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Abstract. The primate visual system has an impressive ability to gen-
eralize and to discriminate between numerous objects and it is robust
to many geometrical transformations as well as lighting conditions.
The study of the visual system has been an active reasearch field in
neuropysiology for more than half a century. The construction of compu-
tational models of visual neurons can help us gain insight in the process-
ing of information in visual cortex which we can use to provide more
robust solutions to computer vision applications. Here, we demonstrate
how inspiration from the functions of shape-selective V4 neurons can be
used to design trainable filters for visual pattern recognition. We call
this approach COSFIRE, which stands for Combination of Shifted Fil-
ter Responses. We illustrate how a COSFIRE filter can be configured
to be selective for the spatial arrangement of lines and/or edges that
form the shape of a given prototype pattern. Finally, we demonstrate
the effectiveness of the COSFIRE approach in three applications: the
detection of vascular bifurcations in retinal fundus images, the localiza-
tion and recognition of traffic signs in complex scenes and the recognition
of handwritten digits. This work is a further step in understanding how
visual information is processed in the brain and how information on pixel
intensities is converted into information about objects. We demonstrate
how this understanding can be used for the design of effective computer
vision algorithms.

Keywords: Computational models of vision · COSFIRE · Trainable
filters · Feature detection · Shape · Handwritten digits · Retinal fundus
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1 Introduction

“If our perception of a certain line or curve depends on simple or complex cells,
it presumably depends on a whole set of them, and how the information from
such sets of cells is assembled at subsequent stages in the path to build up what
we call percept of lines or curves (if indeed anything like that happens at all) is
still a complete mystery.” writes D.H. Hubel in his Nobel Price lecture [26].
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In the following, we propose a way how to assemble the information from
Gabor filters, that are mathematical models of simple and complex cells, in order
to construct detectors of more complex stimuli, such as lines, angles, curves, line
bifurcations and, more generally, local combinations of line and curve segments.
We also demonstrate the effectiveness of these detectors in practical applications.

The brain processes visual information in the so called visual pathway. It con-
sists of two parts, namely the ventral and the dorsal streams, that are responsible
for, roughly speaking, ‘what’ and ‘where’ aspects. We are concerned with how
the ventral stream processes visual information, which takes an input signal from
the retina and transforms it into meaningful object representation. This stream
comprises cortical areas V1, V2, V4, TE and TEO [19,52].

Simple and complex cells referred to above are found in areas V1 and V2
[27,28]. The understanding of their properties have been the focus of numer-
ous electrophysiological studies [2,14,15,35,51,53]. Later, computational mod-
els were developed aiming at computer simulations of the function of these
neurons [1,3,33,47]. These computational models gave the basis for biologi-
cally motivated contour detection algorithms in digital image processing. In
particular, two-dimensional Gabor functions were proposed for computational
modelling of these cells [11,30]. Gabor functions were then widely applied in
diverse computer vision tasks, including edge detection [32,37], texture analy-
sis [9,17,23,29,49,50], image coding and compression [12], person identification
based on iris pattern analysis [13], image enhancement [10], face recognition [36],
motion analysis [42], and retrieval from image databases [54]. Further refinements
of these models, include non-classical receptive field inhibition [43], also called
surround suppression, and the filters that deploy this mechanism were shown to
be effective detectors of object contours [21,22].

In contrast to areas V1/V2, there is still little knowledge on how visual infor-
mation is processed further in subsequent areas of the ventral pathway. Area V4
receives input from V1/V2 and is known to comprise neurons selective for various
aspects of visual information, such as shape [38], color [55] or texture [24]. In this
paper we are concerned with shape and, therefore, we are mainly interested in
the function of shape-selective V4 neurons. An account of the properties of this
type of neuron was given by Pasupathy and Connor [38]. They investigated the
activations of such neurons in macaque monkeys, using a systematically designed
data set of relatively simple contour features similar to those illustrated by Fig. 1.
They found that most (91 % of the 152) V4 neurons they studied were highly
selective to curved contour features rather than to simple edges or bars. They
also observed that V4 neurons are selective for the orientation of the contour fea-
ture, i.e. these neurons exhibited strong responses to angles and curves pointing
in a specific direction. However, such a neuron may also be activated (with less
than the maximum response) by stimuli differing slightly in orientation and/or
curvature. Further analysis on V4 neurons was performed on a more complex
data set including closed contour stimuli containing a combination of convex
and concave contour elements [39]. The results of that study have shown that
some V4 neurons are sensitive to a single convex or concave contour element,
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Fig. 1. Optimal stimuli for some V4 neurons that respond selectively to angles and
curves, which can be characterized by two orientations such as two arms of an angle
(redrawn from [38]).

while others are sensitive to a combination of adjacent contour elements. More-
over, the experiments of the referred authors reveal that on average V4 neurons
have stronger responses to convex features rather than to concave ones which is
consistent with the perceptual dominance of convexity found in psychophysics.

Similar to experimental neurophysiological studies, there is not much work on
computational modelling of V4. A computational model of V4 neurons has been
proposed in [44–46]. The response of a V4-like unit introduced in the referred
papers depends on the Euclidean distance between a new input and a stored
prototype where both input and prototype are local patterns of Gabor (energy)
filter-like responses across different orientations and scales. Such a model will
respond to an input pattern even if it contains only a part of the prototype.
A missing part can, however, radically change a shape. For instance, a pat-
tern that is formed by two line segments that make an angle is perceptually
different from a pattern that consists of one of the constituent line segments.
An Euclidean-distance model will, however, find these two patterns similar to
a considerable extent. Furthermore, Euclidean-distance models are sensitive to
the presence of noise or texture and to contrast variations. Those models are not
invariant to any geometrical transformations.

There is psychophysical evidence [18] showing that curvatures are likely
detected by an AND-type operation, which considers the responses of some
afferent sub-units (sensitive for different parts of the curve pattern) and com-
bines them by multiplication. This is in contrast to Euclidean-distance models
that inherently involve addition. An AND-type model is activated only when it
receives stimulation from all its afferent input, i.e. all contour parts that form
a curve pattern are present. It will not respond when any of its inputs are not
stimulated, i.e. any of the constituent parts of a curve pattern is absent. In the
following, we propose and use such an AND-type model.

Fidler and Leonardis [16] propose to combine Gabor filter responses for vertex
detection. They use local statistical analysis to identify two dominant orienta-
tions around a given point and use the corresponding channels in a bank of
Gabor filters to detect vertices. This type of operator resembles the properties
of shape-selective V4 neurons. At a next level they combine the responses of
such operators in a similar way in order to define detectors of more complex
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contour features that resemble the properties of some TEO neurons. Their app-
roach is also vulnerable to contrast, noise and texture, and is also not robust to
geometrical transformations.

In the following, we propose nonlinear filters that can detect lines, vertices
and more complex contour features, similar to some V4 neurons. We call these
filters COSFIRE (Combination of Shifted Filter Responses). The response of
such a COSFIRE filter is assembled from selected responses of orientation-
selective filters. We configure such a filter by selecting given channels of a bank
of orientation-selective filters and combining their responses by a weighted geo-
metric mean. The selection of channels is determined by the local pattern that
needs to be detected. This pattern is specified by the user as an area of interest
in a training image. The COSFIRE filters configured with given local patterns
can successfully detect the same and similar patterns in test images. The degree
of similarity/generalisation can be controlled by changing the values of certain
model parameters. We show how a COSFIRE filter achieves rotation-, scale- and
reflection-invariance.

The rest of this paper is organized as follows: In Sect. 2 we explain how a
COSFIRE filter can be configured by a specified prototype pattern of interest.
In Sect. 3, we demonstrate the effectiveness of the proposed COSFIRE filters by
applying them to three practical applications: the detection of vascular bifur-
cations in retinal fundus images, the detection and recognition of traffic signs
in complex scenes, and the recognition of handwritten digits. Section 4 contains
a discussion of some aspects of the proposed trainable approach and finally we
draw our conclusions in Sect. 5.

2 Computational Model and Its Implementation

A COSFIRE filter takes as input the responses of a collection of orientation-
selective filters that model V1/V2 cells. Here we use Gabor filters as they have
been widely used for more than two decades. Other orientation-selective filters,
such as CORF [4,5], may also be used. A COSFIRE filter response is then
computed as the weighted geometric mean of the responses of certain Gabor
filters at specific locations with respect to its receptive field center. The type
(orientation-selectivity and scale) of Gabor filters and the relative locations at
which we combine their responses are determined in an automatic configuration
process which we explain below.

2.1 Afferent Inputs: Gabor Filters

We denote by |gλ,θ(x, y)|t1 the thresholded response of a Gabor filter with orien-
tation preference of θ and a spatial wavelength preference of λ to an input image.
Such a filter is described by other parameters, namely bandwidth, spatial aspect
ratio, and phase offset, which we set as suggested in [41]. We normalize each
Gabor function that we use in such a way that the total sums of all the posi-
tive and negative values are 1 and −1, respectively. This normalization ensures
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that the response to a line of width w will be largest for a symmetrical filter of
preferred wavelength λ = 2w. It also ensures that the response to an image of
constant intensity is 0. Without such normalization, this is true only for anti-
symmetrical filters.

2.2 Configuration

A COSFIRE filter is configured by an automatic procedure that analyses the
contour properties of a given local pattern, that we call a prototype. This is
achieved in a single-step training phase where the user specifies a point of interest
and a bounding box that surrounds a prototype of interest in a training image.
Fig. 2a shows an input image with an enframed vertex that is considered as a
prototype pattern.
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Fig. 2. (a) Training image of size 284 × 284 pixels. The cross marker and the gray
bounding box around it indicate the specified local pattern of interest referred to as
prototype. (b) The intensity pixels represent the superimposed thresholded responses
(t1 = 0.4) of a bank of Gabor filters with eight orientations (θ ∈ {0, π

8
, . . . , 7π

8
}) and

five wavelengths (λ ∈ {4, 4
√

2, . . . , 16}) to the vertex prototype specified in (b). The
top and bottom plots in (c) illustrate the Gabor responses along the inner and outer
concentric circles in (b), respectively. The labels ‘a’,‘b’,‘c’, and ‘d’ indicate the local
maxima points and are marked with black dots in (c). The location of each such point
i is represented in polar coordinates (ρi, φi) relative to the specified point of interest.

The automatic analysis consists of three steps. First, we apply a bank of
Gabor filters to the training image that contains the selected prototype, and
threshold their responses using t1, Fig. 2b. Here we use symmetric Gabor filters
as the prototype is characterized by bar structures. Second, we consider the
superimposed Gabor (thresholded) responses on the point of interest and along
a number of k concentric circles (here k = 2) around that point. Then, we choose
the locations along the concentric circles at which we achieve local maxima Gabor
responses in an arc neighbourhood of π/8, Fig. 2c. These locations are converted
to polar coordinates (ρ, φ) with respect to the given point of interest. They mark
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the positions of the dominant contours in the prototype. For each such a location
we determine the channels (λ, θ) of the Gabor filters that exceed a fraction t2
(here t2 = 0.5) of the maximum response at that position. Third, we denote by
Sf a set of 4-tuples that represents the channels and the respective locations of
the Gabor filters that satisfy the above criteria for a prototype feature f :

Sf = {(λi, θi, ρi, φi) | i = 1 . . . n} (1)

where n is the number of involved Gabor filters. Each tuple (λi, θi, ρi, φi) repre-
sents the characteristics of a contour part in the pattern of interest.

2.3 COSFIRE Filter Response

For each tuple (λi, θi, ρi, φi) in set Sf we apply the Gabor filter with wavelength
λi and orientation θi. Then we consider the Gabor responses in locations defined
by the corresponding polar coordinates (ρi, φi). This is achieved by shifting the
Gabor responses by ρi pixels in the direction opposite to φi. In this way the
Gabor responses of interest meet at the same place, the one that we consider
the support (or receptive field) center of the concerned COSFIRE filter.

Before shifting, however, we apply a blurring function to the Gabor responses
in order to achieve some tolerance with respect to the preferred positions. For
blurring we use a Gaussian function Gσ(x, y) centered on the preferred position
and compute the maximum of the weighted Gabor responses. The considered
neighbours are determined by a standard deviation σ = σ0 + αρi that grows
linearly with the distance ρi from the support center of the COSFIRE filter at
hand. The positive values of parameters σ0 and α are constants. The value of σ0

is the standard deviation used at the support center of the concerned COSFIRE
filter and the value α determines the extent of tolerance: tolerance increases with
an increasing value of α. We denote by sλi,θi,ρi,φi

(x, y) the blurred and shifted
Gabor response for tuple (λi, θi, ρi, φi) in set Sf , and denote by rSf

(x, y) the
response of a COSFIRE filter:

rsf
(x, y) =

( n∏
i=1

sλi,θi,ρi,φi
(x, y)ωi

)1/
∑n

i=1 ωi

(2)

where ωi = exp− ρ2
i

2σ′2 . Here we use σ′ = (−ρ2max/2 log 0.5)
1
2 where ρmax =

maxi∈{1...|Sf |} ρi. With such a weighting scheme the weights in the center (ρ = 0)
have a maximum value ω = 1, and the farthest points (ρ = ρmax) have a mini-
mum value ω = 0.5.

Figure 3a illustrates the detected features in the input image shown in Fig. 2a.
The circles surround the local maxima points in the COSFIRE response image
that is obtained with Eq. 2.

2.4 Achieving Invariance to Geometric Transformations

We achieve invariance to rotation, scale and reflection by simply controlling some
parameter values, instead of configuring COSFIRE filters by prototypes that are
rotated, scaled or reflected versions of each other.
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Fig. 3. Detection of features by a corner-selective COSFIRE filter which is applied in
(a) a non-invariant mode and in (b) a rotation-invariant mode. The circles indicate the
detected features.

We form a new set �ψ(Sf ) = {(λi, θi + ψ, ρi, φi + ψ) | ∀ (λi, θi, ρi, φi) ∈
Sf} by adding an offset ψ to the values of parameters θi and φi. The result-
ing set represents a COSFIRE filter that is selective for the same prototype
f rotated by an angle ψ. Rotation invariance is then achieved by consider-
ing a set Ψ of equidistant ψ values and then taking the maximum response:
r̂Sf

= maxψ∈Ψ{r�ψ
(x, y)}. Figure 3b illustrates the detection of all right-angled

corners irrespective of their orientation (Ψ = {0, π/4, . . . , 7π/8}).
Similarly, we form a new set Tυ(Sf ) = {(υλi, θi, υρi, φi) | ∀ (λi, θi, ρi, φi) ∈

Sf} by multiplying with a factor υ the values of parameters λi and ρi. This
results in a COSFIRE filter that responds to the prototype f scaled by a fac-
tor υ. A scale-invariant response is achieved by considering a set Υ of υ val-
ues equidistant on a logarithmic scale and then take the maximum response:
r̃Sf

(x, y) = maxυ∈Υ {rTυ(Sf )(x, y)}.
A new set Śf = {(λi, π − θi, ρi, π − φi) | ∀ (λi, θi, ρi, φi) ∈ Sf} results in a

COSFIRE filter that is selective to the prototype f reflected about the y-axis.
A reflection-invariant response is then computed as ŕSf

(x, y) = max{rSf
, rŚf

}.
Finally,we denote by r̄Sf

the combined rotation-, scale- and reflection-invariant
response by taking themaximumvalue of the rotation and scale-invariant responses
of the filters Sf and Śf : r̄Sf

(x, y) = max{r̂�ψ(Tυ(Sf ))(x, y), r̂�ψ(Tυ(Śf ))
(x, y)}.

3 Experiments

In [8] we demonstrated the effectiveness of the COSFIRE filters in three applica-
tions: the detection of vascular bifurcations in segmented retinal fundus images,
detection and recognition of traffic signs embedded in images of complex scenes,
as well as the recognition of handwritten digits, Fig. 4.

Retinal image analysis is gaining popularity as it gives the opportunity to take
a non-invasive look at the cardiovascular system of human beings. One important
step in this analysis is the detection of vascular bifurcations in the vessel tree.
In [7] we evaluated our method, for the detection of vascular bifurcations in
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Fig. 4. Trainable COSFIRE filters are effectively applied to three applications:
(a) detection of vascular bifurcations in retinal fundus images, (b) detection and recog-
nition of traffic signs in complex scenes and (c) recognition of (top) western Arabic and
(bottom) Farsi handwritten digits.

retinal images, on two benchmark data sets and attained the following results: a
precision of 96.94 % at a recall of 97.88 % on 40 images provided in the DRIVE
data set [48] and a precision of 96.04 % at a recall of 97.32 % on 20 images taken
from the STARE data set [25]. In these experiments, we first configured six
COSFIRE filters in a training phase by using different prototypical bifurcations.
Then we applied the configured filters to test retinal images in rotation-, scale-
and reflection-invariant mode.

In order to show the versatility and robustness of the COSFIRE approach
in [8] we performed experiments on a public data set1 of outdoor scenes for
the detection and recognition of three different traffic signs. This data set was
originally published in [20]. We configured three COSFIRE filters to be selective
for the three concerned prototypical traffic signs. For a data set of 48 images we
were able to localize and recognize all the traffic signs in the data set.

We also demonstrated that the collective responses of a group of COSFIRE
filters can also be used to form a shape descriptor. In [6] we applied this shape
descriptor to the recognition of handwritten digits, an application that has been
extensively used for the evaluation of shape descriptors. We achieved a recogni-
tion rate of 99.52 % on the MNIST data set [34] of 70,000 (60,000 training and
10,000 test) western Arabic digits. This result is comparable to the best results
ever achieved by other state-of-the-art methods. Furthermore, we achieved a
recognition rate of 99.33 % on a data set [31] of 80,000 (60,000 training and
20,000 test) Farsi digits, which is the highest recognition rate ever reported for
this data set.

The shape descriptor that we propose is inspired by the neurophysiological
concept of population coding. There is evidence [40] that the responses of mul-
tiple shape-selective neurons in area V4 of visual cortex can be effectively used
as a signature to discriminate between complex shapes.
1 Traffic sign data set is online: http://www.cs.rug.nl/imaging/databases/traffic sign

database/traffic sign database.html.

http://www.cs.rug.nl/imaging/databases/traffic_sign_database/traffic_sign_database.html
http://www.cs.rug.nl/imaging/databases/traffic_sign_database/traffic_sign_database.html
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4 Discussion

We propose a trainable COSFIRE approach to visual pattern recognition that
is inspired by the shape selectivity of V4 neurons in visual cortex. In [8] we
demonstrated that the response of COSFIRE filters to test stimuli used in elec-
trophysiological measurements is similar to the response of some V4 neurons.

We demonstrated the effectiveness of the proposed filters in three practical
applications: the detection of vascular bifurcations in retinal fundus images, the
detection and recognition of traffic signs in outdoor scenes, and the recognition
of handwritten digits.

The COSFIRE filters that we propose are trainable, in that the specific fea-
ture to which such a filter optimally responds is used to determine the structure
of the filter. In a single-step training process, the user specifies a pattern of
interest and that pattern is used to configure a corresponding COSFIRE filter.
This selectivity is not achieved by template matching, but rather by the determi-
nation of the dominant orientations in the concerned pattern and their mutual
geometrical arrangement. The proposed filters are highly nonlinear, in that such
a filter will only respond when all parts of the concerned feature are present.

Although a COSFIRE filter has a preferred selectivity to the pattern that
was used for its configuration, the filter also responds to similar patterns which
differ - to a certain extent - in the orientations of the involved lines and edges.
The degree of generalization is flexible and can be tuned to the specific needs of
the user by proper selection of the filter parameters, We also demonstrate how
these filters can be augmented with rotation, scale and refection invariance by
simply manipulating some model parameters.

COSFIRE filters are conceptually simple and easy to implement: the filter
output is computed as the (weighted) geometric mean of blurred and shifted
responses of orientation-selective filters2.

5 Conclusions

The trainable COSFIRE approach reviewed in this paper is a contribution to
the understanding of the visual system of the brain. It shows how information
from computational models of the responses of V1/V2 simple and complex cells,
can be assembled at the next, V4 level, in order to construct detectors of more
complex stimuli, such as angles, curves, line bifurcations and, more generally,
local combinations of line and curve segments. We also demonstrated how this
understanding of the visual system of the brain can be used to design effective
computer vision algorithms.
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