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Scattering theory of multilevel atoms interacting with arbitrary radiation fields
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We present a generic transfer matrix approach for the description of the interaction of atoms
possessing multiple ground state and excited state sublevels with light fields. This model allows us
to treat multi-level atoms as classical scatterers in light fields modified by, in principle, arbitrarily
complex optical components such as mirrors, resonators, dispersive or dichroic elements, or filters.
We verify our formalism for two prototypical sub-Doppler cooling mechanisms and show that it
agrees with the standard literature.
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I. INTRODUCTION

The two-level model of atoms interacting with light
fields [1] has often been used to explore optical cool-
ing mechanisms [2, 3, 4]. Its inherent simplicity—the
atom has one ground state and one excited state—makes
the resulting models amenable to analysis, but also sup-
presses mechanisms [5] that, in the appropriate parame-
ter regimes, dominate the interaction.

A notable example of such an initially overlooked
mechanism in atomic physics is three-dimensional op-
tical molasses [6]. By means of the two-level model,
one can predict the equilibrium temperature, the so-
called “Doppler” temperature TD, of atoms in molasses
to be ~Γ, where Γ is the (half-width at half-maximum)
linewidth of the transition from the excited to the ground
level [4]. Data from early three-dimensional molasses ex-
periments contradicted this [7], showing that the achiev-
able equilibrium temperature was in fact much lower.
This discrepancy was resolved independently by two
groups [5, 8], both explanations relying on the inclu-
sion of the manifold of magnetic sublevels in each of the
ground and excited states. In particular, the motion of
the atoms in the optical field leads to a non-adiabatic fol-
lowing of the magnetic sublevel populations, which gives
rise to a strong viscous force and efficient cooling to tem-
peratures significantly lower than the Doppler tempera-
ture.

We recently [9] explored a new scattering theory that
deals with the interaction of light and matter in a uni-
fied form applicable from microscopic to macroscopic sys-
tems. In that work we only considered the two-level atom
model and showed, in particular, how our model can ex-
plain such mechanisms as standard optical molasses and
mirror-mediated cooling [10]. In this paper we extend
this model to deal with magnetic sublevels, in much the
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FIG. 1: Moving scatterer interacting with four field modes
represented by the Jones vectors A, B, C, and D. The scat-
terwe has velocity v and is described by means of its polariz-
ability tensor ζ. The field mode amplitudes are, in general,
functions of the wavenumber k.

same spirit as ref. [5]. In due course, this extension will
enable us to deal with multilevel atoms interacting with
an arbitrarily complex system composed of immobile mir-
rors, cavities, MEMS devices, etc., without resorting to
a quantized model for such a system.
After we introduce the general extension in the next
section, we then proceed to explore two prototypical
systems—the J = 1

2
→ J ′ = 3

2
transition, leading to the

“Sisyphus” cooling mechanism, and the J = 1 → J ′ = 2
transition—in Section III and Section IV, respectively.

II. A TRANSFER MATRIX RELATING JONES

VECTORS

We investigate the interaction of atoms with light of
different polarizations. To this end, we denote the two
polarization basis vectors by µ and ν, whereby the stan-
dard circular polarization basis is equivalent to setting
µ = σ+ and ν = σ−. Starting from the transfer ma-
trix model explored in ref. [9] and using the definitions
in Fig. 1, we replace each of the field modes by a cor-
responding Jones vector, similar to the model used in
ref. [11]. Thus, for example,

A(k) → A(k) =

(

Aµ(k)
Aν(k)

)

, (1)

and similarly for B, C and D. The transfer matrix M ,
describing the effect of the scatterer on the four field
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modes by means of the relation

(

A(k)
B(k)

)

= M

(

C(k)
D(k)

)

, (2)

is now transformed into an order 4 tensor of the form

M =

[

m11 m12

m21 m22

]

, (3)

where each of mαβ (α, β = 1, 2) is a 2× 2 matrix relat-
ing the respective Jones vector components. A general
recipe for transforming the formulae for the field mode
amplitudes, as given in ref. [9], can be summarized by
means of the two replacements

1 → 1 =

[

1 0
0 1

]

and ζ → ζ , (4)

wherever necessary. In particular, then,

M =

[

1− iζ −iζ
iζ 1 + iζ

]

→ M =

[

1− iζ −iζ
iζ 1+ iζ

]

. (5)

We follow ref. [12], Complement EIII §3-b, in defining
the polarizability tensor ζ as the steady-state expectation
value of the polarizability operator χ̂; ζ is therefore given
by the trace

ζ = Tr
(

ρst · χ̂
)

=
∑

i,j

〈j|ρst|i〉〈i|χ̂|j〉 , (6)

where ρst is the steady-state density matrix describing
the system and the summation runs over all the internal
sublevels of the atom, and where we construct the order
4 polarizability operator tensor χ̂ similarly to ref. [13],
Eq. (14.9-24). In the general µ, ν basis:

〈i|χ̂|j〉 = ζ0
∑

e

(

〈i|d̂µ|e〉
〈i|d̂ν |e〉

)

⊗
(

〈j|d̂µ|e〉
〈j|d̂ν |e〉

)

= ζ0
∑

e

[

〈i|d̂µ|e〉〈e|d̂µ|j〉 〈i|d̂µ|e〉〈e|d̂ν |j〉
〈i|d̂ν |e〉〈e|d̂µ|j〉 〈i|d̂ν |e〉〈e|d̂ν |j〉

]

, (7)

with ζ0 being the characteristic polarizability of the

atom. In Eq. (7), the dipole moment operator d̂µ (d̂ν)
is related to the µ (ν) polarized light field and the sum
runs over all the internal sublevels, e, of the atom. The

matrix elements of d̂µ (d̂ν) are given by the appropriate
Clebsch-Gordan coefficients.
Importantly, this new transfer matrix still retains all

its properties, allowing us to model the interaction of the
multilevel atom with an arbitrary system of immobile op-
tical elements such as mirrors, cavities, waveplates, etc.
As in our previous work [9], this interaction is accounted
for by the multiplication of the various transfer matrices
of the elements making up the system; this model is, in
principle, applicable to systems of arbitrary complexity.
Finally, we recall that the diagonal elements, 〈i|ρst|i〉,

of ρst are the populations in each of the sublevels,

FIG. 2: Clebsch-Gordan coefficients for a J = 1

2
→ J

′ = 3

2

transition.

whereas its off-diagonal elements, 〈i|ρst|j〉, are the
respective coherences. The matrix elements of ρst are
obtained from the appropriate optical Bloch equations
(see, for example, the procedure outlined in ref. [14]).
We note here that, through its dependence on ρst, M
depends on the fields that it helps to determine, and
thus Eq. (2) will in general become a set of nonlinear
equations. In cases, like the ones considered in the
following sections, where only one multilevel atom is
interacting with a linear optical system, this problem
may be solved using a procedure similar to the one
outlined below: the fields surrounding the atom are
obtained from the input fields through linear operations
and then used with the optical Bloch equations to obtain
the populations and coherences of the atom’s various
levels. Knowledge of these quantities then determines
the fields, and hence the forces acting on the atom,
completely.

In the following sections we will restrict our discus-
sion to the case where the input field is not modified by
other transfer matrices. We will apply this mechanism
to investigate the behaviour of atoms in two cases where
the polarization of the light varies in space on scales of
the order of the wavelength to verify the validity of the
model given by Eq. (5) to Eq. (7). In the first instance,
we illuminate our atom with two counterpropagating lin-
early polarized beams. We choose the planes of polar-
ization of the two beams to be orthogonal to each other.
The second configuration we will investigate involves illu-
minating the atom with two circularly polarized beams,
choosing opposite handedness for the two beams. These
two cases mirror those in ref. [5].

III. ATOMS IN A GRADIENT OF

POLARIZATION

In this and the following sections, we will adopt the
low-intensity hypothesis. This allows us to simplify the
optical Bloch equations and resulting system consider-
ably by neglecting the populations and coherences of the
excited state sublevels. We can thus replace ρst by the
ground state steady-state density matrix, ρstg . We de-

note the diagonal element (i, i) of ρstg , the population in
sublevel i, by Πi, and the off-diagonal element (i, j), the
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coherence between sublevels i and j, by Ci,j .
Here we will discuss what is perhaps the simplest tran-

sition between two levels with multiple magnetic sub-
levels: the J = 1

2
→ J ′ = 3

2
transition. In this case, we

have two ground sublevels so that ρstg is a 2 × 2 matrix.
Fig. 2 tabulates the Clebsch-Gordan coefficients required
to evaluate ζ. We thus have:

ρstg =

[

Π
−

1
2

C
−

1
2
,+

1
2

C
+

1
2
,−

1
2

Π
+

1
2

]

(8)

and

χ̂ = ζ0









[

1
3

0
0 1

]

0

0

[

1 0
0 1

3

]









, (9)

whereby

ζ = ζ0

(

[

1
3

0
0 1

]

Π
−

1
2

+

[

1 0
0 1

3

]

Π
+

1
2

)

. (10)

Suppose, now, that we illuminate the atom with two
counterpropagating beams having orthogonal linear po-
larization and equal intensity. This can be represented
by setting

B(k) =
B√
2

(

1
1

)

exp(ikx− iπ/4) (11)

and

C(k) =
iB√
2

(

1
−1

)

exp(−ikx+ iπ/4) , (12)

where the shift in the x coordinate is introduced to sim-
plify our expressions. Using the optical Bloch equations,
we can show that the steady state populations in the
ground sublevels at zero atomic velocity are given by

Π
−

1
2

= cos2(kx) and Π
+

1
2

= sin2(kx) , (13)

noting that the populations do not depend on the field
amplitudes in the low intensity regime.
We work to lowest order in ζ0 and make use of the

above relations to find the net force acting on the atom:

F = ~k
(

|A|2 + |B|2 − |C|2 − |D|2
)

= 2~k Im
{

[

ζ
(

B+C
)]

·
(

B−C
)⋆
}

+ 4 v
c
~k Im

{(

ζB
)

·C⋆ +
(

ζC
)

·B⋆
}

− 2 v
c
~k2 Im

{[

∂ζ

∂k

(

B+C
)

]

·
(

B+C
)⋆

}

≈ 2~k|B|2 Im
{

[

ζ
(

B+C
)]

·
(

B−C
)⋆
}

+ 2 v
c
~k2 Im

{[

∂ζ

∂k

(

B+C
)

]

·
(

B+C
)⋆

}

, (14)

FIG. 3: Clebsch-Gordan coefficients for a J = 1 → J
′ = 2

transition.

where we have assumed that ‖k ∂ζ/∂k‖ ≫ ‖ζ‖. The
velocity-dependent force terms in the above expression
arise through the Doppler shifting of photons both be-
tween field modes in the same polarization and between
field modes in different polarizations; these mechanisms
are accounted for by the diagonal and off-diagonal terms
in ζ, respectively. These terms emerge through the
velocity-dependent terms in the generalised transfer ma-
trix.
In the present case, Eq. (14) simplifies approximately to

F = 4
3
~kζ0|B|2 sin(2kx)

(

Π
+

1
2

−Π
−

1
2

)

,

assuming that ζ0 is real for simplicity.
We now let τp be a characteristic residence time of the
two ground state sublevels; this will introduce a non-
adiabatic following term, proportional to v, in the pop-
ulations of each of the sublevels and emerges from the
optical Bloch equations. Thus, we obtain the expression

F = − 2
3
~k|B|2ζ0 sin(4kx)− 8

3
~k2|B|2ζ0vτp sin2(2kx),

(15)
which agrees precisely with the standard literature (cf.
Eqs. (4.20) and (4.23) in ref. [5]).

IV. ATOMS IN A GRADIENT OF ELLIPTICITY

If we illuminate an atom with two counterpropagating
beams of light in a σ+–σ− configuration, rich dynamics
are obtained not in the simplest (J = 1

2
→ J ′ = 3

2
)

case, but in the next simplest, where the ground state
has three magnetic sublevels (J = 1) and the excited
state five (J ′ = 2). In this case, then, we can express ρstg
and χ̂ as

ρstg =





Π−1 C−1,0 C−1,+1

C0,−1 Π0 C0,+1

C+1,−1 C+1,0 Π+1



 (16)

and

χ̂ = ζ0

















[

1
6

0
0 1

]

0

[

0 1
6

0 0

]

0

[

1
2

0
0 1

2

]

0

[

0 0
1
6

0

]

0

[

1 0
0 1

6

]

















, (17)
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using the Clebsch-Gordan coefficients in Fig. 3. Together,
these give

ζ = ζ0

(

[

1
6

0
0 1

]

Π−1 +

[

1
2

0
0 1

2

]

Π0 +

[

1 0
0 1

6

]

Π+1

+

[

0 1
6

0 0

]

C +

[

0 0
1
6

0

]

C⋆

)

, (18)

with C = C+1,−1 = C⋆
−1,+1 = 〈+1|ρstg |−1〉 representing

the nonzero coherence between the mJ = +1 and the
mJ = −1 sublevels. Note that we again apply the low
intensity hypothesis, thereby replacing ρst with ρstg .
We now illuminate the atom with two counterpropa-

gating beams of equal intensity, B and C, possessing σ+

and σ− polarization, respectively:

B(k) = B

(

1
0

)

exp(ikx) (19)

and

C(k) = B

(

0
1

)

exp(−ikx) . (20)

We again use Eq. (14) to derive the force acting on the
atom, which is given by

F = 2~k|B|2 Im
{

5
6
ζ0
(

Π+1 −Π−1

)

+ 1
6
iζ0 Im{C exp(−2ikx)}

}

− 2 v
c
~k2|B|2 Im{∂ζ0/∂k}

(

7
6

(

Π+1 +Π−1

)

+Π0

+ 1
3
Re{C exp(−2ikx)}

)

,

(21)

where the populations and coherences are again obtained
from the optical Bloch equations, and can be found in

ref. [5]. By observing the natural correspondence be-
tween ζ0 and s± in this latter reference, we can see that
our expression for the force acting on the atom again
agrees with the standard literature to first order in v

c
(cf.

Eq. (5.9) in ref. [5]). The resulting friction force is thus
due to both the Doppler shift, as evident in the terms
shown explicitly in Eq. (21), as well as through the non-
adiabatic following of the atomic sublevel populations.

V. CONCLUSIONS

By revisiting the transfer matrix formalism and ex-
pressing the polarizability of a scatterer as the expec-
tation value of a quantum operator, we have endowed it
with a strong quantum character that allows us to handle
atoms with multiple ground and excited state sublevels.
In principle, our extended formalism is only limited by
its reliance on the optical Bloch equations to give expres-
sions for the ground state populations and coherences; we
have retained the character of our earlier formalism that
allowed us to work to arbitrary order in the polarizabil-
ity. We have applied this theory to two standard sub-
Doppler cooling configurations, the so-called “lin–⊥–lin”
and “σ+–σ−” configurations, and thereby reproduced the
known expressions for the force acting on the atom.
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