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We apply the formalism of quantum estimation theory to obtain information about the value of
the optomechanical coupling in the simplest model of two harmonic oscillators. In particular, we
discuss the minimum mean-square error estimator and a quantum Cramér-Rao inequality for the
estimation and accuracy of the coupling’s value. Our estimation strategy reveals some cases, where
quantum statistical inference is inconclusive and only prior expectations on the coupling strength
are reassured. We show that this situations involve also the highest expected information losses. It
is demonstrated that interaction times in the order of one time period of mechanical oscillations are
the most suitable for this type of estimation scenario. We also compare situations involving different
initial photon and phonon excitations.

I. INTRODUCTION

Quantum estimation theory seeks the best strategy of
learning the value of one or more parameters of the den-
sity matrix of a quantum mechanical system [1]. The ob-
servation strategy for estimating these parameters is ex-
pressed as a positive-operator valued measure (POVM).
Elements of the POVM are applied in repeated measure-
ments on the system and the unknown parameters are
estimated from the data set. The optimum strategy con-
sists of those POVMs, which minimize the average cost
functional, and is typically considered for maximum like-
lihood or mean square error estimators. The mathemat-
ical framework for studying the conditions under which
solutions of the optimization problem exists was estab-
lished by Holevo [2, 3]. The considerable theoretical and
experimental developments on quantum statistical infer-
ence lead to various applications in quantum tomography
and metrology [4].

Radiation pressure is defined as the pressure exerted
upon a surface exposed to an electromagnetic radiation
field. Therefore, the momentum transfer, inflicted by
the electromagnetic radiation, can also have an effect
on macroscale mechanical masses (such as cavity mir-
rors). One of the most prominent presence of this effect
is in the laser-based gravitational wave interferometers
[5], where it imposes limits on continuous position de-
tection [6, 7]. The subject of this paper, the quantum
cavity-optomechanical systems, has drawn also a lot of
attention from both sides of theoretical and experimental
physics [8]. The motivations are mainly centered around
the perspectives of sensitive optical detection of small
forces, mechanical motion in the quantum regime, and
coherent light-matter interfaces for future hybrid quan-
tum information devices. The most crucial ingredient
here is the value of the coupling strength between the
optical field and mechanical degrees of freedom. We sim-
ply consider that the value of this parameter is best de-
termined from quantum inference techniques, which have
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been successfully applied lately to phase estimations of
quantum states [9, 10]. In our case the parameter to be
estimated is not a simple phase parameter, but rather a
parameter which appears in the spectrum of the Hamil-
ton operator [11].

In this paper we analyze the basic model of cavity-
optomechanical systems, a single-mode of the electro-
magnetic radiation field coupled via radiation pressure
to a vibrational mode of a mechanical oscillator (cavity
mirror), subject to adiabatically slow motion of the mir-
ror [12]. The analytical solutions to this simple model
results in a density matrix, which is going to depend on
the unknown value of the optomechanical coupling. This
density matrix describes the joint state of single-mode
field and mechanical oscillator. Measurements are usu-
ally performed on the field state, emerging from the in-
teraction, and thus we trace out the mechanical degrees
of freedom. The obtained state is going to be subject
of a quantum estimation procedure. We focus here on a
mean-square error estimator and assume that the prior
probability density function of the optomechanical cou-
pling is a normal distribution. We set the mean and
the standard deviation of this distribution function to
values obtained by a canonical quantization procedure
with a high frequency cut-off of the radiation field and
adiabatically slow motion of the mechanical oscillator.
In order to illustrate basic features of our proposal, we
consider the mechanical oscillator to be initially in a co-
herent state and the initial field state to have only a few
excitations. We determine the mean-square error estima-
tor which minimizes the cost functional and we study a
quantum Cramér-Rao inequality of the estimator’s vari-
ance. However, the mean-square error estimator which
minimizes the cost functional is biased. Furthermore,
the emerged field state does not have either a right log-
arithmic or a symmetrized logarithmic derivative with
respect to the optomechanical coupling. Thus, we give
a new lower bound for the variance of the estimator by
using standard techniques [13].

This paper is organized as follows. In Sec. II we discuss
the model of a single-mode radiation field coupled via
radiation pressure to a vibrational mode of a mechanical
oscillator and its solutions. In Sec. III we introduce the
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quantum estimation theory for minimum mean square er-
ror estimators and study in this context the properties of
the optomechanical model. We then address the variance
of the biased estimators in Sec. IV, derive a lower bound,
and employ this result to the optomechanical model. A
discussion about our analytical and numerical findings is
summarized up in Sec. V.

II. MODEL

We consider a systems composed of two harmonic os-
cillators, a single-mode of the radiation field and a vi-
brational mode of a mechanical oscillator. Provided that
the field is a high finesse cavity field and one of the mir-
rors is movable, one is able to derive a radiation pres-
sure interaction operator [12, 14] by using time-varying
boundary conditions in the quantization procedure. The
single-mode assumption for both quantized field and mir-
ror motion results in the following Hamiltonian (~ = 1)

Ĥ = ωcâ
†â+ ωmb̂

†b̂+ gâ†â(b̂† + b̂), (1)

where â (â†) is the annihilation (creation) operator of the

single-mode radiation field with frequency ωc and b̂ (b̂†)
is the annihilation (creation) operator of the moving mir-
ror’s mode with frequency ωm. g is the optomechanical
coupling strength.

The time evolution of the system is given by the
Schrödinger equation

|Ψ(t)〉 = e−iĤt|Ψ(0)〉.

We are interested in a case where no initial correlations
are present between the field and the mechanical oscilla-
tor. Therefore, we choose an initial state of the form

|Ψ(0)〉 =

∞∑
n=0

an|n〉c|α〉m (2)

with the mechanical oscillator considered initially in a
coherent state [15]

|α〉m =

∞∑
n=0

e−
|α|2
2

αn√
n!
|n〉m, α =

√
n̄ eiφ (3)

written in terms of the number states |n〉m (n ∈ N0) and
where φ is the phase of the coherent state. In this sec-
tion, we treat the coefficients an of the photon-number
states |n〉c very general and only impose the normaliza-
tion condition

∑
n |an|2 = 1.

The interaction Hamiltonian gâ†â(b̂† + b̂) commutes
with the free Hamiltonian of the radiation field ωâ†â,
which yields

c〈n|Ĥ|m〉c =
(
nωcÎ + ωmb̂

†b̂+ ng(b̂† + b̂)
)
δnm (4)

with δnm being the Kronecker delta and Î is the identity
operator on the Hilbert space of the mechanical oscilla-
tor. Thus, the Hamiltonian in (1) is block-diagonal with
respect to the photon-number states |n〉c.

In order to evaluate the expression exp{−iωmb̂†b̂t −
ing(b̂† + b̂)t} we employ the Baker-Campbell-Hausdorff
formula and obtain (see for example [16])

e−iωmb̂
†b̂t−ing(b̂†+b̂)teiωmb̂

†b̂t = eiΦn(t)eαn(t)b̂†−α∗n(t)b̂ (5)

where we have introduced the parameters

αn(t) =
ng

ωm

(
e−iωmt − 1

)
,

Φn(t) =
n2g2

ω2
m

[ωmt− sin(ωmt)] .

This means that the whole time evolution can be viewed
as photon-number dependent displacements of the me-
chanical oscillator and with the help of Eqs. (4) and (5)
we get

|Ψ(t)〉 = e−iĤt|Ψ(0)〉 =

∞∑
n=0

ane
iϕn(t)|n〉c|βn(t)〉m,

ϕn(t) = −nωct+
n2g2

ω2
m

[ωmt− sin(ωmt)]

+
ng

ωm

α∗(1− eiωmt)− α(1− e−iωmt)
2i

,

βn(t) =
ng

ωm

(
e−iωmt − 1

)
+ αe−iωmt, (6)

where we used a corollary of the Baker-Campbell-
Hausdorff formula: the product of two displacement op-
erators is also a displacement operator with a phase fac-
tor.

The quantum state of (6) yields a complete description
of the interaction between the single mode of the radia-
tion field and the single-mode vibration of the mechani-
cal oscillator, i.e., neglecting all decoherence sources. In
the subsequent sections we are interested in possible mea-
surement scenarios, performed on the emerged field state,
which are capable to estimate the optomechanical cou-
pling g. Therefore, the field to be measured in an esti-
mation scenario reads

ρ̂F = Trm{|Ψ(t)〉〈Ψ(t)|} =

∞∑
n,m=0

An,m|n〉c〈m| (7)

with

An,m = ana
∗
me

iϕn(t)−iϕm(t)−(|βn(t)|2+|βm(t)|2)/2+βn(t)β∗m(t)

= ana
∗
me
−g2f(2)

n,m(t)+gf(1)
n,m(t)−f(0)

n,m(t), (8)
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where

f (0)
n,m(t) = iωct(n−m),

f (1)
n,m(t) =

α∗(1− eiωmt)− α(1− e−iωmt)
ωm

(n−m),

f (2)
n,m(t) =

1− cos(ωmt)

ω2
m

(n−m)2

− i
ωmt− sin(ωmt)

ω2
m

(n2 −m2). (9)

The above equations show that the coefficient of the
linear term in g contributes to An,m only when the initial
state of the mechanical oscillator is not in the ground
state, i.e., α = 0.

III. QUANTUM MINIMUM MEAN-SQUARE
ERROR ESTIMATION

Quantum estimation theory attempts to find the best
strategy for estimating one or more parameters of the
density matrix [17]. In our case, the density matrix of the
field in (7) depends on the parameter g to be estimated.
Any outcome of a measurement on the field is a variable
with probability both depending on the estimanda g. As
our knowledge is limited, we assume that the estimanda is
a random variable with prior probability density function

p(g) =
1√

2πσ2
e−

(g−g0)2

2σ2 (10)

with mean g0 and variance σ2. We shall return to these
parameters and their physical meanings later on.

Our estimation problem is to find the best measure-
ments on ρ̂F (g) to estimate g. In practice, we are looking
for a POVM whose elements are defined on the compact
intervals of the real line, i.e, the set of all possible values
for g, satisfying

0 6 Π̂(∆) 6 Î , ∆ ⊂ R, (11)

where Î is the identity operator. We also suppose that
the infinitesimal operators dΠ̂(g) can be formed and by
thus yielding

Π̂(∆) =

∫
∆

dΠ̂(g)

and

Î =

∫ ∞
−∞

dΠ̂(g). (12)

In order to solve the estimation problem we have to pro-
vide a cost function, a measure of the cost suffered upon
making errors in the estimate of g. Here, g is to be es-
timated with minimum mean square error and thus the
cost function is:

C(g̃, g) = (g̃ − g)2, (13)

where g̃ is the estimate of g, a function of the measure-
ment data.

Now, we are able to formulate the quantum estimation
problem. We are looking for dΠ̂(g̃), which minimizes the
average cost of this estimation strategy

C̄ = Tr
{∫ ∞
−∞

∫ ∞
−∞

p(g)C(g̃, g)ρ̂F (g)dΠ̂(g̃)dg
}

(14)

under the constraints (11) and (12). This is a variational
problem for the functional C̄ and furthermore we con-
sider the estimate g̃ to be an eigenvalue of the Hermitian
operator

M̂ =

∫ ∞
−∞

g̃dΠ̂(g̃) =

∫ ∞
−∞

g̃|g̃〉〈g̃|dg̃ (15)

with eigenstates |g̃〉. This also means that we are con-
sidering only projective POVMs. Thus, the average cost
functional in (14) together with the cost function in (13)
yields

C̄[M̂ ] = Tr
{∫ ∞
−∞

p(g)
(
M̂ − gÎ

)2
ρ̂F (g)dg

}
. (16)

We also define the following operators

Γ̂k =

∫ ∞
−∞

gkp(g)ρ̂F (g)dg, k ∈ {0, 1, 2}. (17)

Let ε be a real number and N̂ any Hermitian operator.
Let M̂min be the Hermitian operator which minimizes
C̄[M̂ ]. Then, we have

C̄[M̂min] 6 C̄[M̂min + εN̂ ], (18)

because the sum of Hermitian operators is a Hermitian
operator. Evaluating the right hand side of the inequality
and using the operators defined in (17) we get

C̄[M̂min + εN̂ ] = C̄[M̂min] (19)

+εTr
{
N̂
(

Γ̂0M̂min + M̂minΓ̂0 − 2Γ̂1

)}
+ ε2Tr{Γ̂0N̂

2}.

Differentiating with respect to ε one is able to show that
the unique Hermitian operator M̂min minimizing C̄ must
satisfy [18]

Γ̂0M̂min + M̂minΓ̂0 = 2Γ̂1. (20)

The average minimum cost of error is

C̄min = Tr{Γ̂0M̂
2
min − 2Γ̂1M̂min + Γ̂2}

= Tr{Γ̂2 − M̂minΓ̂0M̂min}, (21)

where we have used the relation in (20). In order to

determine M̂min we have to solve the operator equation
(20)and it has been shown by Ref. [18] that its solution
the can be written as

M̂min = 2

∫ ∞
0

exp(−Γ̂0x)Γ̂1 exp(−Γ̂0x)dx. (22)
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We would like to comment here on this solution, because
the operator that we have found, it does not represents
the best estimator of g rather than the measurement op-
erator which protects the best against information loss,
no matter what the true value of g is [19].

In the next step we evaluate all Γ̂k by using the form
of ρ̂F (g) in (7) and obtain

Γ̂k =

∞∑
n,m=0

ana
∗
mA

(k)
n,m exp (−γn,m) |n〉c〈m|, k ∈ {0, 1, 2}

(23)

with

A(0)
n,m =

1

σ′

A(1)
n,m =

g0 + f
(1)
n,m(t)σ2

σ′3

A(2)
n,m =

(
g0 + f

(1)
n,m(t)σ2

)2

+ σ2σ′2

σ′5

where we have also introduced

γn,m =

=
2g2

0f
(2)
n,m(t)− 2g0f

(1)
n,m(t) + 2f

(0)
n,m(t)σ′2 −

(
f

(1)
n,m(t)

)2

σ2

2σ′2

σ′2 = 2f (2)
n,m(t)σ2 + 1.

These results are very general and in the subsequent
subsections we are going to investigate some simple cases
of the optomechanical model.

A. A case study

The situation can be easily understood for the case,
when an = 0 for n > 1 in Eq. (2). In order to maximize
the absolute values of the off-diagonal elements of the
density matrix we choose a0 = a1 = 1/

√
2. This specific

choice is due to the fact that the unknown parameter g
is only present in the off-diagonal elements (see Eq. (9)).
Here, the estimate g̃ is simply one of the two eigenvalues
of M̂min, which turn up as a result of applying the two
projective measurements defined by their accompanied
eigenvectors.

Furthermore, we ought to define g0 and σ in Eq. (10),
the priori probability density function of the estimanda
g. We set

g0 =
ωc
L

√
〈x̂2〉0 =

ωc
L

√
1

2mωm
, (24)

σ2 =
(ωc
L

)2√
〈x̂4〉0 − 〈x̂2〉20 =

(ωc
L

)2 1√
2mωm

,

where L is the length of the cavity, m is the mass of the
mechanical oscillator and 〈Â〉0 is the average of operator

α=0

α=1

α->∞

0 2 4 6 8

0.45

0.50

0.55

0.60

0.65

0.70

ωmt

C
m

in
/ω

m
2

FIG. 1: The average minimum cost of error C̄min/ω
2
m as a

function of ωmt. We consider the parameter α of initial co-
herent state of the mechanical oscillator to be real (see Eq.

(9)). We set g0/ωm = 1 and σ/ωm = 2−1/4. All curves are
characterized by one global minimum which decreases by the
increase of α.

Â ∈ {x̂2, x̂4}, acting only on the Hilbert space of mechan-
ical oscillator, in the ground state [8, 12]. For the sake
of simplicity we perform our calculations in the rotating
frame of the single-mode field, i.e., ρ̂F → Û ρ̂F Û

† with
Û = exp{−iωct â†â}.

In the next step we determine M̂min from the Γ̂k-s in
Eq. (23) by using (22). One can obtain analytical re-
sults, however due to their complex structure we omit to
present them here. Instead, we focus on numerical solu-
tions. First, we investigate the average minimum cost of
error C̄min. Fig. 1 shows that the average minimum cost
of error C̄min as a function of time, which decreases until
it reaches its minimum and then returns asymptotically
to its initial value. This value is equal to σ2. At t = 0,
where no interaction occurred, the eigenvalues of M̂min

are g0 and 0. The probability of measuring the eigenvalue
0 is zero and therefore the estimate is g0. It is immediate
from the form of the priori probability distribution p(g)
in (10) that the average minimum cost of error is σ2, or
simply the variance of p(g).

In the other limit t→∞ the average minimum cost of
error C̄min is also σ2, however the estimates or the eigen-
values of M̂min are g0, see Fig. 2. This means that for
long interaction times the inference of the parameter g
from the measurement data can only result in the mean
g0 of the probability distribution p(g). As for both t = 0
and t → ∞ the average minimum cost of error attains
its maximum, we are going to neglect these situations.
Instead we determine the time t∗, when the minimum of
C̄min occurs. This results in a specific M∗min to be mea-
sured and this is the case when one is the best protected
against information loss.

We turn now to the analysis of t∗ and its dependence
from α, the parameter of the mechanical oscillator’s ini-
tial coherent state. In Fig. 1, the limit α → ∞ with
α ∈ R results t∗ = 0 and C̄min ≈ 0.45. However, the
eigenvalues of M̂∗min are still 0 and g0. Whence it fol-
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ωmt

λ
/ω

m

FIG. 2: The two eigenvalues of the operator M̂min to be mea-
sured as a function of ωmt. We set g0/ωm = 1, σ/ωm = 2−1/4

and α = 0. The initial value of the two eigenvalue are g0
and 0. There is a jump for in these values when ωmt becomes
larger than 0, or in other words when the interaction is turned
on. For large interaction times, i.e., t → ∞, the eigenvalues
tend to the same value g0.

lows that highly excited initial states of the mechanical
oscillator with α ∈ R result in an estimation scenario,
where only the mean g0 of the priori probability distri-
bution p(g) can be obtained from measuring M∗min. In
the next step, we investigate the position of the mini-
mum for α ∈ C. Fig. 3 shows a shift of t∗ towards
higher values and an increase of the minimum value of
C̄min as the imaginary part of α gets larger. However, for
α = 1 and α = 1 + 2i the curves almost overlaps, which
means that highly excited states with large mean phonon
number |α|2 may support the estimation scenario, if
Re[α] ≈ Im[α]. This is a critical statement, because
there is a limitation on the final phonon number due
to the effective thermal occupation of the cooling field
[22]. Nonetheless, the extreme cases of Re[α] � Im[α]
or Im[α]� Re[α] lead to inconclusive measurement sce-
narios. In our successive plots we employ these findings
and in regard to the free parameter of time we use only
t∗ and M̂∗min.

Every outcome of the measurement of M̂∗min is an es-
timate of g. The most important quantity for a possible
experimental implementation is the average estimate

h(g) = Tr{M̂∗minρ̂F (g)}. (25)

The collected measurement data determines the value of
h(g) and from which one may deduce the value of g. In
Fig. 4, we show the curves of h(g) for different values
of the real parameter α. t∗ is independently calculated
for all initial states. When α = 0, the average estimator
is symmetric with respect to the y-axis. This is a direct
consequence of our particular choice of the cost function
(13), which is also an even function.

α=1

α=1+2ⅈ

α=5

α=5ⅈ

0.0 0.5 1.0 1.5

0.45

0.50

0.55

0.60

0.65

0.70

ωmt

C
m

in
/ω

m
2

FIG. 3: The average minimum cost of error C̄min/ω
2
m as a

function of ωmt. We set g0/ωm = 1 and σ/ωm = 2−1/4. The
imaginary part of α shifts the value of the minimum to the
right: compare α = 1 + 2i, 5 and 5i, which have the same
absolute value. Higher values of the minimum’s position are
accompanied with an increase in the value of the minimum.

α=0

α=1

α=2

-100 -50 0 50 100
0

2

4

6

8

10

12

14

g/ωm

h
(g
)/
ω

m

FIG. 4: The average estimator h(g)/ωm as a function of g/ωm.
We consider the parameter α of initial coherent state of the
mechanical oscillator to be real. We set g0/ωm = 1 and

σ/ωm = 2−1/4. The time is considered to be such that the
average minimum cost of error C̄min attains its minimum as a
function of time. The mean value g0 of the prior probability
distribution function p(g) is depicted by a vertical line.

B. Comparing cases with different initial photonic
states

So far we have discussed in detail the estimation prob-
lem of the optomechanical coupling g for the simplest
initial state of the single-mode field. In the following, we
consider more than one available excited photon num-
ber states. ρ̂F (g) depends on g only in the off-diagonal
elements and therefore we set the amplitude of all partic-
ipating photon number states to be equal. This ensures
the maximum allowed absolute value for the off-diagonal
elements in the density matrix. Due to the added com-
plexity of dealing with Eq. (22) we compare cases with
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|ψ4>
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0.55
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0.70
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C
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2

FIG. 5: The average minimum cost of error C̄min/ω
2
m as a

function of ωmt for different initial photonic states. We set
g0/ωm = 1, σ/ωm = 2−1/4 and α = 0. |ψN 〉c defined in Eq.
26 is the initial photonic state.

the following initial states of the single-mode field

|ψN 〉c =

N−1∑
n=0

an|n〉c =
1√
N

N−1∑
n=0

|n〉c, N = 2, 3, 4.

(26)
Fig. 5 shows that the average minimum cost of error

is reduced by the increase of the photon number states
in the initial state. This can be understood by exam-
ining carefully the Hamilton operator in Eq. (1), which
reveals that the interaction between the single mode field
and the mechanical oscillator gets stronger with increased
number of participating photons. Thus, we have a better
chance to estimate the optomechanical coupling g. The
time t∗ when C̄min attains its minimum is approximately
the same, because we have set α equal to zero. We have
also calculated the average estimator h(g) for t∗ and Fig.
6 shows the three different curves depending on the initial
conditions in (26). Thus, all curves are even function.

IV. QUANTUM CRAMÉR-RAO INEQUALITY

In the previous sections we have discussed the prop-
erties of the optimum Hermitian operator M̂min, which
minimizes the average cost in Eq. (14), and where its
eigenvalues are the estimates of the unknown optome-
chanical coupling g. An important task is to find out the
accuracy with which g can be estimated. We would like
to employ here the quantum Cramér-Rao inequality for
an unbiased estimator [13, 20], however in our situation
we have a biased estimator

Tr
{
ρ̂F (g)(M̂min − gÎ)

}
= f(g), (27)

where f(g) is the bias of the estimation. Therefore, we
have to review the derivation of the Cramér-Rao inequal-
ity, and furthermore we have to deal in addition with an
extra issue in regard to the derivative of the density ma-
trix ρ̂F (g) with respect to the parameter g. Let us recall

|ψ2>

|ψ3>

|ψ4>

-100 -50 0 50 100
0

2

4

6

8

10

12

g/ωm

h
(g
)/
ω

m

FIG. 6: The average estimator h(g)/ωm as a function of g/ωm.

We set g0/ωm = 1, σ/ωm = 2−1/4 and α = 0. The time is
considered to be such that the average minimum cost of error
C̄min attains its minimum as a function of time. The mean
value g0 of the prior probability distribution function p(g) is
depicted by a vertical line. |ψN 〉c defined in Eq. 26 is the
initial photonic state.

the density matrix ρ̂F (g) from Eq. (7) and observe that

ρ̂F (g) = (28)

=

∞∑
n,m=0

ana
∗
me
−a1(n−m)2+a2(n2−m2)−a3(n−m)|n〉c〈m|,

where

a1 =
g2

ω2
m

(1− cos(ωmt)) ,

a2 = i
g2

ω2
m

(ωmt− sin(ωmt)) , (29)

a3 = iωct−
g

ωm

(
α∗(1− eiωmt)− α(1− e−iωmt)

)
.

Therefore,

∂ρ̂F (g)

∂g
= −∂a1

∂g

[
â†â, [â†â, ρ̂F (g)]

]
+
∂a2

∂g

[
(â†â)2, ρ̂F (g)

]
− ∂a3

∂g
[â†â, ρ̂F (g)] = L (ρ̂F (g)) , (30)

which demonstrates that L is neither a right logarithmic
nor a symmetrized logarithmic derivative of the density
matrix ρ̂F (g), a deviation from the standard analysis [13].
In the standard proof, a Cauchy-Schwartz-Bunyakovsky
inequality is employed, which suggests that in our new

situation we have to introduce the operator ρ̂
−1/2
F (g).

This operator does not exist when the spectrum of ρ̂F (g)
contains zero (e.g., a pure state). We avoid this situation
by following a different path.

In order to derive a lower bound for the estimator’s
variance,

Var
(
M̂min − gÎ

)
= Tr

{
ρ̂F (g)(M̂min − gÎ)2

}
, (31)
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we introduce

Tr
{
ρ̂2
F (g)M̂min

}
= x1(g) (32)

and then we differentiate both sides with respect to the
parameter g,

Tr

{(
∂ρ̂F (g)

∂g
ρ̂F (g) + ρ̂F (g)

∂ρ̂F (g)

∂g

)
M̂min

}
= x′1(g).

(33)
We also consider Tr

{
ρ̂2
F (g)

}
= x2(g), and

Tr

{(
∂ρ̂F (g)

∂g
ρ̂F (g) + ρ̂F (g)

∂ρ̂F (g)

∂g

)
gÎ

}
= gx′2(g).

(34)
Subtracting (34) from (33), we obtain

Tr

{(
∂ρ̂F (g)

∂g
ρ̂F (g) + ρ̂F (g)

∂ρ̂F (g)

∂g

)
(M̂min − gÎ)

}
=

= x′1(g)− gx′2(g) = x(g). (35)

We make use of (30) and write (35) as

Tr
{(
L (ρ̂F ) ρ̂F + ρ̂FL (ρ̂F )

)
(M̂min − gÎ)

}
= x(g),

(36)

where for the sake of simplicity we have neglected the
argument of ρ̂F (g).

The Banach space of the Hilbert-Schmidt operators is
defined as

B2(H) :=
{
X̂ ∈ B(H) : Tr{X̂†X̂} <∞

}
(37)

where B(H) is Banach space of all bounded operators
defined on the Hilbert space H. B2(H) with the inner
product

〈A,B〉 = Tr{A†B}, A,B ∈ B2(H) (38)

is a Hilbert space [21]. The Cauchy-Schwartz-
Bunyakovsky inequality for A,B ∈ B2(H) reads

|Tr{A†B}| 6 Tr{A†A}Tr{B†B}. (39)

In our case the Hilbert space is the symmetric Fock space,
i.e., H = Γs(C) and L contains powers of â†â, which is
an unbounded operator. This clearly show that we are
bounded in our proof to density matrices which fulfill the

conditions: ρ̂
1/2
F (â†â)2ρ̂F , ρ̂

1/2
F â†âρ̂F â

†â ∈ B2

(
Γs(C)

)
.

These conditions together with the cyclic property of the

trace imply that ρ̂
1/2
F L (ρ̂F ) is a Hilbert-Schmidt opera-

tor. Similarly the condition ρ̂
1/2
F M̂min ∈ B2

(
Γs(C)

)
may

restrict further the set of the density matrices, i.e, there
are conditions for choosing the values an in the initial
state (2). In the case of finite dimensional considera-
tions, i.e, there exist an N > 0 such that an = 0 for
n > N , these complications do not arise, because all ma-
trices are Hilbert-Schmidt operators. This is the typical
case of numerical simulations.
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α->∞
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FIG. 7: The lower bound of the estimators’s variance
Var

(
M̂∗

min − gÎ
)
/ω2

m as a function of g/ωm. We set g0/ωm =

1 and σ/ωm = 2−1/4. The time is considered to be such that
the average minimum cost of error C̄min attains its minimum
as a function of time, which results in the estimator M̂∗

min.
Compare the top and bottom figures with Fig. 1 and Fig. 3.
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FIG. 8: The lower bound of the estimator’s variance
Var

(
M̂∗

min − gÎ
)
/ω2

m as a function of g/ωm. We set g0/ωm =

1, σ/ωm = 2−1/4, and α = 0. The time is considered to be
such that the average minimum cost of error C̄min attains its
minimum as a function of time, which results in the estimator
M̂∗

min, see Fig. 5.
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Now, provided that ρ̂
1/2
F L (ρ̂F ) and ρ̂

1/2
F M̂min are

Hilbert-Schmidt operators, (36) reads

|x(g)| =
∣∣∣Tr
{
L(ρ̂F )ρ̂

1/2
F ρ̂

1/2
F (M̂min − gÎ)

}
+Tr

{
ρ̂

1/2
F L(ρ̂F )(M̂min − gÎ)ρ̂

1/2
F

} ∣∣∣ (40)

and applying first the subadditivity of the absolute value
and then the Cauchy-Schwartz-Bunyakovsky inequality
(39) twice we get

|x(g)| 6 2Tr
{
ρ̂FL2(ρ̂F )

}
Var

(
M̂min − gÎ

)
, (41)

where we have used the fact that
[
L(ρ̂F )

]†
= L(ρ̂F ) (see

Eq. (30)).
Finally, we get the lower bound for the estimator’s vari-

ance

Var
(
M̂min − gÎ

)
>

|x(g)|
2Tr {ρ̂FL2(ρ̂F )}

. (42)

The quantity on the right is very similar to the standard
quantum Cramér-Rao bound. Here, in the nominator the
function of x(g) represents the fact that the estimator
is biased and involves information about the purity of
the density matrix ρ̂F (g). The denominator has a little
more complicated structure than the quantum Fischer
information [23] due to the non-existence of either a right
logarithmic or a symmetrized logarithmic derivative of
ρ̂F (g) with respect to the optomechanical coupling g.

Now, we investigate numerically the lower bound of
the estimator’s variance. We consider g0 and σ to be
the same as in (24). In Fig. 7, we recall the results
of Figs. 1 and 3 and show the behavior of the lower
bound as a function of g/ωm. The most interesting fea-
ture occurs when Re[α] > Im[α] and for which cases the
lower bound of the variance is the smallest. This sug-
gests measurement strategies with better accuracy, how-
ever this in contrast with our findings in Sec. III, where
we identified the condition Re[α] ≈ Im[α] for avoiding

the eigenvalues of M̂∗min to be approximately either 0 or
g0. This indicates that measurement scenarios with con-
dition Re[α] > Im[α] may simply show that the optome-
chanical coupling is g0, our apriori expectation. These
setups have to be avoided.

We compare also the lower bound for different initial
single-mode field states given in Eq. (26) and with α = 0.
Here, the time t∗ when the average minimum cost of er-
ror C̄min attains its minimum as a function of time is
approximately the same. Fig. 8 shows that the accu-
racy is increased by the increase of the photon number
states in the initial state. This is in agreement with our
findings in Fig. 5, namely the average minimum cost of
error is reduced by the increase of the photon number
states. This also suggests that the initial preparation
of the single-mode is also very crucial on the outcome
of the estimation and equally weighted superposition of
many photon number states is preferable. We conclude

from this qualitative assessment that preparation of ini-
tial states of both the single-mode field and mechanical
oscillator is a key element to obtain high precision with
reasonable estimations.

V. CONCLUDING REMARKS

In this paper we have investigated the simplest op-
tomechanical model, a single-mode field interacts with
a vibrational mode of a mechanical oscillator from the
perspective of quantum estimation theory. The optome-
chanical interaction between these two oscillators has
been considered with a unknown optomechanical cou-
pling strength. The time evolution of the joint state has
been determined and tracing out the degrees of freedom
of the mechanical oscillator one obtains the state of the
single-mode field to be measured. We have introduced a
quantum estimation scenario, in which one seeks for the
best estimator minimizing the mean square error cost
functional. This Bayesian inference approach requires a
prior probability density function of the optomechani-
cal coupling. We have considered this distribution to be
a normal distribution, where the two parameters, mean
and standard deviation, have been set to their values
emerging from the derivation of the radiation pressure’s
interaction operator. This derivation consists several ap-
proximations [12], which also motivates our analysis, and
therefore the estimation procedure results in a updated
posterior probability density function of the coupling.

We have mainly focused on the average of the mean-
square error estimator, which has been determined for
those interaction time where the average minimum cost of
error has a minimum as a function of time. The estimates
are the eigenvalues of this estimator and the eigenvec-
tors determine a projective POVM for the measurement
strategy. Our analysis has shown that highly excited ini-
tial coherent states of the mechanical oscillator limits the
estimation procedure, unless the imaginary and the real
parts of the coherent state’s parameter are approximately
equal. A large imaginary part shifts the minimum in time
towards higher values, whereas a large real part shifts this
time towards zero. Both cases reveal inconclusive scenar-
ios because the eigenvalues are either zero or the mean
of the prior normal distribution. It is demonstrated that
the most promising estimations can be done within a
time period of the mechanical oscillation. Furthermore,
the increase of the photon number states in the initial
single-mode field’s state with equally weighted superpo-
sition of photon number states, Eq. (26), also reduces
the average information loss.

Third, we have investigated the accuracy of the mean-
square error estimator. As this estimator has turned
out to be biased, we have derived new lower bound, Eq.
(42), for its variance. We have also encountered another
deviation from the standard derivation of the quantum
Cramér-Rao inequality, namely the non-existence of ei-
ther a right logarithmic or a symmetrized logarithmic
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derivative of the single -mode’s density matrix with re-
spect to the optomechanical coupling. Apart from these
issues we have used the standard steps of the quantum
Cramér-Rao inequality’s derivation. The numerical in-
vestigations have shown again that the characteristic in-
teraction times for the best estimations are within a time
period of the mechanical oscillation, where we have used
initial single-mode field’s states with equally weighted
superposition of many photon number states. However,
the lowest bounds for the estimation accuracy have been
found for those limiting cases when the eigenvalues of
the estimator are either 0 or the mean of the prior nor-
mal distribution. In particular, we have found that the
initial state of the mechanical oscillator has to be care-
fully prepared, otherwise our apriori expectation on the
strength of the optomechanical coupling it will be simply
confirmed.

Finally let us make some comments on our approach.
The analysis clearly indicates a characteristic set of pa-
rameters when the estimation of the optomechanical cou-
pling can be done with minimum loss of information. Al-

though, our results pinpoint some important results for
an experimental measurement scenario the question of
how to implement the detection of the mean-square er-
ror estimator has not been answered. Another critical
point is the preparation of the initial state of the single-
mode field. This has been considered to be an equally
weighted superposition of many photon number states.
Nonetheless, we have studied a unitary, lossless, model
of optomechanical systems. These unanswered questions
define the direction of our future investigations. As a
final word we think that the presented analysis may of-
fer an interesting perspective and viewpoint on quantum
optomechanical systems.
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