, as required.

Theorem 3 Let R be a Boolean Ring. Then R is a field $\iff R = \{0, 1\}$ **Proof:** (\Longrightarrow) Let R be a field and let $x \neq 0$ be in R. We need to show that $R = \{0, 1\}$.

Since R is a field, x has an inverse.

Also $x^2 = x$ since R is also a Boolean Ring. Premultiplying both sides by x^{-1} , we get $x^{-1}x^2 = x^{-1}x \Rightarrow x = 1$

Hence if $x \neq 0$, x = 1. Therefore, $R = \{0, 1\}$, as required.

(\Leftarrow) Let $R = \{0, 1\}$. We need to show that R is a field.

It can be shown that any field has only two ideals, $\{0\}$ and itself.

Now in R the possible ideals are $\{0\}, \{1\}$ and $\{0, 1\}$.

• Is {0} an ideal?

Subgroup under + $0 \pm 0 = 0$ (closure and inverse) Absorption under · $0 \cdot 1 = 0$ Hence $\{0\}$ is an ideal.

• Is $\{1\}$ an ideal?

Absorption under $\cdot \quad 0 \cdot 1 = 0$, hence absorption does not hold. Hence $\{0\}$ is NOT an ideal.

• Is {0,1} an ideal?

Subgroup under +Follows since R is a ring.Absorption under ·Follows since R is a ring.Hence $\{0,1\}$ is an ideal.

Therefore, the only ideals of R are $\{0\}$ and R. Hence R is a field, as required.