The Collection VII 28

Artificial Neural Networks
Andrew Cortis

What is an Artificial Neural Network?

It is a Parallel Computational Network made up of interconneeted neurons. They
arc biologically inspired, i.e. they arc composed of elements that work analogously
to the most clementary functions of the biological neuron. Despite the similaritics,
the actual "intelligence” exhibited by the most sophisticated artificial neural
networks, is still very limited. Each Neuron performs a function on its input.
Each ncuron passcs its output on to another neuron to allow it to perform its
work. Artificial Neural Networks can modify their behavior in responsc to their
environment: given a set of inputs (perhaps along with the desired outputs), they
can sclf-adjust to produce consistent responses.

An Artificial Neuron
This is a simple processing element. It is the basic processing unit of an artificial
ncural network.

The Neuron will pass all the inputs through the Summation Unit Producing

Input Output

1
]
]
1
1
i

T
+
1
t
t

Summation Unit Transfer Function

n

3 Ow=NET fQIET) = OUT

i:;”"*‘"y“ (Usually of the form
£R=>[0,1] a ka. squashing
functions)

the NET value and then apply the transfer function to the NET, to produce the
output.

An Artificial Neural Network

Input Vector x = {z1,22,...,2,}

The Collection VII 29

..... ﬂ‘*—vyl
o]

g utput Vector
¥2

Input Vector
%

Output Vector y = {y1,%2,.++»¥m}
Logical Layout of an interconnected feed-forward Artificial Neural Network

Training an Artificial Neural Network

The objective of training an artificial neural network is so to produce the desired(or
a consistent) sct of outputs after application of a set of particular inputs produces
the desired (or a consistent) set of outputs. Like the brain structurc thesc net-
works mimic, they keep a certain degree of unpredictability and unless cvery input
is tricd scparately one might not be certain of the procise output. It might be
impractical and costly to try an exhaustive search on a large network.

Supervised Training

By giving the Artificial Neural Network input and expected output pairs, it can
be trained to 'learn’ a particular problem. Error-Back Propagation uscs a su-
pervised training algorithm. When in training mode, cach input vector is suppliced
with a corresponding desired output vector (the set being called a training pair).
The output of the network is worked out and the error is fed back through the
nctwork and the weights are adjusted accordingly. Before the training begins, the
weights arc assigned to small random numbers.
The following steps are taken to train the network:

1. The next training pair is chosen and the input vector is applied to the
network and the output is worked out.

2. The crror is worked out.
3. The weights arc adjusted so as to minimize the crror.

4. Thesc steps are repeated for several other training pairs, for several times
until all the training pairs have a suitably low crror (< ¢, where € is the
paramcter called the error rate)

The Collection VII 30

Calculating the Error Vector:
A simple way to calculate the error vector is the following:

Error Vector ¢ = {e1,eq,...,en} and
Target Vector t = {t1,%2,...,tn}
c=t-y

Other methods use the square of the difference as crror.

Adjusting the weights:

Adjusting is accomplished layer by layer, from the output layer inwards. A lcarning
rate, pis a value, 0 < p < 1, used as a parameter for the artificial neural network.

Output Layer:

The output layer is adjusted first. For each neuron p with an output to a ncuron
q in the output layer k, work out §, where:

df (yp)-€p

Oppp = —=2£

dyp
Then the change for the weight,
Awpg r = /J‘(qu'yp,(k—l)
Where yp, x-1y is the output of the p{th) neuron in the (k — 1){th) layer. This
represents the modification to be applied in order to minimize the crror.
Wpg k(1 + 1) = wpg,k(n) + Bwpg i

Wpq, k(1) is the value of a weight from a neuron p to a ncuron g in the output
layer k, in the nlth) step of learning.

Hidden Layers:

Since the hidden layers have no target vector, the adjustment algorithm for the
output vector cannot be used. The following one can be used instcad:
Calculate 4, s.t.

A (Yp (k1))

Op(k—1) = Wy (1) (Zq6p,kWpqk)

Since
Awpg = PSqk-Yp,(k—1)

Wpg,e(n + 1) = Wpg k() + Awpgx

The Collection VII 31

Results

With further studies, by using improvements on the back-propagation algorithm
it can be made to run "quite fast on practical applications. So claims that Back-
Propagation is slow should be carefully analyzcd with these ideas in mind" -
Frangoisc Fogelman Soulie

Furthermore "Neural Network architectures and algorithms have progressively
cvolved from simple techniques to ... more complex architecturc" where they can
be trained very fast and used at their best with caly a limited number of training
tokens.

Sometimes, finding optimal weights for a network is "intractablc",according
to Edoardo Amaldi: "Since the learning of the problem is at lcast as hard as its
decision version, the problem of the training perceptions . . .is also NP-complete."

Therefore if P # NP, there is no algorithm that can find the optimal weights
in polynomial time.

This result is the reason why no known algorithm can yicld an optimal weight
sctting in polynomial time and compels us to develop cfficient heuristic methods
with good average behavior.

"Back-propagation suffers from the drawback of the computational burden of
training the network." - E. Monte, J. Arcusa, J.B. Harino, E.Llcida.

Many authors of recent papers have tried to devise their methods for acceler-
ating the convergence rate of the algorithm and presented idcas to help improve
the performance of the networks.

Decvising improvements for an Artificial Neural Network can be doceptively
simple, as was shown in 1987 by Stornetta and Hubermann: The conventional
0-1 dynamic range of inputs is not at its most advantageous. Because the weight
adjustment Awp, i, is proportional to the output level of the ncuron, many inputs
will be 0 and consequently will not train. A solution is to change the input range
to :t—%— and add a hias to the squashing function.

A back-propagation network learns by making changes in its weights in a di-
rection to minimize the errors between its result and the training data. The min-
imization is donc using the steepest descent algorithm. In spitc of how appealing
such a solution is, there is no guarantee that the network can be trained in a finite
amount of time. Also it is not certain that the network will converge to the best
solution: local minima may trap the algorithm in an inferior solution.

The long uncertain training process in a complex problem might require days
to train, and the cffort might prove for lack of ... convergence at all. Long training
time can be the result of a non-optimal step size while training failurcs arisc from
onc of 2 sources: network paralysis and local minima.

The Collection VII 32

Network Paralysis:

As the network trains, the weights can become adjusted to very large values. This
can forcec all or most of the neurons to operate at large valucs of OUT, in a region
where the derivative of the squashing function is very small. Since the adjustment
on the weights is proportional to the derivative, the training process may come to
a virtual standstill Network Paralysis can be avoided by using a small step size
W, although this lecads to an increase in training time.

Local Minima:

Back-propagation employs a type of gradient descent: i.c. it follows the slope
of the crror surface downwards, constantly adjusting the weights towards a min-
imum. The network can get trapped in a local minimum, impeding the network
from converging. Wasscrmann has proposed a method that combincs statistical
methods with gradicnt descent of back-propagation to produce a system that finds
global minima whilc retaining the higher training ratc of the back-propagation.

Step Size:

The convergence proof of Rumelhart, Hinton and Williams shows that infinites-
imally small weight adjustments are assumed. This is impractical as it implies
infinite training tirac. It is necessary to select a finite step size. If the stop size
is too small, convergence will be too slow; if on the other hand it is too large,
paralysis or continuous instability can result. Wassermann describes an adaptive
step size algorithm intended to adjust step size automatically as training proceeds.

Temporal Instability:

If a network is learning from a training pair, it is not considered good if in doing
80 it forgets the previous one. The process should teach the network the cntire sct.
Rumeclhart’s convergence accomplishes this but it requires showing the network all
vectors in the training set before adjusting the weights.

Applications

Back-Propagation (amongst other types of network learning algorithms) is being
used in a varicty of applications. Improvements in the current systems such as’

The Collection VII 33

the ’sccond order back-propagation’ by Parker improve the convergence speed by
using the sccond derivative to produce a more accurate cstimate of the correct
weight change. (Morever he has also shown that higher derivates arc redundant)
Also, more advanced techniques are being developed. Artificial Ncural Networks
have been applied in a variety of research applicasions such as the NEC’s optical-
character-recognition system, Sejnowski and Rosenberg’s conversion of printed En-
glish into highly intelligible speech and Cottrell Munro and Zipscr’s successful
image compression application.

References

[1] Philip D.Wasscrmann, Neural Computing, Theory & Practice, ANZA Re-
scarch, Inc.

[2] Danicl Graupe, Principles of Artificial Neural Networks, World Scientific

[3] T. Kohonen, K.Makisara, O.Simula, J Kangas, Artificial Neural Networks,
Volume 1 & 2, North-Holland

[4] Stuart Russell, Peter Norvig, Artificial Intelligence, A Modern Approach,
Prentice Hall Scries in Artificial Intelligence

[5] P.G.J. Lisboa, Neural Networks, current applications
[6] S.Y. Kung, Digital Neural Networks

