
The Collection VII 28

Artificial I'J eural N etwor ks

Andrew Cortis

What is an A rtificial Neural Network?
It is a Parallel Computational Network made up of interconnected neurons. They
are biologically inspired, i.e. they are composed of elements that work analogously
to the most elementary functions of the biological neuron. Despite the similarities,
the actual "intelligence" exhibited by the most sophisticated artificial neural
networks, is still very limited. Each Neuron performs a function on its input.
Each neuron passes its output on to another neuron to allow it to perform its
work. Artificial Neural Networks can modify their behavior in response to their
environment: given a set of inputs (perhaps along with the desired outputs), they
can self-adjust to produce consistent responses.

An Artificial Neuron

This is a simple processing clement. It is the basic processing unit of an artificial
neural network.

The Neuron will pass all the inputs through the Summation Unit Producing

Input

i W2

On~
Summation Unit
n

L~=NET
i=l

Output

Transfer Function

f(,NET) = OUT
(Usuall:1 of the fam!
f:9'l-T[O,l] a.ka. squashing
functions)

the NET value and then apply the transfer function to the NET, to produce the
output.

An Artificial Neural Network

Input Vector ~ = {Xl, X2, .. . , Xn}

The Collection VII 29

11 - Yl
.••.. ~utPut Vector

D-Y~

..... ?o-~
Output Vector y = {Yl, Y2, ... ,Ym}
Logical Layout of an interconnected feed-forward Artificial Neural Network

Training an Artificial Neural N etwor k
The objective of tmining an artificial neural network is so to produce the desired (or
a consistent) set of outputs after application of a set of particular inputs produces
the desired (or a consistent) set of outputs. Like the brain structure these net­
works mimic, they keep a certain degree of unpredictability and unless every input
is tried separately one might not be certain of the precise output. It might be
impractical and costly to try an exhaustive search on a large network.

Supervised Training
By giving the Artificial Neural Network input and expected output pairs, it can
be trained to 'learn' a particular problem. Error-Back Propagation uses a su­
pervised training algorithm. When in training mode, each input vector is supplied
with a corresponding desired output vector (the set being called a training pair).
The output of the network is worked out and the error is fed back through the
network and the weights are adjusted accordingly. Before the training begins, the
weights are assigned to small random numbers.

The following steps are taken to train the net.work:

1. The next training pair is chosen and the input vector is applied to the
network and the output is worked out.

2. The error is worked out.

3. The weights are adjusted so as to minimize the error.

4. These steps .3.re repeated for several other training pairs, for several times
until all the training pairs have a suitably low error (< E, where E is the
parameter called the error rate)

The Collectioll VII

Calculating the Error Vector:
A simple way to calculate the error vector is the following:
Error Vector Q = {el, e2,"" en} and
Target Vector t = {tl' t2,"" tn}
Q=t-:t
Other methods use the square of the difference as error.

Adjusting the weights:

30

Adjusting is accomplished layer by layer, from the output layer inwards. A learning
rate, j.l is a value, 0 ::; j.l ::; 1, used as a parameter for the artificial neural network.

Output Layer:

The output layer is adjusted first. For each neuron p with an output to a neuron
q in the output lay.::!r k, work out 0, where:

Opk = df(Yp)·ep

dyp

Then the change for the weight,

,6.wpq,k = p,Oqk.Yp,(k-l)

Where Yp,(k-l) is the output of the p(th) neuron in the (k -l)(th) layer. This
represents the modification to be applied in order to minimize the error.

Wpq,k(n + 1) = wpq,k(n) + ,6.wpq,k

wpq,k(n) is the value of a weight from a neuron p to a neuron q in the output
layer k, in the n (th) step of learning.

Hidden Layers:

Since the hidden layers have no target vector, the adjustment algorithm for the
output vector cannot be used. The following one can be used instead:

Calculate 0, s.t.

Since

df(Yp,(k-l)) . (L,q0"r>,kWpq,k)
Op,(k-l) = ~Yp,(k-l)

,6.Wpq ,k = p,Oqk·Yp,(k-l)

Wpq,k(n + 1) = wpq,k(n) + ,6.wpq,k

The Collectioll VII 31

Results

With further studi.)s, by using improvements on the back-propagation algorithm
it can be made to run "quite fast on practical applications. So claims that Back­
Propagation is slow should be carefully analyzed with these ideas in mind" -
Fran<;oise Fogelman Soulie

Furthermore "Neural Network architectures and algorithms have progressively
evolved from simple techniques to ... more complex architecture" where they can
be trained very fa.'31; and used at their best with only a limited number of training
tokens.

Sometimes, finding optimal weights for a network is "intractable" ,according
to Edom'do Amaldi: "Since the learning of the problem is at least as hard as its
decision version, the problem of the training perceptions ... is also NP-complete."

Therefore if P =1= NP, there is no algorithm that can find the optimal weights
in polynomial time.

This result is the reason why no known algorithm can yield an optimal weight
setting in polynomial time and compels us to develop efficient heuristic methods
with good average behavior.

"Back-propagation suffers from the drawback of the computational burden of
training the network." - E. Monte, J. Arcusa, J.B. Rarino, E.Lleida.

Many authors of recent papers have tried to devise their methods for acceler­
ating the convergence rate of the algorithm and presented ideas to help improve
the performance of the networks.

Devising improvements for an Artificial Neural Network can be deceptively
simple, as was shown in 1987 by Stornetta and Rubcrmann: The conventional
0-1 dynamic range of inputs is not at its most advantageous. Because the weight
adjustment 6.wpq ,k is proportional to the output level of the neuron, many inputs
will be 0 and consequently will not train. A solution is to change the input range
to ±~ and add a hia.':) to the squashing function.

A back-propagation network learns by making changes in its weights in a di­
rection to minimize the errors between its result and the training data. The min­
imization is done using the steepest descent algorithm. In spite of how appealing
such a solution is, there is no guarantee that the network can be trained in a finite
amount of time. Also it is not certain that the network will converge to the best
solution: local minima may trap the algorithm in an inferior solution.

The long uncertain training process in a complex problem might require days
to train, and the effort might prove for lack of '" convergence at alL Long training
time can be the result of a non-optimal step size while training failures arise from
one of 2 sources: network paralysis and local minima.

The Collection VII 32

Network Paralysis:

As the network tra;.ns, the weights can become ad.iusted to very large values. This
can force all or most of the neurons to operate at large values of OUT, in a region
where the derivative of the squashing function is very small. Since the adjustment
on the weights is proportional to the derivative, the training process may come to
a virtual standstill. ~etwork Paralysis can be avoided by using a small step size
/-L, although this leads to an increase in training time.

Local MiniIna:

Back-propagation employs a type of gradient dc-scent: i.e. it follows the slope
of the error surface downwards, constantly adjusting the weights towards a min­
imum. The network can get trapped in a local minimum, impeding the network
from converging. Wassermann has proposed a method that combines statistical
methods with gradient descent of back-propagation to produce a system that finds
global minima while retaining the higher training rate of the back-propagation.

Step Size:

The convergence proof of Rumelhart, Hinton and Williams shows that infinites­
imally small weight adjustments are assumed. This is impractical as it implies
infinite training time. It is necessary to select a finite step size. If the step size
is too small, convergence will be too slow; if on the other hand it is too large,
paralysis or continuous instability can result. Wassermann describes an adaptive
step size algorithm intended to adjust step size automatically as training proceeds.

Temporal Instability:

If a network is learning from a training pair, it is not considered good if in doing
so it forgets the previous one. The process should teach the network the entire set.
Rumclhart's convergence accomplishes this but it requires showing the network all
vectors in the training set before adjusting the weights.

Applications

Back-Propagation (amongst other types of network learning algorithms) is being
used in a variety of applications. Improvements in the current systems such as'

The Collectioll VII 33

the 'second order back-propagation' by Parker improve the convergence speed by
using the second derivative to produce a more accurate estimate of the correct
weight change. (Morever he has also shown that higher derivates are redundant)
Also, more advanced techniques are being developed. Artificial Neural Networks
have been applied in a variety of research applica'cions such a.s the NEC's optical­
character-recognition system, Sejnowski and Rosenberg's cOllversion of printed En­
glish into highly intelligible speech and Cottrell Munro and Zipser's successful
image compression application.

References

[1] Philip D.Wassermann, Neural Computing, Theory fj Practice, ANZA Re­
search, Inc.

[2J Daniel Craupe, Principles of Artificial Neural Networks, World Scientific

[3] T. Kohonen, K.Makisara, O.Simula, J.Kangas, Artificial Neural Networks,
Volume 1 /?<i 2, North-Holland

[4J Stuart Russell, Peter Norvig, Artificial Intelligence, A Modern Appr'oach,
Prentice Hall Series in Artificial Intelligence

[5J P.C.J. Lisboa, Neural Networks, current applications

[6J S.Y. Kung, D'igital Neural Networks

