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Four visual-world experiments, in which listeners heard spoken words and saw printed words, 

compared an optimal-perception account with the theory of phonological underspecification. 

This theory argues that default phonological features are not specified in the mental lexicon, 

leading to asymmetric lexical matching: Mismatching input ("pin") activates lexical entries 

with underspecified coronal stops ('tin'), but lexical entries with specified labial stops ('pin') are 

not activated by mismatching input ("tin"). The eye-tracking data failed to show such a pattern. 

Although words that were phonologically similar to the spoken target attracted more looks than 

unrelated distractors, this effect was symmetric in Experiment 1 with minimal pairs ("tin"-

"pin") and in Experiments 2 and 3 with words with an onset overlap ("peacock" - "teacake"). 

Experiment 4 revealed that /t/-initial words were looked at more frequently if the spoken input 

mismatched only in terms of place than if it mismatched in place and voice, contrary to the 

assumption that /t/ is unspecified for place and voice. These results show that speech 

perception uses signal-driven information to the fullest, as predicted by an optimal perception 

account. 

Introduction 

The listener has to solve at least two overwhelming problems. First, he or she needs to store a 

huge number of words (~5 * 104) in such a way that they are all easily accessible during 

comprehension and production. Second, in comprehension, the listener needs to recognize words even 

if the input deviates from the canonical pronunciation. In contrast to written language, such deviations 

occur regularly in spontaneous dialogues (Johnson, 2004). 

The theory of a featurally underspecified lexicon (FUL) (Eulitz & Lahiri, 2004; Lahiri & 

Marslen-Wilson, 1991; Lahiri & Reetz, 2002) provides—prima facia—good answers to both of these 

problems. According to this theory, the basic unit of lexical entries is the phonological feature, so that, 

for example, the representation of the last segment of the word rum is specified as [Nasal] and 

[Labial]. Importantly, predictable default features are not specified. As a consequence, lexical 

representations of words are underspecified, that is, not all features are specified.1 The last segment of 
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the word run is therefore only specified as [Nasal], because coronal place of articulation of the /n/ is 

assumed to be default and is as such not specified. 

Because the left-out, unspecified features are not stored in memory, underspecification reduces 

the memory load for the mental lexicon. Proponents of underspecification have often followed a 

linguistic tradition that assumes that the mental representations should be as parsimonious as possible 

and hence not contain any predictable features (Archangeli, 1988; Cairns, 1988; Scharinger, 2009). It 

is therefore better to leave frequent coronals unspecified than leaving less frequent labials (/b/,/p/,/f/, 

...) unspecified, because alveolar segments are the more frequent than labial segments (Paradis & 

Prunet, 1991). Underspecification of coronals would therefore reduce the memory load substantially. 

However, more recent research indicates that the human memory capacity is rather large (see 

Goldinger, 1998, for an overview), so that the efficiency argument of underspecified representation is 

no longer strong. 

The assumption of underspecification in the FUL model also leads to three types of matching 

relations between input and lexicon, which may help the listener to deal with variation in casual 

speech (Lahiri & Reetz, 2002). First, if a feature is specified in the lexicon and occurs in the input, 

there is a "match" (e.g., "flame" matches flame); second, if a feature is represented and another feature 

occurs in the input, there is a "mismatch" (e.g., "flane" mismatches flame); third and most critically, if 

a feature is not specified in the lexicon, there is "no mismatch", and this is independent of the input. 

That is, both "green" and "greem" match the lexical representation for green, with a "no mismatch" for 

the final /n/. The lexicon specifies only a nasal in the final position, and both inputs "green" and 

"greem" end in a nasal and hence partially match, or fail to mismatch, the lexical representation of 

green. 

The underspecification of coronals is beneficial in dealing with variation, because coronals are 

most likely to undergo changes in connected speech. In the sentence "a quick rum picks you up", the 

word "rum" could  mean rum or run, because the word-final coronal nasal in run can be pronounced as 

an [m], because it is followed by picks with an initial labial stop /p/ (Gaskell & Snoeren, 2008; Nolan, 

1992). Having no specification for place of articulation of the coronal place of articulation is useful 

here, because the input "rum" with a labial nasal then does not mismatch the lexical representation of 

run. Even though the listener still has to decide—based on discourse information—whether the 

intended target was run or rum, phonological underspecification of coronals allows the recognition of 

the intended word. The value of underspecification becomes especially clear if we consider the cases 

in which the assimilation does not lead to confusion with another lexical item, as in the phrase "greem 

paper". Because "greem" matches (or fails to mismatch) the lexical representation of green, word 

recognition is straightforward in this case. Just as in the case of the memory benefit, not specifying the 

coronal place of articulation is again the most useful option, because intended labials are much less 

likely to undergo changes in connected speech. 
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The assumption of underspecification contrasts nevertheless with recent trends in (visual) 

perception research (Geisler & Kersten, 2002; Yuille & Kersten, 2006). This is not irrelevant as visual 

object recognition and color perception face similar problems as speech perception (Mitterer & de 

Ruiter, 2008). In all these domains, different distal stimuli can give rise to very similar proximal 

stimuli, and the same distal stimulus can—in different contexts—give rise to rather different proximal 

stimuli. 

In the domain of visual perception, Bayesian statistical models have been proposed that assume 

that the perceiver performs optimally in combining prior knowledge and the perceptual input to 

calculate the posterior probability of the presence of an object in the input. In speech perception, this 

would mean to calculate the likelihood of a word being uttered given a certain input (i.e., 

p(Word/Evidence)). Recently, a model of spoken-word recognition has indeed been proposed based on 

these principles (Norris & McQueen, 2008).2 

The differences between an optimal-perception account and the FUL model become clear if one 

considers how the models react to input phrases such as "gun production", "gum production", and 

"gum sales". The formula described for activation in the FUL model (Lahiri & Reetz, 2002), predicts 

the same level of activation for the word 'gun' in all three phrases. However, an optimal-perception 

account would predict the following inequality relation: p('gun'/"gun production") > p('gun'/"gum 

production") > p('gun'/"gum sales"). Why is this the case? First, even though 'gun' can be pronounced 

as "gum", it is sometimes produced as "gun". And because "gun" is unlikely to be uttered when 

another word is intended, it follows that the likelihood of the intended word 'gun' is higher if the input 

is "gun" than if the input is "gum". Secondly, 'gun' is produced as "gum" only if the next word starts 

with a labial segment, hence the likelihood of the intended word 'gun' is higher in the context "gum 

production" than in the context "gum sales". 

While a few studies failed to find such a context effect (Wheeldon & Waksler, 2004), and it has 

been argued that this is evidence for an underspecification account (cf. Friedrich, Lahiri, & Eulitz, 

2008), the majority of evidence seems to point towards the reality of such a context effect. At least five 

independent labs have now reported context effects, with a large variety of methods ranging from 

word monitoring to EEG and MEG measurements (Coenen, Zwitserlood, & Bölte, 2001; Darcy & 

Kügler, 2007; Darcy, Peperkamp, & Dupoux, 2007; Gaskell & Marslen-Wilson, 1996, 1998; Gaskell 

& Snoeren, 2008; Gow, 2002, 2003; Mitterer & Blomert, 2003; Mitterer, Csépe, & Blomert, 2006; 

Mitterer, Csépe, Honbolygo, & Blomert, 2006; Tavabi, Elling, Dobel, Pantev, & Zwitserlood, 2009). 

The main focus of the current paper, however, is the assumption of mismatch tolerance if the 

input carries a deviant feature. The empirical tests here usually compared an assumed "no-mismatch" 

relation ('lean'/"leam") with an assumed mismatch relation ('flame'/"flane"). Note that the 

underspecification theory assumes that all features are extracted from the input. That is [Coronal] is 

extracted from the input and matched against lexical representations, even though [Coronal] is not 

specified in the lexicon. This leads to a "no-mismatch" relation between input and lexical 
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representation if an extracted non-coronal feature is mapped onto an unspecified place feature, but to a 

mismatch relation of a coronal feature in the input is mapped onto a lexically specified non-coronal 

place. There are several empirical findings that support this asymmetric matching assumption of 

underspecification. Lahiri and Reetz (2002) report a cross-modal priming study in which the auditory 

primes slightly mismatched the visual targets. In this study, auditory primes that mismatched their 

target on an unspecified feature ("greem" → green) primed lexical decisions more strongly than 

auditory primes which mismatched their target in a specified feature ("flane" → flame). 

Another way to test the predictions of the FUL model about different types of mismatches is the 

electrophysiological component called Mismatch Negativity (MMN). This component arises if 

participants listen (passively or actively) to a train of stimuli, in which one type of sound is common 

and a small minority of the sounds is different from the rest (Näätänen, 1992, 1995; Näätänen, 

Pakarinena, Rinnea, & Takegata, 2004; Näätänen, Tervaniemi, Sussman, Paavilainen, & Winkler, 

2001; Schröger, Bendixen, Trujillo-Barreto, & Roeber, 2007). The infrequent type of stimulus elicits, 

in comparison to the standard stimulus, a negativity that is maximal around frontal midline electrodes, 

which is called the MMN. Eulitz and Lahiri (2004) used the vowels /o/ and /ø/ in such a paradigm, 

using both as standards and deviants. Importantly, /o/ is assumed to be specified as [Dorsal], while the 

coronal /ø/ is unspecified for place of articulation. Assuming that the standard stimulus is represented 

in a similar fashion to the lexical entry and that all features—even lexically unspecified ones—are 

extracted from the input, the FUL model predicts an asymmetry in the MMN depending on which 

stimulus is the standard. If the /o/—specified as [Dorsal]—is the standard, the deviant /ø/ provides the 

input feature [Coronal], which mismatches the representation of the standard. If, however, /ø/ is the 

standard, its coronal feature is not specified. Accordingly, the deviant /o/ (with the input feature 

[Dorsal]) leads to a "no-mismatch" relation between input and internal representation. In line with 

these predictions, the MMN was smaller and had a later peak latency when /o/ was the standard and /ø/ 

the deviant than when these roles were reversed. 

However, not all empirical tests revealed such positive results. Gow (2001) used exactly the same 

design for a priming study as reported in Lahiri and Reetz (2002), but found perfectly symmetric 

amounts of priming. Marslen-Wilson, Nix, and Gaskell (1995) also found no evidence that the amount 

of cross-modal priming with slightly mismatching primes depends on whether the changed features are 

supposed to be specified or not. Tavabi, Elling, Dobel, Pantev, and Zwitserlood (2009) used the same 

MMN design as Eulitz and Lahiri (2004), and found no asymmetry depending on the 

specification/underspecification of the standard versus the deviant. They used nasals, thereby 

replicating an earlier negative finding (Mitterer, 2003). With regard to the MMN, an interesting 

alternative interpretation is suggested by a finding reported in Bonte and colleagues (Bonte, Mitterer, 

Zellagui, Poelmans, & Blomert, 2005). In one experiment, they used the Dutch pseudowords [nɔtfɛl] 

and [nɔtsɛl] both as standards and deviants in an MMN design. Note that these stimuli differ only in 

the fourth phoneme, and that the /s/ in [nɔtsɛl] is assumed to be unspecified for place of articulation, 
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while the /f/ in [nɔtfɛl] is specified as [Labial]. Each stimulus was used once as the standard with the 

other as deviant. Bonte et al. found a larger MMN with [nɔtsɛl] as the deviant than with [nɔtsɛl] as 

deviant. This would be in line with the prediction of an underspecification theory. The authors, 

however, had picked these stimuli because [nɔtfɛl] is more word-like (i.e., has a higher phonotactic 

probability in Dutch) than [nɔtfɛl]. This means that the asymmetry of the MMN could be attributed to 

the missing specification for place of articulation of the /s/ or to the higher phonotactic probability of 

the n-grams in [nɔtsɛl] as compared to [nɔtfɛl]. To disambiguate what caused the difference in MMN 

amplitude, Bonte et al. performed another experiment with the stimuli [so] and [fo]. The theory of 

phonological underspecification still predicts a larger MMN with the [so]-deviant, because its 

respective standard [fo] is specified with a labial place of articulation. These simple CV stimuli had a 

similar phonotactic probability, so that a frequency account predicts no difference in the MMNs. The 

results revealed equivalent MMNs independent of whether [so] or [fo] was the deviant. Therefore, the 

results of Bonte et al. show that the size of the MMN reflects the phonotactic probability of that 

sequence, or stated otherwise, the familiarity of the participants with a phoneme sequence (for the role 

of familiarity outside the language domain, see Jacobsen, Schröger, Winkler, & Horvath, 2005). 

If prelexical frequency biases, such as phonotactic probability, can influence the MMN, it is not 

unlikely that the asymmetric MMN found by Eulitz and Lahiri (2004) reflects the higher frequency of 

coronal vs. non-coronal segments, rather than the underspecification of coronal segments. 

More recently, Friedrich and colleagues (Friedrich, Lahiri, & Eulitz, 2006; Friedrich, et al., 2008) 

used later event-related potentials to test the prediction of asymmetric matching due to 

underspecification. They found that the pseudoword N400, an increased negativity for pseudowords in 

comparison to existing words, is smaller if the pseudowords mismatched real words only in an 

unspecified feature. That is, the N400 is smaller for pseudowords such as "greem", which does not 

mismatch the lexical representation of green, than to pseudwords such as "flane", which mismatches 

the lexical representation of flame. Secondly, they used fragment priming with mismatching primes, 

again comparing mismatches in specified and unspecified features (specified target words: "paprika" 

with "ta" as prime, underspecified target words: "tomato" with "po" as prime), and found more 

priming for underspecified "no-mismatch" targets in a component they called the "P350". 

While it seems that these results may settle the issue, there remain two caveats, one statistical and 

one theoretical. The statistical caveat is that the EEG studies by Friedrich et al. (2006, 2008) involve a 

comparison between different words that are nested under the factor "specification". That is, a word 

such as tomato, which starts with a segment that is not specified for place of articulation, can 

obviously not be used in the "specified" condition because words in this condition have to start with a 

labial or a velar consonant. Especially in these circumstances, it is necessary to show that the results 

generalize over items (Clark, 1973), but the authors—following the tradition in psychophysiology—

provide only a statistical test that shows the same result would  be replicated with a new set of 
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participants, but no by-item analysis that would show that their result would be replicated with a 

different set of items. 

An advantage of such EEG measures is nevertheless that they provide a window on earlier stages 

of processing than behavioral measures can. A disadvantage arises, however, with the interpretation of 

components. In the case of the studies of Friedrich et al. (2006, in press), the interpretation hinges on 

the assumption that the electrophysiological components reflect the ease of lexical access. For most 

electrophysiological components with a latency above 300 ms, the interpretation is less than 

straightforward and remains a matter of debate (see, e.g., Deacon, Hewitt, Yang, & Masanouri, 2000; 

Van Herten, Kolk, & Chwilla, 2005, for the N400 and the P600 components, respectively). It is hence 

also quite possible that the P350 and the N400 effects in the data of Friedrich et al. reflect pre-lexical 

processes, which react differently to high- and low-frequency phonemes or phoneme sequences, or 

that they reflect post-lexical processes related to the meta-linguistic lexical-decision task that 

participants had to perform in these experiments. 

In the light of these considerations, a more stringent test would be possible with a measure that 

also provides a window on the early stages of lexical access, but is more strongly related to activation 

of lexical items. Over the last decade, eye-tracking in a visual-world paradigm proved to be a useful 

technique for such purposes. Allopenna, Magnuson, and Tanenhaus (1998)  presented participants 

with pictures of four objects on a screen and a spoken instruction to move one of the objects (e.g., 

"pick up the beaker"). The four pictures not only contained the target object (a picture of a beaker) but 

also two pictures of objects with similar names to the target. One object had a name with an onset 

overlap with the target (a beetle) and one a rhyme overlap (a speaker). Lexical activation of such 

competitors is evaluated by comparing looks to these objects with looks to an unrelated distractor 

object (a carriage). Results showed that participants looked to the target and the onset-overlap 

competitor more than to the unrelated distractor, with looks to both starting 200 ms after word onset. 

There initial looks showed no difference between target and onset-overlap competitor. While this may 

be surprising, it is important to consider here that planning and executing an eye-movement takes 

about 150-200 ms (Hallett, 1986). Therefore, fixations 200 ms after word onset are most likely to be 

based on the initial segment of a word alone. This explains why such early fixations revealed no 

preference for the actual target over the onset-overlap competitor. They are based on information (e.g. 

the initial syllable "bi") which does not distinguish between target and competitor (e.g. "beetle"  and " 

beaker"). These fast early signal-related looks demonstrate that eye-tracking provides a window on the 

earliest stages of lexical processing. 

This method matches the advantage of ERPs of delivering an on-line, time-locked measure of 

cognitive processes. However, the chain of inference is considerable smaller. If a picture attracts more 

looks than an unrelated distractor, it provides clear evidence for lexical activation of the word related 

to the picture. However, a remaining disadvantage of the design as used by Allopenna et al. is that one 

has to find phonologically related word pair that are picturable. To overcome this problem, McQueen 
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and Viebahn (2007) used printed words instead of pictures and found essentially the same results as 

Allopenna et al. (1998). The visual-word paradigm with printed words was therefore used here to 

compare the predictions about lexical matching made by the FUL model with those of an optimal-

perception account. 

Experiment 1 

In this experiment, Dutch minimal pairs were used, in which one member started with a coronal 

segment and the other with a labial segment (e.g., mier-nier, Engl. 'ant' and 'kidney'). We used only 

onset minimal pairs because phonological underspecification is position independent and effects in 

eye-tracking are particularly strong for onset overlaps and mismatches. 

Participants heard an instruction to click on one word ("Klik op het woordje mier", Engl. 'click on 

the word ant') and the visual display contained the written target word (mier) and its competitor (nier) 

and two unrelated distractors. One potential problem with such a design is that it may force 

participants to listen quite carefully. Only a short lapse in attention is sufficient to make the distinction 

between mier and nier difficult. To make the task less taxing, we made use of a recent innovation of 

the visual world paradigm. Mitterer and McQueen (2009) presented printed words with accompanying 

objects, which makes the instructions easier to follow. Figure 1 shows an example of such an 

experimental display. If a participant hears the instruction "Klik op het woordje mier above the star" 

('Click on the word ant above the star'), he or she does not need to listen carefully to hear the 

difference between [mir] and [nir], because the phonologically distinct object name will (redundantly) 

specify the printed word mier as the target word, because it is the one above a star, while nier is above 

a triangle. 

In such a paradigm, the FUL model predicts that the spoken target [mir] (for the printed word 

mier) should lead to many looks to the phonologically similar printed word nier, because the input 

[mir] matches the underspecified lexical representation of nier, which is /[nasal]ir/. The spoken target 

[nir] (for the printed word nier), however, should lead to a much smaller amount of looks to the 

phonologically similar, printed mier, because the input [nir] mismatches the specified lexical 

representation of mier, which is /mir/.  

The optimal-perception account, in contrast, predicts a symmetric pattern of competition. The 

looks to the printed word nier, given the auditory input [mir], should occur just as often as looks to the 

printed word mier, given the auditory input [nir]. A reviewer suggested that the optimal-perception 

account should predict asymmetric competition as well, because /n/ can sometimes be pronounced as 

an [m] (in case of place assimilation). However, place assimilations only occur in word-final position. 

In the current experiment, the nasals occur in word initial position, and are preceded by a schwa. The 

critical a-priori probabilities p(nier/[mir]) and p(mier/[nier]) provided by the production patterns of 

Dutch are therefore so small that they can hardly influence the eye movements. 
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Following the procedure of Mitterer and McQueen (2009), there were also "semantic" filler trials 

in which the same printed word appeared twice on the screen. In this case, there are no phonological 

cues to what the target is, and the target is identified by adding the second part of the instruction 

("...above the star"). Disambiguation of the target was achieved either by the preposition (because one 

printed word was above and one next to a star) or by the object name (because one printed word was 

above a triangle and one above a star). These trials were included because Mitterer and McQueen 

found that phonological effects were more robust when such semantic trials were included in the 

experiment. 

Method 

Participants 

Twenty-four native speakers of Dutch from the Max-Planck Institute's participant pool 

participated in the experiment for pay. There were no problems with the calibration of the eye-

tracking, so that data from all participants could be used. 

Stimuli 

Sixty Dutch minimal pairs were selected, with either coronal or labial initial consonants. There 

were 20 pairs each with nasals (e.g., mier-nier, Engl. 'ant' and 'kidney'), fricatives (fabel-sabel, Engl. 

'fairy tale' and 'saber'), and voiced stops (bom-dom, Engl. 'bomb' and 'studip'). These were used to test 

the differential predictions of the FUL model and an optimal-perception account. The Appendix lists 

these items. Additionally, we selected 20 minimal pairs in which one member had an initial /t/ and the 

other either a /p/ or a /k/ (e.g., tonijn - konijn, Engl. 'tuna'-'rabbit'). These were used in the semantic 

trials, in which either the object name or the preposition (i.e., a word is either above or next to an 

object) disambiguated what the target object was. 

 

 
Figure 1. An experimental display as used 
in Experiment 1 with the instruction "Klik 
op het woord mier above the star" ('Click on 
the word ant above the star'). 
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The items with labial and coronal onsets had similar lexical frequencies (log, per million; labial: 

1.02, coronal: 0.82, t(118) = 1.3, p > 0.1). All but six words (three labial and three coronal) were not 

unique until their offset. Given the importance of the onset information, we also checked how many 

words shared the same onset and vowel. Again, this was roughly comparable for the (log) number of 

words (labial: 5.01, coronal: 5.2, t(118) = 0.9) and their frequency (labial: 9.7, coronal: 10.3, t(118) = -

1.7, p  = 0.1). Because these pairs are not perfectly matched, we will use these lexical measures as co-

variates in the data analysis. This procedure renders the design more powerful than picking only a 

subset of the items that would be slightly better matched (Baayen, 2008). 

The minimal pairs were spoken in a sentence context "klik op het woordje ...  [boven/naast] de 

[rechthoek/driehoek/cirkel/ster]" by a female native speaker of Dutch with no knowledge of the 

objective of the experiment. Each word was read twice, once with the preposition boven (above) and 

once with the preposition naast (next to) and a random object name. The speaker was instructed to 

read the sentences with a small gap between the target word and the following preposition. The 

experimental stimuli were spliced together from two parts. Splicing was necessary because recording 

every word in every possible combination of preposition and target object would have made the 

reading list prohibitively long. The first part contained the pre-target context and the target itself ("klik 

op het woordje target"), and the second part the preposition and the object name. To select fragments, 

the mean pitch was calculated for each sentence and the grand mean was calculated from that. Then 

one sentence of each combination of the two prepositions (boven & naast) and four objects (rechthoek, 

driehoek, cirkel, ster) with a mean pitch close to the grand mean pitch was extracted to be used as 

post-target context. For the initial part of the instruction used during the experiment, the first part of 

the experimental sentence was then extracted from the one sentence with the mean pitch closer to the 

grand mean (except for the eight sentences used for the second-part fragments, so that all materials 

were cross-spliced). In this way, we created the 1280 sound stimuli used in this experiment (160 words 

* 2 prepositions * 4 objects). 

The visual stimuli with the printed words were generated as bitmaps in the font Arial with 

(pointsize: 28), which always had a height of 42 pixels and varied in width from 43 pixels to 167 

pixels, depending on word length and the width of the letters ("m" taking up more space than "l"). The 

bitmaps were positioned with their center point on the centers of the four quadrants of the screen (see 

Figure 1). The bitmaps with the objects had a size of 70 by 70 pixels and were positioned directly 

under or directly right of the bitmaps with the printed words, so the distance between the word and the 

object was independent of word length. For the semantic trials, the screen was filled with two times 

the target word and two times its phonological competitor. On ten trials, the word to be clicked on was 

disambiguated by the position; on the other ten trials it was disambiguated by the object. That is, with 

the instruction "klik op het woordje team boven de ster" ('Click on the word team above the star'), the 

display contained the printed word team twice. On same trial, the two identical printed words appeared 
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above and next to a star, so that the preposition "boven" ('above') disambiguated the instruction. In the 

other case the printed word team appeared both above a star and above a circle, so that only the object 

name disambiguated the instruction. 

Apparatus and Procedure  

Participants were seated in a chair in front of a computer screen and an EyeLink 1000 eye tracker 

from SR Research. This eye-tracker samples the position of one eye with a frequency of 1kHz. The 

right eye was selected to be tracked in all current experiments. The stimulus presentation was 

controlled by a different computer using the ExperimentBuilder software from SR Research. After 

calibration, written instructions (presented on the screen) told participants to follow the spoken 

instructions, which they would hear over headphones, to click on certain words. The pre-experimental, 

written instructions also mentioned that sometimes a word would appear twice on the computer screen, 

and the one to click on would be identified by a following phrase such as "above the star". Each 

experiment started with two of these semantic filler trials. 

Each participant completed 80 trials; 60 trials in which the target word was accompanied by a 

competitor that differed only in the place of articulation of the initial consonant, and 10 filler trials 

each in which the same word appeared twice on the screen and the target was identified by either the 

position or the identity of the accompanying object. Hence, each participant heard only one member of 

each of the 60 minimal pairs and completed 30 trials each in which the target started with a specified 

labial or a supposedly underspecified coronal consonant. The allocation of target and competitors were 

counterbalanced across participants. 

A different random order was generated for each participant. Because participants have a 

tendency to first look at the top left item, target and competitor positions were counterbalanced for 

each participant, so that the target and its competitor were presented 20 times each at each of the four 

screen positions: 15 times in the 60 phonological trials and 5 times in the 20 semantic filler trials. In 

addition, the target objects were counterbalanced so that the word to be clicked on was accompanied 

15 times each in the phonological trials and 5 times each in the semantic trials by the star, the circle, 

the triangle, and the square. 

Design and Analysis 

The data analysis was based on the event-file of the eye-tracker, which categorizes the eye-

position samples into fixation, saccades and blinks. For the data analysis, distance between the eye 

position and the four target objects on the screen was sampled at—on average—10ms intervals. No 

fixed sampling frequency was used to account for the different durations of the different sound files. 

The target words, for instance, were on average 600 ms long; hence the eye-position was sampled at 

60 equal time steps based on the duration of the target word (e.g., steps of 6 ms if the target word on a 

given trial had a duration of 360 ms but steps of 15 ms if the target word had a duration of 900ms). 
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 The dependent variable was—following Mitterer and McQueen (2009)—the Euclidean distance 

(in pixels) between the objects and the fixation position. This makes it superfluous to define an area of 

interest for which fixation count as being "on" a given object. The dependent variable was the distance 

to the competitor, that is, the word phonologically similar to the target, in a time window from 200 ms 

after target onset until the asymptote of the target distance function at 2000 ms after sentence onset 

(see Figure 2). In addition to the subject and item random effects and the fixed factor 

Underspecification (specified vs. unspecified place of articulation of the onset of the target word), the 

manner of articulation of the first phoneme and the lexical statistics were added as fixed factors. 

Lexical statistics were removed in a step-wise backward elimination if not significant.  

Results 

Performance was near ceiling with 100% correct responses for specified targets and 99.7% for 

underspecified targets (i.e., 2 errors on 750 trials).  Figure 2 shows the distance between the different 

objects and the fixation positions on correct trials. There seems to be a small preference for 

underspecified competitors. The competitor with the underspecified onset (from the "specified target 

condition") received more looks than the competitor with the specified onset (from the "underspecified 

target condition) but this difference was not significant (B = 8.5, SE(B) = 5.9, t = 1.34, pMCMC > 0.1, d 

= 0.10). When lexical statistics were included in the model, the only significant effect was the Cohort 

Frequency of the competitor (pMCMC < 0.05, R2 = 0.004), and the effect of underspecification remained 

insignificant (B = 10.8, SE(B) = 6.3, t = 1.70, pMCMC = 0.09, d = 0.11) 3. 

 

 
Figure 2. Eye-tracking results from Experiment 1. The vertical lines indicate the onset of the different 
parts of the instructions, which is given in an English translation. The condition labels ( spec) 
indicate target and competitor specification. Note that the lines for the specified target and the 
underspecified competitor are taken from the same trials, as specified targets necessarily go together 
with underspecified competitors (and vice versa). 
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Discussion 

The results are in line with an optimal-perception account and contradict the predictions of an 

Underspecification account. Participants did not look more at words with onsets that were unspecified 

for place of articulation when hearing (a non-mismatching) specified onset than they looked at words 

with a specified onset when hearing (a mismatching) coronal onset. Nevertheless, we did observe a 

trend in the direction predicted by the Underspecification account. Might the lack of a significant 

effect simply be due to a lack of power? The statistical model reveals an unstandardized coefficient of 

10.8 for the Underspecification factor, meaning that the model estimates that the mean distance 

between eye position and competitor is 10.8 pixels smaller if the competitor starts with a segment that 

is not specified for place of articulation. The standard error of this coefficient is 6.3 pixels, leading to a 

non-significant difference. To examine whether this standard error is excessively large and prevents us 

from finding an effect, it is useful to consider the effect sizes usually found in visual-world 

experiments testing phonological effects. Two papers examined context effects in the recognition of 

phonological variants with a similar eye-tracking paradigm (Gow & McMurray, 2007; Mitterer & 

McQueen, 2009). As those papers investigated rival theories to the FUL model, it is reasonable to 

assume that effects of phonological underspecification should be of a similar size as the effects 

reported in these experiments. Mitterer and McQueen found effect sizes between 17 and 33 pixels. 

Gow and McMurray found a difference in fixation proportion of 7%. Assuming that fixations have an 

average distance to the target centre of about 100 pixels and non-target fixation are evenly distributed 

to the other three objects on the screen, this translates into a difference in distance of 27 pixels. This 

seems to indicate that phonological effects in eye-tracking paradigms can be expected to be around 20 

pixels. Such an effect would be significant in the current experiment given the current standard error of 

the regression coefficient (6.3). 

Even though the lack of an effect is hence unlikely due to a lack of power, the lack of an effect 

might, however, be due to an experiment specific strategy induced by the minimal pairs. Friedrich et 

al. (2008) added the idea of "phonological parsing mechanism" to the model of phonological 

underspecification, which helps the model in taxing situations. Friedrich et al. used this mechanism to 

explain why participants overwhelmingly respond "no" when hearing "leam" in a lexical decision task. 

According to the FUL model, the input "leam" and "lean" match the lexical representation equally 

well, so that additional mechanisms are needed to explain why "lean" leads to "yes" responses and 

"leam" to "no"  responses in a lexical decision task. Friedrich et al. argue that phonological parsing 

mechanisms are invoked in taxing situations. These mechanisms create the output form of words, 

adding the coronal place of articulation by a post-lexical rule. As this output form deviates from 

"leam", this phonological parsing mechanism allows participant to respond with "no" in a lexical 

decision task. Using minimal pairs may also invoke such special phonological processes, which mask 
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the effects of underspecification. Therefore, a second experiment was devised in which participants 

were not exposed to minimal pairs. 

Experiment 2 

In this experiment, we used words as target-competitor pairs which had an overlap in their initial 

phonemes, but were clearly distinguished by their offset, such as the Dutch word pair kogel-toga 

/koxəl/-/toxa/ (Engl. 'bullet' and 'academic gown'). If we take into account that, under the 

underspecification assumption, the lexical representation of /toxa/ does not specify a place of 

articulation for the first segment, the input [koxəl] matches up to the third phoneme. Because the 

lexical representation of the word /koxəl/ specifies that the first segment is velar, the input [toxa] 

produces a mismatch in the onset position, resulting in minimal lexical activation. Phonological 

underspecification then predicts that, in a visual word paradigm, the printed word toga given the 

auditory input [koxəl] should attract more looks than the printed word kogel given the auditory input 

[toxa]. In contrast, the optimal-perception account predicts that competition should be symmetric. 

Method 

Participants 

The same 24 participants who took part in Experiment 1 also participated in this experiment. Both 

experiments were run in one session. To avoid an influence of seeing minimal pairs during this 

experiment, this experiment was in fact run as the first in the session. As in the first experiment, 

calibration was successful for all participants. 

Stimuli 

48 word pairs with some phonological overlap after the first segment (such as toga-kogel, in 

phonological transcription /toxa/-/koxəl/) were used (see the Appendix). The initial segment was a 

nasal in six pairs, a voiceless stop in seven pairs, a voiced stop in 18 pairs, and a fricative in 17 pairs. 

Disregarding the onset mismatch, the mean overlap was 3.3 segments between these pairs (see the 

Appendix). For each pair, two additional words were used as distractors that had no clear phonological 

overlap with the word pair. Eight additional quadruplets of phonologically unrelated words were 

selected to serve as items on eight practice trials. 

The two groups of items—with specified and unspecified place of articulation in the onset 

position—were reasonably matched in their lexical statistics (log frequency: 0.4 vs. 0.1, log cohort 

size:  2.5 vs. 2.4, log cohort frequency: 2.9 vs. 3.1, uniqueness point: 5.9 vs. 5.4, tmax(94) = 1.5, pmin > 

0.1). To deal with the remaining differences, these measures were taken into account in the data 

analysis. 

All target words were produced in a sentence frame "klik op het woord ..." ('click on the word ...') 

by a female speaker of Dutch. The uncut recordings were used as experimental stimuli. As in 

Experiment 1, the visual stimuli were generated in the Arial font (pointsize: 28 size). The resulting 
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bitmaps always had a height of 42 pixels and varied in width from 157 pixels for the word krijt (Engl. 

'chalk') to 244 pixels for the word meegaand (Engl. 'compliant'). The bitmaps were positioned with 

their center point on the centers of the four quadrants of the screen. 

Apparatus and Procedure 

The Apparatus was the same as in Experiment 1. Each participant completed 56 trials starting 

with 8 practice trials that were identical for all participants. Each participant then heard a random order 

of 48 trials. Of these, 24 trials had a target word that started with a coronal consonant and 24 trials had 

a target word that started with a labial or velar consonant. A given participant heard only one member 

of a phonologically related pair as target, and the numbers of presentations of the coronal and non-

coronal members of a pair were counterbalanced over participants. A different random order was 

generated for each participant, with the constraint that targets and competitors appeared equally often 

on the four screen positions. 

Design and Analysis 

The Design and Analysis was similar to Experiment 1, including the data reduction. The critical 

independent variable was the assumed phonological specification of the place of articulation in the 

onset position of the target word. As the dependent variable, the mean distance to the competitor in the 

window 200 ms to 600 ms after target onset was used. For the statistical analysis, a mixed-effect 

model was used. Subject and Item were entered as random factors, lexical statistics, manner of onset 

phoneme, and underspecification were entered as fixed factors. Lexical statistics were removed in a 

step-wise backward elimination if not significant. 

Results 

The click responses were highly accurate with only 3 errors over 1200 experimental trials. Figure 

3 shows the eye-tracking data for the correct trials, revealing no clear difference in competitor 

activation. Note that the assumption of phonological underspecification predicted that competitors 

with an onset that is unspecified for place of articulation should be activated more strongly than 

competitors with an onset that is specified for place. However, there is no such apparent difference in 

Figure 3. In line with what Figure 3 suggests, the statistical analysis revealed no difference between 

the two competitors in both conditions (B = 4.3, SE(B) = 9.7, t = 0.45, pMCMC > 0.5). Adding item 

properties revealed an additional effect of manner of articulation of the first segment. Participants 

looked more at the competitor on trials in which target and competitor were nasals (Bmanner =nasal  =  -45 

pixels, t = -2.83, pMCMC < 0.01, d = 0.27). 
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Figure 3. Eye-tracking results from Experiment 2. The condition labels ( spec) refer to the 
specification of target and competitor (see also Figure 2).  
 

Discussion 

The results are in line with those of Experiment 1. The lexical activation of words not matching 

the input is independent of the place of articulation of the mismatch. The analysis revealed an effect of 

manner of articulation, with most looks to competitors with a nasal onset. This is not surprising, given 

that nasals are difficult to distinguish in terms of place. This is especially true for the first part of the 

signal, which only contains the nasal murmur, which, especially in onset position, contributes only 

very little to place perception (Repp & Svastikula, 1988). 

The results are in line with the assumption of an optimal-perception account. Just as in visual 

perception, spoken-word recognition seems to use the incoming information in an optimal way. The 

results therefore contrast with the view that the lexical representations are underspecified, which 

would mean that some information would not be used. Instead, we find that a mismatch of labial or 

velar input with a coronal onset leads to a deactivation of the target just as strongly as the mismatch of 

coronal input with a labial or velar onset. 

Nevertheless, there is a possibility to explain the current results without questioning the 

assumption of underspecification. The input [kox] matches all specified features of the words kogel 

and toga. Nevertheless, kogel will be activated more strongly, because lexical activations in the FUL 

model also take into account the number of matching features (see Formula [3] in Lahiri & Reetz, 
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2002), which is larger because kogel matches the initial place of the input. In simpler terms, the FUL 

model takes into account that a "match" relation is better than a "no mismatch" relation. If the eye-

movements in a visual-world experiment are further influenced by a "winner-takes-all" mechanism, 

looks to toga will be inhibited by the presence of the better-matching kogel in the display. In other 

words, the presence of a matching target on the input screen inhibits looks to the underspecified 

competitor. This alternative account would, however, predict that the effect of asymmetric matching 

between input and mental lexicon should arise if the matching target is not on the screen. This was 

tested in Experiment 3. 

Experiment 3 

In this experiment, we further explored the contrasting predictions of an optimal-perception 

account and the assumption of phonological underspecification. We used the version of the visual-

world paradigm in which the auditory input corresponded to none of the printed words on the screen. 

Huettig and Altmann (2005) showed that the absence of a perfectly matching target on the screen 

increases the amount of looks to related objects. A design without targets might hence be more 

sensitive to reveal an asymmetric effect of lexical matching. 

The items on the critical experimental trials were the same as in the previous experiment. What 

changed with respect to the previous experiment is that the word that appeared in the instruction 

sentence was replaced on the screen by a phonologically unrelated distractor. Participant heard an 

instruction such as "klik op het woordje kogel" (Engl. 'click on the word bullet'), and saw on the screen 

the printed words toga, zucht, draak, and wreed (Engl., 'academic gown', 'sigh', 'dragon', and 'cruel'). 

The word toga is the only word with a phonological relation to the target, having the same vowel in 

the first syllable and same onset in the second syllable. In addition, to reiterate the assumption of 

phonological underspecification, the initial /t/ is supposed to be unspecified for place of articulation. 

Hence it does not mismatch the initial [k] of the auditory input provided by kogel, and therefore 

provides a perfect match for the spoken input: As a consequence, the input [tox] should not activate 

toga more strongly than the input [kox]. 

Method 

Participants 

24 native speakers of Dutch from the Max Planck subject pool took part in this experiment. None 

of them had participated in Experiments 1 or 2. There were no problems with the calibration of the 

eye-tracking, so that data from all participants could be used. 

Stimuli, Apparatus, and Procedure 

The auditory stimuli for the critical experimental trials were the same as in Experiment 2. The 

visual displays were changed so that the printed word corresponding to the spoken word was replaced 

by a phonologically unrelated word. Thus, participants heard a sentence such as "klik op het woord 
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toga" and saw on the screen the four printed words kogel, zucht, draak, and wreed. Because 

participants have nothing to click on, they were instructed to click on the middle of the screen if they 

found no matching target. 

To encourage participants to look for a matching target, we added 96 filler trials, in which there 

was a matching target on the screen, so that a word had to be clicked in 2/3 of the trials. The 

experimental displays for these filler trials contained, like the experimental trials, four phonologically 

unrelated printed words, one of which corresponded to the spoken target. 

The apparatus was the same as in the previous experiments. As in Experiment 2, a different 

random order was generated for each participant, counterbalancing the positions of targets and 

pseudotargets for each participant. These orders contained at least five filler trials at the start. 

Design and Analysis 

Design and Analysis were the same as in Experiment 2. 

Results 

Participants again performed the task very accurately. In the data set of 1200 experimental trials, 

there was only one error in which a participant clicked on a competitor, while there were only 51 filler 

trials (of 2400, hence 2.1%) in which the correct target was not clicked on. 

 

Figure 4. Eye-tracking results from Experiment 3. The critical comparison is between the specified and 
underspecified competitor, which do not differ. 
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Figure 4 shows the eye-tracking data for the experimental trials with correct responses, with the 

filler data as a reference frame. The competitors got less looks than the matching targets on the filler 

trials, but still more looks than distractors on the experimental trials. Comparing the two types of 

competitors, participants looked more at the competitors with an onset that is specified for place, but 

this difference is far from significant (B = -8.4, SE(B) = 9.6, t = -0.86 pMCMC > 0.2). Note that the 

direction of this difference is in the opposite direction of what an underspecification account predicts. 

The regression analysis with the lexical statistics revealed no additional effects. Participant did, 

however, look more at competitors starting with stops than at competitors starting with a fricative (t = -

2.3, pMCMC < 0.05, d = 0.15), while the preference for nasals over fricatives was only a trend (t = -1.6, 

pMCMC = 0.10, d = 0.16). 

Discussion 

This experiment replicated the main result of Experiment 2. Given a mismatch in place of 

articulation in the onset position, participants did not look more at words with a coronal onset—which 

is assumed to be unspecified in the FUL model—than at words that have a specified place in the onset 

position. Moreover, the time course data are rather telling. In all three experiments, the results show a 

rather sharp drop in distance to the target around 250 ms after target onset. According to the theory of 

phonological underspecification, the activation level of underspecified words is identical for coronal 

vs. labial or velar inputs. The input features labial or velar, as well as the "correct" coronal feature, 

constitute a "no mismatch" with the lexical representation of a word that has segments with no 

specified place of articulation. Differences might arise due to lexical inhibition from other words, but 

those again need time to build up (Pitt & Samuel, 2006). Therefore, the initial activation for 

underspecified words should not differ as a function of the exact input. In contrast with this prediction, 

we see a sharp decrease in the distances between eye positions and targets around 250 to 300 ms, but 

never for mismatching competitors, independent of their specification. While the absence of such a 

pattern may be explained by the presence of a matching target for the underspecified competitor in 

Experiment 2, this is not the case in the current experiment. 

Experiments 1 to 3 thus failed to provide evidence for the assumption that the lexical 

representation of words with coronal consonants is not specified for place of articulation in these three 

experiments. While there was a trend in the predicted direction in Experiment 1, an opposite trend was 

observed in this experiment. Moreover, in all three experiments, the standard errors for the regression 

weights of the underspecification factor were small enough (≤ 10) to give rise to significant effects, 

taking typical effect sizes in similar experiments (± 20 pixels) as a reference point. Overall, the results 

indicate that the matching between input and lexicon treats all mismatches alike. This pattern is in line 

with an optimal-perception account. 

In all cases, the optimal-perception account predicted a null-effect and the Underspecification 

theory predicted the presence of an effect. Given that current statistical practices do not allow us to 
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accept the null-hypothesis, the presence of similar effects in other previous experiments, as cited in the 

introduction, may, however, be seen as more important than the current series of null results. Such an 

argument can be best tackled by designing an experiment in which the assumption of 

Underspecification predicts a null result, while the optimal-perception account predicts a difference 

between conditions. This was the purpose of the fourth and last experiment. 

Experiment 4 

While the empirical evidence and counterevidence has mostly focused on the underspecification 

of place of articulation, other features are also assumed to have specified and unspecified feature 

values. For Dutch, the assumption is that [+voice] is lexically specified and [-voice] is the default 

feature that is not lexically specified (van der Feest, 2007, see p. 34). Accordingly, the representation 

of /t/-initial words in Dutch (such as /tart/, 'cake') only specifies that the word starts with a stop. 

Accordingly, other inputs match independently of place of articulation (such as the word /part/, 

'horse'), voicing (such as the word /dart/, 'dart'), and the combination thereof (such as the word /bart/, 

'beard'). It follows that the Dutch word taart /tart/ should be equally strongly activated when hearing 

the word paard /part/, with only a mismatching place of articulation, as when hearing the word baard 

/bart/ with a mismatching place of articulation and mismatching consonant voicing. 

This prediction follows directly from the formula (3) for lexical activation in the FUL model 

presented in Lahiri and Reetz (2002). According to this formula, the activation level of a word is 

determined by the (squared) number of matching features divided the product of the number of 

features extracted from the input and the number of features in the lexicon. What does this mean for 

the activation of the word /tart/ given the inputs [part] or [bart]? Clearly, the number of features in the 

lexicon is the same in both cases (all the specified features for the word /tart/). Moreover, the number 

of features specified in the input is identical as well because [+voice] is extracted for [bart] and [-

voice] for [part], all else being equal. That is, whether a feature is lexically specified or not, it is 

always extracted from the input. Finally, the number of matching features is the same as well, because 

both the extracted [+voice] for [bart] and [-voice] for [part] produce a no-mismatch with the lexical 

representation of /tart/, which has no specification for voicing in the onset position. In short, there is no 

difference here because the number of "no mismatch" relations between input and lexicon is not used 

in the scoring formula presented by Lahiri and Reetz (2001, p. 641). 

However, if one assumes that the mental lexicon makes use of all cues—that is, it behaves 

optimally—, one has to predict that the one-feature mismatch (paard, /part/) should lead to a stronger 

activation of taart than the two-feature mismatch (baard, /bart/). Note that the roles of predicting an 

effect vs. predicting a null-effect are now reversed. The assumption of phonological underspecification 

predicts a null-effect, and the optimal-perception account predicts a difference between conditions. 

Previous research indicates that it should be possible to find a difference between a one- and a two- 

feature mismatch. The activation of a word that does not match the input perfectly is influenced by the 
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number (Connine, Blasko, & Titone, 1993) and even the type of features (Ernestus & Mak, 2004) that 

mismatch. 

This experiment again involves minimal pairs. As in Experiment 1, we therefore used carrier 

sentences with redundant information to identify the target object. This was again achieved with 

instructions such as "klik op het woordje paard boven de ster" ('click on the word horse above the 

star'). Because the display were arranged in such a way that the printed word paard was the only one 

above a star, participants were not forced to listen extremely attentively to determine that the target 

word was paard /part/ and not the confusable competitor taart /tart/ ('cake'). Just as in Experiment 1, 

we also included "semantic" trials in which the target to click on was disambiguated by either 

preposition or the object name. 

Method 

Participants 

The same 24 participants that took part in Experiment 3 also took part in this experiment. It was 

run after Experiment 3 in one experimental session. 

Stimuli 

40 /t/-initial words were selected that had one phonological neighbor that differed only in place of 

articulation (24 starting with a /k/ and 16 starting with a /p/) and another phonological neighbor that 

differed in place of articulation and voicing (necessarily starting with /b/, because the voiced velar 

fricative /g/ only occurs in a few loan words in Dutch). These were spoken by a female speaker of 

Dutch in sentence frames such as "klik op het woordje ... boven de ster" ('click on the word ... above 

the star'). As in Experiment 1, the sentence frame varied, and could contain the preposition naast ('next 

to') instead of boven and instead of the object name ster, the object names cirkel ('circle'), rechthoek 

('rectangle'), or driehoek ('triangle'). Each target word was recorded in two instruction sentences, one 

with the preposition boven and one with the preposition naast and a randomly determined object name 

following it. As in Experiment 1, the instructions used during the experiment were concatenated using 

a sound-file for the part up to and including the target words, and a second part containing the 

preposition and the object name. Selection was, as in Experiment 1, based on the mean pitch of the 

recorded utterances. 

The target words for /t/-targets, unvoiced stop targets, and voiced stop targets were similar in their 

lexical statistics, such as frequency (/t/: 1.96, unvoiced stops: 2.39, voiced stops: 2.23, in log10 per 

million), the number of words starting with the same onset and vowel (/t/ 2.23, unvoiced stops: 2.35, 

voiced stops: 2.22, in log10), and the frequency of these onsets (/t/, 2.60, unvoiced stops: 2.54, voiced 

stops: 2.39, in log10 per million), and their uniqueness points (/t/ 4.75, unvoiced stops: 4.48, voiced 

stops: 4.28). These lexical statistics were again taken into account in the regression model. 

 The printed words were, as in the previous experiments, generated as bitmaps using the Arial 

font (28 pointsize). This results in bitmaps with a height of 42 pixels and a width varying from 43 
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pixels to 182 pixels. The printed words were placed on the quadrants of the center of the screen, and 

the objects (in bitmaps with 70 by 70 pixels) were placed directly under or directly to the right of the 

printed words. 

Apparatus and Procedure 

The apparatus was the same as the previous experiments. There were 120 trials for each 

participant. The most critical of those were forty trials on which a /t/-initial word (e.g. /tart/) was used 

as a competitor for a target that differed only in place of articulation (e.g., /part/) or in both place and 

voicing (e.g., /bart/). Given the forty minimal triplets, this means that a given participant saw the 

printed word taart only once, as a competitor for the word paard or baard. Over participants, each /t/-

initial word appeared equally often as competitor for a word with a voiceless stop (paard) and as 

competitor for a word with a voiced stop (baard). 

To prevent participants from ruling out /t/-initial words as targets, 40 trials were added in which a 

/t/-initial word was the target and the competitor differed in place only or in place and voice, on 20 

trials each. This design also allowed another test of the basic assumption of asymmetric lexical 

matching. According to the FUL model, competitors with initial /t/ should receive more looks than 

competitors with initial /p/, /k/, or /b/. 

A different random order was generated for each participant. As in the previous experiments, 

target and competitor locations were counterbalanced for each participant. As in Experiment 1, the 

lists also contained 40 filler trials in which participants saw two identical printed words on the screen 

and the target was determined by the preposition phrase (e.g. "above the star"). On twenty trials the 

preposition determined which printed word was the target (because one was above and one next to a 

star) and, on the other twenty, the object name determined which one the target was (because one was 

above a triangle and one above a star). 

Design and Analysis 

The design allows two tests that distinguish the FUL model from an optimal-perception account. 

First of all, the question is, as in the previous experiments, whether competitors with unspecified 

features in onset position (/t/ in this case) attract more looks than competitors with specified features in 

onset position. The second question is whether the competitors with unspecified values for place and 

voicing in the onset position (i.e., /t/) attract more looks if they deviate from the target in only the 

place feature than if they deviate in both place and voicing features. For both questions, the dependent 

variable was the mean distance to the competitor in a window 200-600 ms after target onset. 

Independent variables were the underspecification of the competitor onset for the first question and the 

amount of feature deviance for the second, plus the lexical statistics used as covariates for both. 

Lexical statistics were removed in a stepwise procedure if not significant. 
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Figure 5. Eye-tracking results from the phonological trials in Experiment 4. The vertical lines in both 
panels indicate the onset of the different parts of the instructions. Panel A shows the comparison of 
looks to underspecified /t/ competitors and specified competitors. Panel B shows the comparison of 
looks to /t/ competitors that differ in one or two features from the target word. 

 

Results 

Performance was too close to ceiling to allow a meaningful error analysis (99.5% correct for trials 

with a /t/-initial target word, 100% for trials with another initial stop). Figure 5 shows the eye-tracking 

results for the correct trials, with the data for targets with specified vs. underspecified onsets in the 
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upper panel and the data for specified onsets split up in one- vs. two-feature mismatches in the lower 

panel. The upper panel displays a replication of earlier results. In the time window 200 to 600 ms after 

target onset, competitors received more looks than distractors, but there was no effect of the assumed 

specification of the onset consonant (B = -3.7, SE(B) = 7.4, t = -0.51, pMCMC = 0.6). The lower panel, 

however, shows that words with an initial /t/ serving as competitors received more looks when they 

differed from the target in only one feature than when they differed in two features (B = 24 pixels, 

SE(B) = 10.9, t = 2.24,  pMCMC < 0.05, d = 0.15). In both analyses, lexical statistics had no significant 

influence on gaze behavior. 

Discussion 

This experiment revealed two data points that favor an optimal-perception account over the FUL 

model. The first result was a replication of the null result obtained in first three experiments. The 

activation of words with a less than perfect match with the input was independent of the assumed 

specification of the mismatch. Assumed "no-mismatches" (the word /tart/ with the input [part]) were 

not more strongly activated than assumed "mismatches" (the word /part/ with the input [tart]). 

The second result that challenges the FUL model was that the number of mismatching default 

features influenced the activation of competitors. Competitors that only mismatch in voicing (e.g., 

/tart/ given the input [part]) seemed to be activated more strongly than competitors that mismatched in 

place and voicing (e.g., /tart/ given the input [bart]). This result may not be surprising, but it is not 

predicted by the FUL model. The lexical representation for the word /tart/ specifies neither a place nor 

voicing feature for the onset position. The only difference between the two situations is hence the 

number of "no mismatch" relations between input and lexical representation. The number of "no 

mismatch" relations, however, does not influence the lexical activation of word candidates (cf. formula 

(3) in Lahiri & Reetz, 2002). 

It is also this result that clearly speaks for the assumption that spoken-word recognition makes use 

of all available information and hence behaves optimally. The reasonably small additional amount of 

feature mismatch between a one-feature mismatch and a two-feature mismatch is used to prevent 

strong activation of a spurious word candidate. 

General Discussion 

Four experiments pitted the predictions of the FUL model of spoken-word recognition against the 

predictions of an optimal-perception account. The FUL model predicts that the spoken-word 

recognition system uses underspecified lexical entries. As a consequence, not all of the information in 

the speech signal is used to the fullest extent possible. The theory assumes that the feature values [-

Voice] for voicing and [Coronal] for place of articulation are default and hence not specified in the 

mental lexicon. This predicts an asymmetric matching between input and lexical representations. 

Inputs with non-default feature values do not mismatch lexical representations of words with 
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unspecified features in the same position. That is, the input [part] does not mismatch the lexical 

presentation of the Dutch word /tart/ (Engl. 'cake'). Asymmetric matching then arises, because inputs 

with default feature values mismatch the lexical representation of words with specified features in the 

same position. That is, the input [tart] mismatches the lexical representation of Dutch word /part/ 

(Engl. 'horse'). This was tested in four eye-tracking experiments with the visual-world paradigm. 

Participants heard an instruction to click on one of four printed words that were displayed on a 

computer screen in front of them. In contrast to the predictions of the FUL model, participants looked 

equally often at the printed word taart given the auditory input [part] as they looked at the printed 

word paart given the auditory input [tart]. This result was observed four times. Experiments 1 and 4 

used minimal pairs (such as /part/-/tart/ 'horse' and 'cake'). While the mismatching words were more 

attractive than the distractor words, the effect was symmetric. Experiment 2 and 3 used words with a 

phonological overlap in the first syllable (such as /koxəl/-/toxa/, 'bullet' and 'toga'). In Experiment 2, 

both words appeared on the screen and one of them was the target. In Experiment 3, the printed word 

corresponding to the input was not in the screen in order to increase the amount of looks to the 

phonological competitor (Huettig & Altmann, 2005). Nevertheless, in both experiments, looks to the 

printed word kogel with the input [toxa] were as likely as looks to the printed word toga with the input 

[koxəl]. Conducting a meta-analysis over all experiments, the average t value for the predicted 

asymmetry is 0.20. This indicates that it is safe to assume that an asymmetric matching effect is 

absent. 

Given that current statistical practice does not allow us to accept the null-hypothesis, a failure to 

find a statistically significant difference may be thought to indicate a failure of the research(er) rather 

than a failure of the theory (Kuhn, 1970). There are numerous problems with this argument. First of 

all, the standard error of the estimated (non-significant) effects were consistently small enough to lead 

to significant effects given the effect sizes that have been observed for phonological effects in eye-

tracking experiments (Gow & McMurray, 2007; Mitterer & McQueen, 2009). Second, the eye-

tracking methodology has proven quite sensitive and revealed phonological context effects that were 

not apparent in behavioral data (Mitterer & Ernestus, 2006; Mitterer & McQueen, 2009). Third, the 

current enterprise provided not one but four tests of the asymmetric-matching hypothesis. None of 

them revealed a significant effect, and the overall effect is close to zero. 

Nevertheless, Experiment 4 "reversed" the roles of the FUL model and an optimal-perception 

account, so that the FUL-model predicts no effect but an optimal-perception account does. An optimal 

perception account predicts that listeners are sensitive to small phonetic differences, so that the 

estimated posterior probability of a target word is smaller if the input mismatches in two features than 

when the input mismatches in only one feature. The FUL model predicts such an effect only if the 

features are specified, while the number of "non-mismatching" features is irrelevant for lexical access. 

The Dutch word /tart/ ('cake') is supposed to be activated to the same degree by the input [part]—
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(non)-mismatching in place—as by the input [bart]—(non)-mismatching in place and voicing. The 

results followed the predictions of an optimal-perception account and showed that the word /tart/ is 

more strongly activated by the input [part] than by the input [bart]. 

The question then arises whether an optimal-perception account can account for other patterns of 

data taken as evidence for underspecification. Most prominently, Lahiri and Marslen-Wilson (1991) 

investigated how Bengali and English listeners interpret nasalized vowels in a gating task. Importantly, 

Bengali listeners can interpret a nasalized vowel as an inherently nasal vowel in a CVC word or as an 

underlyingly oral vowel in a CVN word, which is produced as CV N. The results indicated that Bengali 

listeners interpreted the nasalized vowel mostly as a nasal vowel in a CVC word. Lahiri and Marslen-

Wilson took this as evidence that nasalization is specified and oral vowels are underspecified. As 

argued elsewhere (McQueen, 1995; Ohala & Ohala, 1995), these results are, however, less clear cut 

than underspecification theory assumes. Moreover, the preference for CVC words given a nasal vowel 

may alternatively show that perceivers tend to have a preference for more tangible causes. That is, 

when hearing a nasal vowel, it is a safer bet to assume that this is because the vowel already heard is 

nasal than assuming that the upcoming consonant is nasal. That is, listeners prefer context-independent 

judgments. This is similar to a set of findings in color perception, in which perceivers tend to assume 

that an orange plate is indeed orange. Only when the possibility of a context, such as a red illuminant, 

is highlighted, are perceivers more likely to judge the plate as yellow (Arend & Reeves, 1986; Troost 

& de Weert, 1991).  

An optimal-perception account can hence deal with some of the evidence for the 

underspecification account, but clearly not all. Those datasets that support an asymmetric matching 

(Eulitz & Lahiri, 2004; Friedrich, et al., 2006, 2008; Lahiri & Reetz, 2002) clearly contradict the 

assumption of an optimal-perception account. In such a situation, it is important to note that negative 

evidence weighs heavier than positive evidence in scientific research. To use a common example, a 

theory that "all swans are white" is not confirmed by observations of white swans. In the current 

context, the reported asymmetries are analogous to such observations of white swans. Given the now 

massive negative evidence—observed symmetries where the FUL model predicts asymmetries—

obtained with priming measures (Gow, 2001), EEG and MEG recordings (Bonte et al., Tavabi et al. 

2009), and the current evidence from eye-tracking, it seems that the theory of phonological 

underspecification cannot be maintained in its current form. Moreover, the existence of asymmetries is 

widespread (Polka & Bohn, 2003) and may be explained by other devices. Darcy and Kügler (2007), 

for instance, found more compensation for voicing assimilation than for devoicing assimilation in 

French listeners. Instead of appealing to underspecification, they explained the data pattern on the 

basis of the production pattern in French. 
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Nevertheless, one of the foundations of the FUL model remains a valid point: Coronal consonants 

seem to constitute a special case. They are the most likely to undergo changes in connected speech, 

such as flapping in American English (Tucker & Warner, 2007). Moreover, alveolar consonants are 

also extremely "popular" in the phonological inventories of the languages of the world (Paradis & 

Prunet, 1991), although not universal (Blevins, 2009) as assumed by underspecification theory (Lahiri 

& Reetz, 2010). In a similar vein, the current experiments showed that phonological underspecification 

is probably not the best way to conceptualize this special status. In fact, by remaining focused on the 

question of whether coronal segments are specified in the mental lexicon or not, it is difficult to 

consider new ideas of how the special status of coronals could be better captured. 

Another strong point in the original conception of underspecification is that it allows listeners to 

recognize reduced variants. However, the FUL model does not capture the context effects in the 

perception of assimilated forms. Other recent work on the recognition of variants is also problematic 

for the assumptions of the FUL model. Work on medial schwa deletion ("camra" for camera) indicates 

that variant frequency may be encoded in the mental lexicon (Connine, Ranbom, & Patterson, 2008), 

contrasting with purely phonological and abstract lexical entries in the FUL model. In a similar vein, 

Pitt (2009) showed that exposure to flapped variants ("winner" for winter) is essential for word 

recognition. Additionally, Sumner and Samuel (2005) found a "canonical form advantage" for variants 

of word-final /t/. That is, recognition was most efficient if the word was uttered in its canonical form. 

This finding contrasts with assumption that the presence or absence of default features in the input 

does not influence the activation level of words with underspecified segments. Finally, context effects 

in the perception of /t/-reduction are also difficult to explain in the framework of the FUL model 

(Mitterer & Ernestus, 2006; Mitterer & McQueen, 2009). 

In summary, the current paper provides a large set of problematic empirical data for the FUL 

model. One of the original reasons to assume underspecification was that it helps the listener to deal 

with the recognition of phonological variants. However, the model turns out to be incompatible with a 

growing body of research on the perception of phonological variants. Empirically and conceptually 

then, there is little reason to maintain the assumption of phonological underspecification in the mental 

lexicon. 
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Footnotes 
1 I will use the term "underspecified" for words or phonemes for which only some features are 

specified and "unspecified" for features that are not specified. 

2 It is important to note that I do not intend to pit the FUL model against the Shortlist B model of 

word recognition. The assumption of "optimal perception"—as contrasted with the assumption of 

phonological underspecification—is in fact implicitly present in most models of speech perception and 

spoken-word recognition. Consider the direct-realist theory of speech perception (e.g., Fowler, 1996). 

On a meta-theoretical level, this theory is strongly opposed to assumption of perceptual inference that 

lies at the heart of Bayesian models of perception. Nevertheless, for the current purposes, it still falls 

under the umbrella of models that assume "optimal perception", because it assumes that listeners will 

make use of all information in the speech signal to the fullest extent. 
3 There is no consensus yet how to define effect size measures in linear mixed-effect models. 

Hence, I report the ratio of the estimated unstandardized regression coefficient and the standard 

deviation of the dependent variable as Cohen's  d for categorical predictors. For continuous predictors, 

such as lexical frequency, I present the amount of explained variance on the basis of the correlation 

between a predictor and the residuals of the model without that predictor. This measure is similar to 

the squared partial eta. 
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Appendix 

Table A1: Materials for the phonological trials Experiment 1. 

Specified initial segment Coronal initial segment IPA 
fijne  seinen /{f,s}ɛinə/ 
fabel sabel /{f,s}abəl/ 
foppen soppen /{f,s}ɔpə/ 
fik sik /{f,s}ɪk/ 
fauna sauna /{f,s}ɑuna/ 
fel cel /{f,s}ɛl 
fier sier /{f,s}ir/ 
fijn sein /{f,s}ɛin/ 
flipper slipper /{f,s}lɪpər/ 
flank slank /{f,s}lɑŋk/ 
flap slap /{f,s}lɑp/ 
fleuren sleuren /{f,s}lørə/ 
flik slik /{f,s}lɪk/ 
flikken slikken /{f,s}lɪkə/ 
flippen slippen /{f,s}lɪpə/ 
floep sloep /{f,s}lup/ 
flop slop /{f,s}lɔp/ 
fluiten sluiten /{f,s}lœytə/ 
fluiter sluiter /{f,s}lœytər/ 
fok sok /{f,s}ɔk/ 
mul nul /{m,n}ʏl/ 
muffig nuffig /{m,n}ʏfəx/ 
mouw nauw /{m,n}ɑuw/ 
motie notie /{m,n}otsi/ 
mop nop /{m,n}ɔp/ 
moorden noorden /{m,n}ordə/ 
Moor Noor /{m,n}or/ 
mol nol /{m,n}ɔl/ 
mok nok /{m,n}ɔk/ 
mode node /{m,n}odə/ 
mixen niksen /{m,n}ɪksə/ 
mis nis /{m,n}ɪs/ 
meer neer /{m,n}er/ 
mier nier /{m,n}ir/ 
mest nest /{m,n}ɛst/ 
mep nep /{m,n}ɛp/ 
meid nijd /{m,n}ɛit/ 
mat nat /{m,n}ɑt/ 
macht nacht /{m,n}ɑxt/ 
maat naad /{m,n}at/ 
bank dank /{b,d}ɑŋk/ 
bal dal /{b,d}ɑl 
boos doos /{b,d}os 
boot dood /{b,d}ot/ 
buur duur /{b,d}yr/ 
bom dom /{b,d}ɔm/ 
bak dak /{b,d}ɑk/ 
bol dol /{b,d}ɔl/ 
borst dorst /{b,d}ɔrst/ 
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bon don /{b,d}ɔn/ 
boel doel /{b,d}ul/ 
baat daad /{b,d}at/ 
bier dier /{b,d}ir/ 
bekken dekken /{b,d}ɛkə/ 
beuk deuk /{b,d}øk/ 
boek doek /{b,d}uk/ 
bot dot /{b,d}ɔt/ 
bril dril /{b,d}rɪl/ 
braak draak /{b,d}rak/ 
broom droom /{b,d}rom/ 
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 Table A2. Materials used in Experiments 2 and 3. 
Specified first segment IPA Coronal first segment IPA Overlap 
baden badə dadel dadəl 4 
baklucht bɑkluxt dakloos daklos 4 
balie bali daling dalɪŋ 4 
bamboe bɑmbu dambord dɑmbɔrt 4 
beginnen bexɪnə degene dəxene 3 
beker bekər deken dekə 3 
bekken bɛkə dekking dɛkɪŋ 3 
bemanning bəmɑnɪŋ dementie dəmentsi 3 
beurs børs deuk døk 2 
biefstuk bifrstʏk diefstal difstɑl 4 
bierbuik birbœyœyk dierbaar dirbar 4 
bijbel bɛibəl dijbeen dɛiben 3 
bizon bisɔn diesel disəl 3 
bode bodə doding dodɪŋ 3 
boeking bukɪŋ doeken dukə 3 
boeman bumɑn doemen dumə 3 
bokkig bɔkəx dokken dokə 4 
bolling bɔliŋ dollen bɔlə 3 
fabricage fabrikaʃe sabotage sabotaʃe 3 
failliet fɑjɪt saillant sɑjɑnt 3 
fakkeltocht fɑkəltɔxt sakkerloot sɑkərlot 4 
falen falə salie sali 3 
familie famili salami salami 2 
fanatiekeling fanatikəlɪŋ sanatorium sanatorijʏm 4 
fatalisme fatɑlɪsmə satelliet satəlit 3 
fatsoen fatsun satijn satɛin 3 
federaal federal sediment sedimɛnt 3 
felomstreden fɛlɔmstredə selderijsoep sɛldərɛisup 3 
fervent fɛrfɛnt serveer server 3 
fierheden firhedə sierheester sirhestər 4 
figuurlijk fixyrlək sigaren sixaren 3 
fijnheid fɛinhɛit seinhoorn sɛinhorn 5 
filiaal filijal silhouet siluwɛt 3 
fiscus fɪskʏs sisklank sisklank 4 
fluiten flœytə sluiting slœytɪŋ 4 
kaakstoot kakstot taakstraf takstrɑf 5 
kaalte kaltə taaltoets taltuts 4 
kapping kɑpɪŋ tappen tɑpə 3 
koers kurs toef tuf 2 
kogel koxəl toga toxa 3 
koning konɪŋ tonen tonə 3 
maan man naald nalt 2 
mager maxər nagels naxəls 3 
meegaand mexant negen nexə 3 
meeuw mew neef nef 2 
mergel merxəl nergens nɛrxəns 5 
mogen moxə noga noxa 3 
praktisch prɑktɪs tractor trɑktɔr 5 
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Table A3. Items with 1 vs. 2 feature difference to a /t/-inital word. 

1 feature difference 2 features difference /t/-initial word IPA 
cross bros tros /{k,b,t}ɔs/ 
kaal baal taal /{k,b,t}al/ 
kaken baken taken /{k,b,t}akə/ 
kalk balk talk /{k,b,t}ɑlk/ 
kauwen bouwen touwen /{k,b,t}ɑuwə/ 
keer beer teer /{k,b,t}er/ 
kei bij tij /{k,b,t}ɛi/ 
keken beken teken /{k,b,t}ekə/ 
kent band tent /{k,b,t}ɛnt/ 
kermen bermen termen /{k,b,t}ɛrmə/ 
kieren bieren tieren /{k,b,t}irə/ 
kikken bikken tikken /{k,b,t}ɪkə/ 
kil bil til /{k,b,t}ɪl/ 
kind bind tint /{k,b,t}ɪnt/ 
kocht bocht tocht /{k,b,t}ɔxt/ 
koe boe toe /{k,b,t}u/ 
kok bok tok /{k,b,t}ɔk/ 
komen bomen tomen /{k,b,t}omə/ 
kon bon ton /{k,b,t}ɔn/ 
koren boren toren /{k,b,t}orə/ 
kracht bracht tracht /{k,b,t}rɑxt/ 
krant brand trant /{k,b,t}rɑnt/ 
krauwen brouwen trouwen /{k,b,t}ɑuwə/ 
kreet breed treedt /{k,b,t}ret/ 
krijn brein trein /{k,b,t}rɛin/ 
krom brom trom /{k,b,t}rɔm/ 
krui brui trui /{k,b,t}rœy/ 
kuil buil tuil /{k,b,t}œyl/ 
kuis buis thuis /{k,b,t}œys/ 
kuit buit tuit /{k,b,t}œyt/ 
paai baai taai /{p,b,t}ai/ 
paard baard taart /{p,b,t}art/ 
pakken bakken takken /{p,b,t}ə/ 
pal bal tal /{p,b,t}ɑl/ 
pand band tand /{p,b,t}ɑnt/ 
pas bas tas /{p,b,t}ɑs/ 
pellen bellen tellen /{p,b,t}elə/ 
penen benen tenen /{p,b,t}enə/ 
pips bips tips /{p,b,t}ɪps/ 
poef boef toef /{p,b,t}uf/ 
poen boen toen /{p,b,t}on/ 
pol bol tol /{p,b,t}ɔl/ 
poon boon toon /{p,b,t}on/ 
pop bob top /{p,b,t}ɔp/ 
pot bot tot /{p,b,t}ɔt/ 
pril bril tril /{p,b,t}rɪl/ 
pui bui tui /{p,b,t}œy/ 
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