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Body movements are recognized with speed and precision, even from strongly impoverished stimuli. While cortical
structures involved in biological motion recognition have been identified, the nature of the underlying perceptual
representation remains largely unknown. We show that visual representations of complex body movements are
characterized by perceptual spaces with well-defined metric properties. By multidimensional scaling, we reconstructed
from similarity judgments the perceptual space configurations of stimulus sets generated by motion morphing. These
configurations resemble the true stimulus configurations in the space of morphing weights. In addition, we found an even
higher similarity between the perceptual metrics and the metrics of a physical space that was defined by distance measures
between joint trajectories, which compute spatial trajectory differences after time alignment using a robust error norm. These
outcomes were independent of the experimental paradigm for the assessment of perceived similarity (pairs-comparison vs.
delayed match-to-sample) and of the method of stimulus presentation (point-light stimuli vs. stick figures). Our findings
suggest that the visual perception of body motion is veridical and closely reflects physical similarities between joint
trajectories. This implies that representations of form and motion share fundamental properties and places constraints on
the computational mechanisms that support the recognition of biological motion patterns.
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Introduction

Biological movements can be recognized, both by
humans and animals, with minimal effort and high
precision, even from point-light stimuli (Blake & Shiffrar,
2007; Johansson, 1973). Such performance requires
perceptual representations that reflect the subtle differ-
ences between actions, for example, to support the
recognition of emotional state or gender from movement
(Dittrich, Troscianko, Lea, & Morgan, 1996; Kozlowski &
Cutting, 1977; Pollick, Paterson, Bruderlin, & Sanford,
2001). At the same time, these representations must be
robust against irrelevant variations, such as changes of
viewpoint. While electrophysiological and imaging
studies have identified neural structures involved in
motion recognition (e.g., Decety & Grèzes, 1999;
Grossman & Blake, 2002; Puce & Perrett, 2003; Rizzolatti
& Craighero, 2004; Vaina, Solomon, Chowdhury, Sinha,
& Belliveau, 2001), the computational nature of visual
representations of body movements is still largely
unknown. Specifically, it is unclear which spatio-temporal

properties determine the perceived similarity of complex
body movements and actions.
Much more is known about the visual recognition of

static objects, a process that combines sensitivity to subtle
shape details with tolerance to irrelevant changes, e.g., of
viewpoint and illumination. Many studies support the
hypothesis that perceptual representations of shape can be
characterized by continuous perceptual spaces with well-
defined metric properties reflecting physical similarities of
shapes. This idea underlies classical theories of shape
categorization (Ashby & Perrin, 1988; Edelman, 1999;
Nosofsky, 1992) and has motivated the concept of a “face
space” that is central to many theories of face recognition.
Studies with face morphs yield converging evidence
suggesting that both perceptual performance and the
responses of face-selective neurons vary gradually and
systematically with the location of faces in a face space
(Leopold, Bondar, & Giese, 2006; Rhodes, Brennan, &
Carey, 1987; Valentine, 1991). Further evidence for the
relevance of a face space is provided by studies of high-
level after-effects showing that adaptation to an “anti-
face,” generated by extrapolation in face space, results in
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an after-effect that facilitates the perception of the original
face (Leopold, O’Toole, Vetter, & Blanz, 2001; Webster,
Kaping, Mizokami, & Duhamel, 2004).
Direct evidence for metric perceptual shape spaces was

obtained in studies that used multidimensional scaling
(MDS) (Borg & Groenen, 1997; Shepard, 1987) to map
perceptual similarity judgments for three-dimensional
shapes onto geometrical configurations in low-dimensional
embedding spaces. Stimuli generated by morphing
between prototypical shapes resulted in recovered config-
urations in the constructed perceptual space that closely
matched the configurations in the morphing space, as
defined by the weights assigned to the individual proto-
types in the morph (Cutzu & Edelman, 1996, 1998;
Sugihara, Edelman, & Tanaka, 1998). Thus, the metric
of the perceptual space reflects the physical similarities
between shapes. When applied to neural activity data from
monkey inferotemporal cortex, the same technique
yielded metric “neural spaces” in which the stimulus
configurations strongly resembled the original layout in
morph space (Op de Beeck, Wagemans, & Vogels, 2001).
In the present paper, we address the question whether

complex spatio-temporal patterns, such as movement
trajectories, are also represented by a perceptual space
with a metric that is determined by physical similarity.
The underlying hypothesis is illustrated schematically in
Figure 1: Three motion patterns (for example walking,
running and limping) are characterized by the correspond-
ing joint trajectories (Figure 1A). The similarities between
these trajectories define a physical space, and each
locomotion pattern corresponds to a single point in this

space. At the same time, these motion patterns elicit
perceptual impressions, which might be characterized as
points in a low-dimensional perceptual space that can be
inferred by analysis of the viewer’s perceptual judgments
(Figure 1B). This perceptual representation of motion
patterns is only indirectly linked to the parameters of the
viewed movement (e.g., joint trajectories), because it is
derived from fundamentally different signals (e.g., neural
activity patterns in the higher visual cortex). This implies
that the mapping from physical space into the perceptual
space might be given by a rather complex transformation
that would not be easy to model. The approach we adopt
here circumvents this difficulty by analyzing the metric
structure of the two spaces separately, and quantifying
their similarity (see Edelman, 1999; Shepard & Chipman,
1970, for details).
The present study addresses the following questions:

1. Does a readily interpretable, low-dimensional metric
perceptual space for complex motion patterns exist,
similar to shape spaces for static patterns?

2. Is this space related in a systematic way to the
physical movement space that is defined by the joint
trajectories?

3. Is the perceptual representation veridical in the
sense that the perceptual space shares metric proper-
ties with the physical space?

A particularly useful relationship between perceptual and
physical space is obtained when distance ranks between
movement patterns are preserved in the perceptual space

Figure 1. Schematic illustration of a veridical relationship between a physical movement space and a visual perceptual space. (A) Three
motion patterns (e.g., walking, running and marching) are defined by the corresponding joint trajectories. Each pattern is mapped onto a
single point (indicated by the disks with different colors) in the physical space. Distances in this space are determined by the physical
distances between joint trajectories. (B) The same patterns result in the perception of locomotion patterns. We assume that each pattern
can be represented as point in a low-dimensional metric perceptual space. The distances in this space are determined by the perceived
similarities of the motion patterns. For the shown example, the mapping between perceptual and physical space is a second order
isomorphism: Pattern pairs with larger distance in physical space are mapped onto point pairs with larger distance in the perceptual space
(i.e., d(a, b) G d(a, c) G d(b, c) implies d(aV, bV) G d(aV, cV) G d(bV, cV)).
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(cf. Figure 1). This would imply, in particular, that the
perceptual system maps patterns that are farther apart in
physical movement space onto points that are likewise
farther from each other in perceptual space. A mapping
between physical and perceptual spaces that preserves
distance ranks is called a second-order isomorphism
(Edelman, 1999; Shepard & Chipman, 1970). This class
of mappings provides a representation that is particularly
useful for the classification and categorization of motion
patterns based on their physical similarities.
In contrast to static shapes, it is not obvious which

physical similarity measures might best capture behavior-
ally relevant differences between dynamic movement
patterns. A further question that we need to address is
thus which physical distance measures are most appro-
priate for characterizing the similarities between physical
and perceptual spaces?
We approach these questions by constructing perceptual

spaces through the application of MDS to perceptual
similarity judgments for movement patterns. The move-
ment patterns were generated by motion morphing
between three natural locomotion patterns, presented as
point-light stimuli or as stick figures. The recovered low-
dimensional configurations in perceptual space were
compared to configurations in physical spaces, which
were constructed, also by MDS, from physical distance
measures for the joint trajectories. We considered a
variety of different distance measures, in an attempt to
determine which physical distances are reflected most
closely in the perceptual metrics. Our analysis reveals
important computational constraints on visual motion
perception and suggests structural similarities between
perceptual representations of motion and shape.
A part of this work has been published previously in

abstract form (e.g., Giese, Thornton, & Edelman, 2003).

Methods

Our study includes two main experiments and one
control experiment. Parameterized classes of motion
patterns were created by motion morphing (Giese &
Poggio, 2000), applying a method that generates new
movements by linear combination of the trajectories of
three prototypical gait patterns (walking, running, and
marching). The stimulus sets consisted of 7 movements
that formed simple, low-dimensional configurations in the
space defined by the morphing weights. The perceived
similarities of these patterns were assessed using two
different experimental paradigms. Based on the perceived
similarities of pairs of the motion patterns, the metrics of
the perceptual space was reconstructed by multidimen-
sional scaling (MDS). The recovered configurations in
perceptual space were first compared to the original
configuration in morphing weight space. The result of
this comparison depends on details of the morphing

algorithm, which determines the meaning of the morphing
weights. In order to obtain a characterization of the actual
physical movement space that is independent of the
morphing method, we computed the distances between
the joint trajectories of the presented stimuli and con-
structed their metric configurations in physical space by
applying MDS. An entire family of physical distance
measures was tested, with the goal of finding the physical
metric that most closely approximates the configurations
in the perceptual space.
Experiment 1 used motion morphs that were generated

from prototypical locomotion patterns, which had been
tracked from normal video. Morphs were generated
between the two-dimensional joint trajectories in the
image plane. In this experiment, the test patterns formed
a triangular configuration in morphing space (Figure 2A).
Stimuli were point-light walkers (Johansson, 1973) pre-
senting the figure from a side view (Figure 2B). The
assessment of similarity in this experiment was based on a
compare pairs-of-pairs paradigm (CPP).
In order to verify that the basic results were not critically

dependent on the presented configuration inmorphing space,
we performed a control experiment using exactly the same
procedure as in Experiment 1, but an L-shaped config-
uration instead of a triangular one in morphing space.
Experiment 2 was based on prototype movements that

were recorded by motion capture. Morphs, forming again

Figure 2. Stimuli. (A) Displayed motion patterns in Experiments 1
and 2 formed a triangular configuration in the space of morphing
weights wi. (B) Stimuli in Experiment 1 were point-light walkers
with 11 dots presented in a side view. (C) Stimuli in Experiment 2
were stick figures shown with different views.
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a triangular configuration, were created from three-
dimensional joint trajectories. Stimuli were stick figures
that were rendered from different view angles to test the
view dependency of the underlying perceptual representa-
tion (Figure 2C). Assessment of perceived similarity was
based on a delayed match-to-sample paradigm (DMTS).

Prototype movements

The same three locomotion patterns (walking, running
and marching) were recorded from the same actor for
Experiments 1 and 2. Trajectories for Experiment 1 were
tracked from normal video showing the actor locomoting
orthogonally to the view axis of the camera. Joints were
tracked by hand-marking of the positions of 11 body
points in individual frames. The prototypical locomotion
patterns were filmed using a Kodak VX 1000 camera with
a frame rate of 30 frames per second. The closest distance
between the locomotion line and the camera was 6 m.
Only a single gait cycle was used for the generation of the
stimuli. The translation of the body center was subtracted
by fitting the two-dimensional hip trajectory by a linear
function of time. Subtraction of this translation results in
movement that looks like a person on a treadmill. Start
and end of the gait cycles were determined by the frames
with maximum extension of the legs. Tracked trajectories
were time-normalized and smoothed by fitting them with a
second order Fourier series. The size of the patterns was
normalized by rescaling to keep the distance between hip
and head constant (see Giese & Lappe, 2002, for details).
Three-dimensional joint trajectories for Experiment 2

were recorded with a VICON 612 motion capture system
with 6 cameras. The 3D positions of 41 reflecting markers
were recorded with a sampling frequency of 120 Hz and a
spatial accuracy below 1 mm. The resulting trajectories
were processed using commercial software by VICON.
Multiple steps were recorded for each prototypical gait, and
one representative step was selected as the basis for the
motion morphing. The average motion of all hip markers
was subtracted from all marker positions to generate a
movement looking like a walker on the treadmill. The
distance between head and hip was scaled to a constant to
normalize the size of the moving figure. Trajectories were
smoothed by fitting 4th order Fourier series to the data.
Each gait cycle was resampled to time-normalize the data
to a cycle time of about 1.6 s. From the marker positions
13 joint positions were computed, which were connected
by straight lines to draw the stick figures (Figure 2C).

Motion morphing

The prototypical locomotion patterns were interpolated
by applying a motion morphing algorithm that generates
new trajectories by a linear combination of the prototype

trajectories in space–time (Giese & Poggio, 2000).
Formally, the new trajectory was given by the equation:

New motion pattern ¼ w1 I ðPrototype 1Þ
þ w2 I ðPrototype 2Þ
þ w3 I ðPrototype 3Þ:

ð1Þ

The morphing weights were non-negative and satisfied the
condition w1 + w2 + w3 = 1, thus defining a two-
dimensional plane in weight space (Figure 2A).
In computer graphics, a variety of motion morphing

techniques have been proposed (Bruderlin & Williams,
1995; Gleicher, 2001; Lee & Shin, 1999; Rose, Cohen, &
Bodenheimer, 1998; Unuma, Anjyo, & Takeuchi, 1995;
Wiley & Hahn, 1997; Witkin & Popovic, 1995), some of
which have been used in psychophysical experiments
(Giese & Lappe, 2002; Hill & Pollick, 2000; Troje, 2002).
The algorithm that we applied (Giese & Poggio, 2000) has
been demonstrated to produce naturally looking morphs
even for quite dissimilar prototypical movements and for
highly complex body movements such as martial arts
techniques (Giese & Poggio, 2000; Ilg, Bakir, Mezger, &
Giese, 2004; Mezger, Ilg, & Giese, 2005). Psychophysical
experiments using similar stimuli showed that this
algorithm produces interpolated movements whose natu-
ralness ratings lie between those of the prototypes (Giese
& Lappe, 2002). This rules out the potential concern that
the present results may hold only for artificial-looking
interpolated movements.

Stimuli

Point-light walkers consisted of 11 black dots presented
on a gray background with a diameter of 0.4 degrees
visual angle (Figure 2B). Each figure, presented as side
view, subtended an area of approximately 4 by 10 degrees
of visual angle. The stimuli were presented without time
limitation, until the observer responded.
Stick figures consisted of 12 black line segments,

approximately 0.2 degrees wide (Figure 2C). These
figures were projected onto the image plane in parallel
projection with four different view angles (90, 112.5, 135,
and 157.5 deg relative to the locomotion direction). These
figures subtended approximately an area of 2 by 5 degrees
of visual angle. These stimuli were presented sequentially.
The first figure was always located at the centre of the
screen for two step cycles. The second stimulus was
randomly positioned on the circumference of a virtual
circle (diameter 8 deg) centered on the screen and was
presented until the observer responded.
Stimuli were presented at 25 frames per second on a

Macintosh G4 with a 21-in. color monitor with screen
resolution of 1152 % 780 pixels. Stimuli were viewed
binocularly, but non-stereoscopically, from a distance of
70 cm. Stimuli were presented in random order, and the
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initial phases of each individual gait pattern were
randomized in each trial. Stimuli were generated in
MATLAB 6.1 and were stored as frame sequences. The
frames were played using a stimulus presentation software
that was custom written in C using routines based on
published work (Pelli & Zhang, 1991; Rensink, 1990;
Steinman & Nawrot, 1992).

Procedure

The experimental paradigms were adopted from Cutzu
and Edelman (1996, 1998). For the compare pairs-of-pairs
paradigm (CPP), two pairs of stimuli were presented
simultaneously, one in the upper and one in the lower half
of the screen. Observers had to indicate by a key press the
pair in which the stimuli appeared more similar. In total,
the 7 stimuli of the triangle configurations resulted in 210
unique pairs of pairs, each of which was presented once.
For the delayed match-to-sample paradigm (DMTS),

two stimuli were presented in sequence, showing the same
or two different gaits. The first stimulus was always one
out of four tested views, randomly chosen. The second
pattern always showed one of the other views. Observers
had to indicate whether the two observed actions were
same or different, irrespective of viewpoint. With 4
different view angles, 378 unique stimulus pairs were
generated. To balance the fraction of trials in which the
pair showed the same action with different views against
the trials with different actions, the same-action pairs were
repeated five times, resulting in a total of 546 trials.

Participants

Fourteen subjects took part in Experiment 1 and eleven in
Experiment 2. In addition, 19 participants took part in the
control experiment. Participants were recruited from the
Tübingen community by the Max Planck Institute for
Biological Cybernetics. All observers had normal or
corrected-to-normal vision, and none of them participated
in more than one experiment. Participants were naive as to
the purpose of the experiment until data collection had been
completed. They were tested individually and gave written
informed consent to participate in the study and were paid
for participation. Approval for the applied procedure had
been obtained from the ethics board of the Max Planck
Institute for Biological Cybernetics in Tübingen.

Physical trajectory distances

A physical space for the presented motion stimuli can be
constructed in a straightforward manner by using the
morphing weights w1,I, w3 as axes of a low-dimensional
pattern space. Distances between trajectories are then
characterized by the Euclidean distances between the
corresponding weight vectors. However, this characteriza-

tion of the physical space is unsatisfactory because the
interpretation of the morphing weights depends in a complex
manner on the set of morphed patterns and on details of the
applied morphing algorithm. Morphing weights thus do not
provide a characterization of physical similarity between
joint trajectories that is independent from the morphing
method. Potential differences between the metric structure of
the perceptual space and that of the space of morphing
weights could thus be explained either by the perceptual
metrics being incompatible with the physical similarities of
the stimuli, or by the inability of the morphing weights to
capture the perceptually relevant physical characteristics of
the movement. This problem arises in conjunction with all
known technical algorithms for motion morphing because
all of them apply heuristic methods for interpolating
between trajectories in space–time rather than taking into
account specific constraints derived from perception.
In order to obtain a characterization of the physical

space that is independent of the morphing method, we
tested an entire family of trajectory distance measures that
do not rely on motion morphing. Based on the computed
distances, we constructed the corresponding physical
spaces by MDS. In principle, there are infinitely many
ways of defining distances between trajectories. This is
schematically demonstrated for a simplified example in
Figure 3A. It illustrates two trajectories with different
timing, so that that the trajectory x2(t) can be derived from
the trajectory x1(t) by time warping, i.e., by deformation
of the time axis using a smooth monotonic warping
function C(t). Formally this deformation can be written as
x2(t) = x1(C(t)). It is assumed that C(0) = 0 and C(T ) = T, T
being the total duration of the movements, which is
assumed to be equal.
One way of defining the distance between the two

trajectories is to use the amount of temporal deformation
as a measure. The temporal deformation can be quantified
by the deviation of the time warping function from the
identity, for example, using the expression

D12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

ZT

0

jCðtÞ j tj2dt

vuuut : ð2Þ

Alternatively, one can use the Euclidean distance between
the trajectories for each fixed point in time to construct a
distance measure without trying to determine the timing
shifts between the trajectories. This results in the distance
measure

D12 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

T

ZT

0

jw1ðtÞ j w2ðtÞj2dt

vuuut ; ð3Þ

which has been quite frequently used in the literature. It is
important to note that this distance measure does not
quantify timing differences explicitly. Instead, they
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influence the distance indirectly through the induced
spatial differences (solid lines in Figure 3). In fact, by
choosing the time warping function, the two trajectories
are brought into spatio-temporal correspondence (Giese &
Poggio, 2000), defining for each point on trajectory x1(t)
one point on the second trajectory x2(t) that corresponds to
it. There are many other ways to define such correspon-
dence. For example, one might associate points of the two
trajectories that are related to each other by shifts in space
and time. Likewise, there are multiple ways in which
timing difference and spatial differences can be combined
into a single value of the distance measure.
The family of distance measures in our study was

defined as a weighted combination of temporal and spatial
differences, as suggested above. Assuming that x1(t) and
x2(t) signify the joint (position) trajectories, which are
multidimensional because they contain all major joints of
the viewed moving figure, the tested distance measures
were given by the expression

dðx1; x2Þ ¼
q ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðD12 þ D21Þ=2

p
with

Dij ¼
1

T

ZT

0

jxiðCðtÞÞ j xjðtÞjqdtþ 1
1

T

ZT

0

jCðtÞ j tjqdt;

ð4Þ

with i, j = 1,2. The first equation ensures that the distance
measure d is symmetric with respect to x1 and x2. T is the
duration of one gait cycle. The time warping function C(t)
was determined by dynamic time warping (Giese &
Poggio, 2000; Rabiner & Juang, 1993), an algorithm that
determines an optimal time alignment between the two
trajectories. For the trajectories depicted in Figure 3A, this

algorithm would compute the time shifts indicated by the
dashed lines, resulting in a vanishing contribution of the
first term in the expression for Dij in Equation 4. Choosing
instead C(t) = t defines distance measures without time
alignment. By choosing positive values for the parameter
1, the distance measure takes explicitly into account
overall timing differences between the two trajectories.
The choice 1 = 0 corresponds to physical distances that,
except for time warping, depend only on spatial differ-
ences between the trajectories. Usually, only a part of the
differences between trajectories can be removed by time
alignment (cf. Figure 3B). In this case, one obtains
nonzero contributions of both terms of the expression Dij.

Distance norms

The parameter q in Equation 4 makes it possible to
specify different distance norms (Kreyszig, 1989). Setting
q = 2 results in the common Euclidean norm. Large values
of q correspond to distances that emphasize the influence
of outliers. This is illustrated in Figure 4 that shows two
hypothetical trajectories. The trajectory x1(t) is just a
linear trend. The other trajectory follows this trend with a
positive spatial offset of 10. Around t = 40, however, this
trajectory has some outliers, the biggest deviation appea-
ring for t = 40. Without these outliers, the distance

measure D12(q) =
q
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1
T

R T
0 jx1ðtÞjx2ðtÞjq

q
dt provides the

same value D12(q) = 10 independent of the value of
the parameter q (assuming q Q 1). In the presence of the
outliers, for the Euclidean norm that corresponds to the
choice q = 2, the computed distance D12(2) = 12.16 is
larger than the offset between the trajectories. For the
choice q = 1, one obtains the value D12(1) = 10.99 that is
closer to the true offset. The reason is that the square term

Figure 3. Time alignment and spatio-temporal distance. (A) Two trajectories that differ only in their timing, implying the relationship
x2(t) = x1(C(t)) with a time warping function C(t). A distance measure can be derived, for example, based on the time shifts between the
trajectories (dashed lines), or as function of the spatial shifts for each point in time (solid lines). (B) Usually, only parts of the differences
between trajectories can be accounted for by temporal alignment. The gray curve shows the best possible temporal alignment of the
trajectory C1(t) with the trajectory C2(t), which is obtained by an adequate deformation of the time axis. The remaining deviation between
the trajectories (solid lines) needs to be accounted for by spatial differences. The physical distance measure that fits best the perceptual
metric depends only on those spatial shifts, but not on the temporal shifts (indicated by the dashed lines).
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in the Euclidean norm amplifies the influence of outliers
compared to the linear term for q = 1. Choice of very large
values of q results in distance values that are mainly
determined by the outliers, resulting in a distance that is
close to the largest distance between the trajectories
determined time-point by time-point. For the given example,
this maximum distance is given by ªx2(40)j x1(40)ª = 50.
For example, for q = 100 one obtains a distance value
D12(100) = 47.74 that is close to this maximum.
The value of q in Equation 4 thus controls how robust

the constructed metric in physical space is against outliers.
For the limit q Y V (infinity norm), the distance is
determined by the time point(s) with the largest spatial
difference between the trajectories over the entire time
interval [0, T ]. Small values q G 2 correspond to distance
measures that average over the entire time course of the
trajectory and which are more robust against outliers than
the Euclidean norm.
Applying MDS, we constructed physical spaces for differ-

ent combinations of the parameters 1 and q. By comparing
the stimulus configurations in these physical spaces with the
ones in perceptual space, we sought a physical distance that
closely approximates the perceptual metric.

Statistical analysis

The perceptual judgments were used to compute
similarity matrices. For the CPP task, we counted how
often a stimulus pair was perceived as more similar than all
other pairs. For the DMTS task, we counted how often a
stimulus pair was classified as identical action, combining
the data of all subjects. (Consistent but somewhat noisier
results were obtained with a similarity matrix constructed
from reaction times.) Each similarity matrix was normal-

ized by subtracting its minimum over all entries and
rescaling the matrix to maximum one. The distance matrix
for the MDS analysis was obtained by subtracting the
entries of this matrix from one. Results from different
subjects for the CPP task were combined using INDSCAL
analysis (Carroll & Chang, 1970) implemented in SAS
(SAS Inst. Inc.). The results of the DTMS task were
analyzed by computing a common similarity matrix over
all participants. The perceptual space for this task and the
physical spaces were reconstructed by regular metric
MDS (Borg & Groenen, 1997).
Because MDS yields low-dimensional metric configu-

rations that are determined up to an arbitrary scaling,
rotation, and reflection, the resulting configurations needed
to be aligned prior to the quantification of their similarities.
The recovered metric configurations were aligned by
Procrustes transformation (Borg & Groenen, 1997; Cutzu
& Edelman, 1996). For two given sets of data points, this
transformation determines an optimal combination of
scaling, rotation and reflection that aligns the second data
set with the first (see Appendix A for further details).
In Experiment 2, configurations were aligned with a

three-dimensional space, defined by the morphing weights
(2 dimensions) and the view angle (third dimension).
View angle and morphing weights have different units,
implying that their relative scaling with respect to each
other in the perceptual metrics is unknown. The unknown
scaling factor was estimated using an iterative procedure
that combines regular Procrustes alignment with a line
search for this additional parameter (see Appendix A).
The statistical significance of the similarities between

recovered and original configurations was tested using the
bootstrap method (Efron & Tibshirani, 1993), which
compares the estimated similarity to the mean and stand-
ard deviation of a distribution of values obtained in a
Monte Carlo simulation that randomizes the data by
reshuffling the rows of the similarity matrices (Cutzu &
Edelman, 1998). Random data sets consisted of 100
samples, from which means, d

-
P,random, and standard

deviations, SD(dP,random), of the similarity measures were
computed. Values of a dV equivalent were computed
according to the relationship:

dV ¼ ðdP;data j d
-
P;randomÞ=SDðdP;randomÞ: ð5Þ

The statistics for testing the significance of the similarities
was based on a t test for this dVequivalent.

Results

Experiment 1: Morphs derived from two-
dimensional trajectories in the image plane

In Experiment 1, stimuli were presented as point-light
walkers. The dot trajectories were obtained by motion

Figure 4. Data set with outliers. Two trajectories showing the same
linear trend. The trajectory x2(t) has a spatial offset and is displaced
by 10 spatial units upwards. Around t = 40 this trajectory has
outliers and takes the maximum value 70. The maximum vertical
distance between the two trajectories is 50, arising for t = 40.
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morphing of the two-dimensional joint trajectories in the
image plane, defining a triangular pattern in the space of
morphing weights. Perceived similarities were assessed by
a compare-pairs-of-pairs paradigm (CPP). The perceptual
metric was reconstructed jointly form the data of all
subjects by individually weighed MDS (INDSCAL). The
optimal embedding dimension determined by a scree test
was two, thus matching the dimensionality of the stimulus
configuration in morphing space.

Reconstructed configuration in perceptual space

Figure 5A shows the recovered configuration in percep-
tual space after re-alignment with the triangular config-
uration in morphing weight space via a Procrustes

transformation (Borg & Groenen, 1997). The recovered
configuration (circles) is quite similar to the configuration
in morphing-weight space (solid diamonds). However,
some systematic deformations, in particular in the lower
right corner, indicate that the perceptual space is not
linearly related to the space of morphing weights. This
nonlinearity might be due to the choice of prototypes or to
specific properties of the motion morphing method.
Despite this deformation, the Procrustes distance (Borg
& Groenen, 1997), i.e., the Euclidean distance after
Procrustes alignment and normalization, between the two
configurations is relatively small (dP = 0.41).
To determine whether the similarity of the recovered

configuration in perceptual space to the original config-
uration in morphing space is significant, we conducted a
bootstrap analysis (see Methods). This analysis indicated
that the resulting value for the Procrustes distance is
highly significant (dV equivalent 8.15; p G 0.001), cf.
Table 1. All data were also analyzed using the coefficient of
congruence (Borg & Groenen, 1997) as another measure
for the similarities of the recovered configurations. The
results of this analysis (not shown) are highly consistent
with the results obtained for the Procrustes distance.

Configurations in physical space

The Procrustes distances between the reconstructed
configuration in perceptual space and configurations in
physical space were computed for different combinations
of the parameters 1 and q in Equation 4. Figure 5B shows
that the best agreement between the configurations in
physical and perceptual space, measured by the Procrustes
distance, was obtained for q = 1. This implies that the
perceptual similarity of movements is characterized by an
integration over time that is robust against outliers rather
than by an error measure that emphasizes the contribution
of individual time points where the spatial distances

Figure 5. Results from Experiment 1 (pair comparison paradigm)
and comparison with configurations in physical space. (A) Stimulus
configuration defined in space of morphing weights (filled
diamonds) compared with the recovered configuration in the
perceptual space (circles). The corresponding configuration in
physical space computed from trajectory distances with optimized
parameters (1 = 0, q = 1) is indicated by the open diamonds.
(B) Alignment errors (Procrustes distance) between configuration
in perceptual space and configurations in physical space con-
structed from trajectory distances varying the parameters 1 and q
in Equation 4. The inset shows alignment errors for space–time
distances (1 = 0) with (solid line) and without time warping (C(t) K t)
(dashed line). Perceptual vs. morph space

dP data dP random dVequivalent t99 p

Experiment 1
0.41 1.1 T 0.09 8.15 81.5 G0.001

Control experiment (L configuration)
0.47 0.63 T 0.01 1.62 16.2 G0.001

Experiment 2
2D embedding space
0.15 0.95 T 0.31 2.61 26.1 G0.001

3D embedding space
0.51 0.91 T 0.04 9.74 97.3 G0.001

Table 1. Results from the bootstrap analysis for the similarity of
configurations in perceptual and morphing space. Similarity was
assessed by computation of the Procrustes distance dP. For
details about the bootstrap analysis, see Methods.
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between trajectories are large. For small values of 1,
towards large values of q the alignment error levels off.
This behavior might be explained by the fact that above a
certain critical value of q, the distance measure is
dominated by the maximum differences over the whole
time course further increases of q resulting only in minor
additional changes.
In addition, the Procrustes distance between the config-

urations increases with the parameter 1 and attains a
minimum for 1 = 0. This implies that the physical
distances that contain an extra term that measures overall
timing differences between the two trajectories resulted in
worse fits of the perceptual metrics. The best approxima-
tion was achieved with distances that, apart from prior
time alignment, depend only on spatial displacements
between the trajectories time-point by time-point. This
does not imply that timing information, in general, is
irrelevant for the perceptual metric. It just shows that
overall timing changes that affect all joints synchronously
have only a moderate influence on the perceptual metric.
Temporal variations that affect the relative timing between
different joints cannot be modeled by simple time align-
ment (as defined by the function C(t)) and are thus
captured by spatial differences in the first term of the
distance measure (2).
A more detailed analysis suggests, in addition, that it is

crucial to include a nontrivial time-warping function in
the distance computation. The inset in Figure 5B shows
that physical distances with time alignment (solid curve)
result in consistently better approximations of the percep-
tual metrics than distances without time warping (C(t) K t;
dashed curve). The perceptual system thus seems to

compensate efficiently for time warping between the
trajectories. The open diamonds in Figure 5A indicate
the reconstructed configuration in physical space for the
optimal parameter values (q = 1, 1 = 0) after Procrustes
alignment with the perceptual configuration. The two
configurations are extremely similar, as confirmed by the
very small and highly significant Procrustes distance
between them (dP = 0.05; dVequivalent 3.3; p G 0.001)
(cf. Table 2 for further details.) The structure of the
perceptual metrics can therefore be approximated very
accurately by a physical metric that is based on the
distances between joint trajectories.

Control experiment: L configuration in morph
space

In an additional control experiment with 11 subjects
using the same paradigm and analysis, we verified that
these results remain valid for another configuration in
morphing space. The specified pattern was an “L” in

Physical vs. perceptual space

dP data dP random dVequivalent t99 p

Experiment 1
0.05 0.97 T 0.28 3.3 32.9 G0.001

Control experiment (L configuration)
0.35 1.03 T 0.31 2.15 21.5 G0.001

Experiment 2
Distance of 2D trajectories (2D embedding space)
0.61 1.02 T 0.31 1.3 13.0 G0.001

Distance of 3D trajectories (2D embedding space)
0.23 1.05 T 0.27 3.0 30.0 G0.001

Distance of 3D trajectories (3D embedding space)
0.26 0.91 T 0.06 11.7 117 G0.001

Table 2. Results from the bootstrap analysis for the similarity of
configurations in physical and perceptual space. For Experiment 2,
physical distances between 2D joint trajectories in the image
plane and the motion-captured 3D trajectories were compared. All
configurations in physical space were reconstructed with the
optimized parameters (1 = 0 and q = 1) for the distance measure
defined by Equation 1.

Figure 6. Control Experiment with L configuration in morph-
ing space. (A) Configuration in space of morphing weights. (B)
Alignment errors (Procrustes distance) between configuration in
perceptual space and configurations in physical space con-
structed from trajectory distances varying the parameters 1 and
q. Inset shows the alignment errors for space–time distances
(1 = 0) with (solid line) and without time warping (C(t) K t) (dashed
line). Conventions as in Figure 5B.
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weights space (Figure 6A). Paradigm and analysis were as
in Experiment 1.
While perceptual data were more noisy than in Experi-

ment 1, the Procrustes distance between configurations in
perceptual and physical space was comparable to the
triangular configuration (see Table 1). Most importantly,
the alignment error between configurations in perceptual
space and physical space was again minimal for the
parameter choices 1 = 0 and q = 1 (Figure 6B; Table 2).
The inset in Figure 6B shows the comparison between the
alignment errors for trajectory distances for 1 = 0 with
(solid line) and without time warping, i.e., for C(t) K t
(dashed line). Best alignment was obtained for a physical
distance with time warping and q = 1. This confirms the
results of Experiment 1 for another configuration in
morphing space.

Experiment 2: Morphs derived from motion
captured three-dimensional trajectories

The movements for Experiment 2 were generated by
morphing between three-dimensional trajectories recorded
by motion capture (see Methods). Again, stimuli formed a
triangle configuration in the space of morphing weights
(Figure 2A). Trajectories were used to animate a stick
figure (Figure 2C) that was rendered with four different
view angles to study the influence of view dependency.

Configuration in perceptual space

The recovered configuration in a two-dimensional
perceptual space (assuming two embedding dimensions
for the MDS procedure) is shown in Figure 7A. Crosses
with identical color indicate different views of the same
motion patterns (combination of morph weights). Differ-
ent views of the same motion are clustered in perceptual
space. This indicates that subjects effectively ignored the
view angle in their similarity judgments. Open circles
with matching colors indicate the centroids of the view
clusters. The centroids define a configuration that is very
similar to the triangular configuration in morphing space
(open diamonds), as confirmed by a small and highly
significant Procrustes distance between the two config-
urations (dP = 0.15; dV equivalent 2.6; p G 0.001), cf.
Table 1. Thus, results very similar to those of Experiment 1
were obtained for stick figures and motion morphs that had
been generated from three-dimensional trajectories. As in
Experiment 1, the recovered configuration in perceptual
space shows gradual deformations compared to the
configuration in weight space.
The reconstructed three-dimensional configuration in

perceptual space is shown in Figure 7B (red spheres),
aligned with the configuration of the stimuli in a three-
dimensional space (blue spheres) that is defined by the
morphing weights (two independent dimensions) and the
view angle (third dimension). Along the first two

dimensions, the recovered configuration is very similar
to the configuration in the space of morph weights. This
supports the relevance of these two dimensions for the
underlying perceptual representation. Along the third
recovered dimension, which is aligned with the view angle
dimensionof the stimuli, thedatadonot showany systematic
ordering. This explains why the Procrustes distance
between the original and the recovered configuration

Figure 7. Results from Experiment 2 (delayed match-to-sample
paradigm with viewpoint variation). (A) Two-dimensional config-
uration recovered from the perceptual data, aligned with the
configuration in weight space (circles). Crosses with same color
indicate the same locomotion pattern with different viewpoints.
Open diamonds with same color indicate the centers of these
clusters. (B) Three-dimensional configuration recovered from the
perceptual data (red spheres) aligned with the stimulus config-
uration in the three-dimensional space (blue spheres) that is
defined by the morphing weights (dimensions 1 and 2) and the
view angle (dimension 3).
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(dP = 0.51; dVequivalent 9.74; p G 0.05) is larger than for
the two-dimensional configurations. This result also
confirms that subjects effectively ignored the viewpoint
of the moving figure, as it was required by the task.

Configurations in physical space

As the stimuli in Experiment 2 were based on three-
dimensional trajectories, this data set allowed us to
compare physical distance measures derived from three-
dimensional trajectories and two-dimensional trajectories
in the image plane.
The configuration in a physical space derived from two-

dimensional trajectories that had been obtained by
projecting the three-dimensional trajectories in the image
plane is shown in Figure 8A. As for the distances derived
from the trajectories in the image plane in Experiment 1,
optimal alignment between the configurations in percep-
tual and physical space was obtained for a distance
measure described by Equation 4 with q = 1 and 1 = 0.
Figure 8A shows the recovered two-dimensional config-
uration in physical space using the same conventions as in
Figure 7A. In contrast to the psychophysical data, points
representing different view angles of the same motion are
widely scattered for the recovered two-dimensional con-
figuration. The centroids of the points belonging to the
same actions are indicated by circles. The Procrustes
distance between these centroids and the corresponding
points of the configuration in perceptual space are large,
although still significant (Table 2). This result indicates
that distances between the two-dimensional joint trajecto-
ries are not suitable for reproducing the perceptual metrics
of motion recognition in the presence of viewpoint
changes.
In contrast, the two-dimensional configuration in the

physical space recovered from distances between the
three-dimensional trajectories (Figure 8B) does closely
resemble the configuration in the perceptual space
(Figure 7A). Motion patterns presented from different
viewpoints are clustered, and the centroids of those
clusters closely match the cluster centers in the perceptual
space, resulting in a small Procrustes distance between the
two configurations (dP = 0.23; cf. Table 2). This indicates
that the perceptual metric may be based on the three-
dimensional distances between joint trajectories.

However, this interpretation contradicts the result
obtained by reconstruction of the three-dimensional
configuration in the physical space from distances
between three-dimensional joint trajectories: The reco-
vered configuration (for q = 1 and 1 = 0), aligned with a

Figure 8. Configurations in physical space for viewpoint
Experiment 2. (A) Two-dimensional configuration constructed
from distances (with optimized parameters: 1 = 0, q = 1) between
the two-dimensional joint trajectories in the image plane. (Conven-
tions are as in Figure 7A.) (B) Two-dimensional configuration
reconstructed from distances between three-dimensional joint
trajectories. (C) Three-dimensional configuration in physical
space reconstructed from the distances between the three-
dimensional joint trajectories (red spheres), aligned with the
stimulus configuration in the three-dimensional space (blue
spheres) that is defined by the morphing weights and view angle.
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three-dimensional space, which is defined by the morph-
ing weights and the view angle, is shown in Figure 8C.
Similar to the corresponding configuration in perceptual
space (Figure 7B), the configuration in physical space
shows clustering of different views of the same movement
along the dimensions that are aligned with the morphing
weights. However, when compared to Figure 8B the
recovered configuration shows a clear ordering along the
third dimension that is aligned with the view angle. This
results in a very good alignment between the configu-
rations in morphing space and physical space (dP = 0.23;
see Table 2). This good alignment along the view-angle
dimension contrasts with the perceptual data (Figure 7B)
where no such ordering was observed, causing signifi-
cantly worse alignment of the two configurations (with
dP = 0.51; see above).
We also computed the alignment between the three-

dimensional configurations in physical and perceptual
space. Due to the differences between the two config-
urations along the view-angle dimension, the alignment
error is somewhat larger than for the alignment of the
configurations in physical and morphing space (dP = 0.26;
Table 2).
In summary, these results argue against the notion

that the perceptual metrics can be adequately described
by a simple measurement of distances between three-
dimensional trajectories. Instead, a pooling over multiple
view angles seems to be necessary in order to account for
the experimental results. Whether such pooling is based on
a view-based representation, or on the reconstruction of the
three-dimensional movement trajectories and a subsequent
elimination of one dimension in accordance with the task
cannot be decided with our experiments.

Discussion

This study investigated the metric properties of percep-
tual representations of complex full-body movements.
Stimuli were generated by motion morphing. Applying
multidimensional scaling (MDS) to perceptual similarity
judgments, we found that perceptual representations of
movement patterns reside in perceptual spaces with well-
defined metric properties. The stimulus configurations in
such perceptual spaces closely resembled the true move-
ment configurations in morphing weight space. Even
better approximations were obtained by constructing
physical spaces from distance measures based on joint
trajectories. This implies that perceptual representations of
complex body movements are veridical in that they
closely reflect the metric of movements in the physical
world. This finding was insensitive to the details of
movement generation (e.g., based on morphing two- or
three-dimensional trajectories) and to the manner of visual
stimulus presentation (stick figures vs. point-light stimuli).

In addition, comparable results were obtained for two
completely different experimental paradigms: comparison
of pairs and delayed match-to-sample.
The veridicality of visual representations of complex

body movements parallels similar results for static shape
stimuli: In the past, it has been shown that shape spaces
generated by morphing get mapped by subjects into
perceptual shape spaces that reflect the original physical
similarities between stimuli, as parameterized by the
morphing weights (Cutzu & Edelman, 1996; Op de Beeck
et al., 2001). Our results for motion patterns showed
somewhat higher variability than experiments with static
patterns. This might be explained by the increased
difficulty of the judgments that required an integration of
information over time.
In computer graphics, it has been known for a long time

that visual representations of body movements can be
generated by interpolation between motion-captured tra-
jectories, parameterizing movement style by continuous
morphing parameters (e.g., Unuma et al., 1995; Wiley &
Hahn, 1997). Psychophysical studies employed such
methods to investigate motion categorization (Giese &
Lappe, 2002; Li, Ostwald, Giese, & Kourtzi, 2007),
gender classification (Troje, 2002), and caricature and
high-level after-effects (Giese, Knappmeyer, & Bülthoff,
2002; Hill & Pollick, 2000; Jordan, Fallah, & Stoner,
2006; Troje, Sadr, Geyer, & Nakayama, 2006). While
those studies exploited the monotonic relationship between
morphing parameters and perceptual dimensions, they did
not reconstruct the metrics of the perceptual space.
One previous study applied MDS to perceptual judg-

ments of arm movements, aiming at the reconstruction of
a two-dimensional emotion space (Pollick, Paterson, et al.,
2001). Interestingly, one of the recovered dimensions
correlated with kinematic measures for the speed and
duration of the movements. This result seems compatible
with the veridicality of the visual representation of body
movements. However, because movement time was
normalized in our experiments, the observed structure
similarity between perceptual and physical metric must
have been based on more subtle features of body move-
ments than total movement time or average speed.
Another set of related studies applied classifiers to joint

trajectory data for gender and affect classification,
comparing performance with psychophysical data from
humans (Pollick, Lestou, Ryu, & Cho, 2002; Troje, 2002).
These studies show that three-dimensional joint trajecto-
ries provide sufficient information for solving such
classification tasks. In addition, human subjects typically
performed less efficiently than such classifiers, indicating
that they did not exploit all information that is available in
the three-dimensional trajectories. This seems compatible
with our result from Experiment 2, where the information
about the view-angle dimension was not reflected in the
reconstructed perceptual metric, even though it could be
easily retrieved from the three-dimensional trajectory data,
as shown by the construction of the three-dimensional
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physical space (Figure 8C). Even if the agreement between
human and classifier performance were more perfect,
deriving specific constraints for multidimensional feature
spaces from the classification errors of binary classifiers is
extremely difficult due to the ill-posed nature of the
underlying inverse problem. The present application of
methods that directly address the metric properties of
perceptual representations of body movements seems thus
to be an important step towards a deeper understanding of
the underlying computational mechanisms.
It seems likely that veridical perception of motion in the

present study depended on the chosen prototypical
patterns resulting in morphs that were all perceived as
natural (Giese & Lappe, 2002). Choosing more dissimilar
prototype movements might have resulted in unnatural-
looking morphs, disrupting the continuity of the percep-
tual space. However, recent experiments suggest that even
for very unnaturally looking patterns continuous percep-
tual representations can be learned after sufficient training
(Jastorff, Kourtzi, & Giese, 2006).
Because the parameterization of the stimuli in terms of

morphing weights depends on the morphing algorithm and
on the choice of the prototype trajectories, we also
compared the configurations in perceptual space with
configurations in physical spaces that were constructed
from various physical distance measures for movement
trajectories. Testing a family of such measures, we found
that good approximations of the configurations in per-
ceptual space were obtained with trajectory metrics that
(a) included time alignment of the compared trajectories;
(b) contained no terms that measure directly the overall
timing differences between trajectories (parameter 1 = 0),
implying that the distance (except for time alignment)
depends only on spatial differences; and Equation 5
involved a robust average of the differences over the
entire time course (parameter q = 1). The high similarity
between configurations in perceptual and physical space
(for optimized parameter values) shows that perceptual
representations of complex body movements faithfully
reflect the physical similarities of joint movement
trajectories, if measured by the right distance measure.
The detailed comparison between physical distances

derived from two- and three-dimensional trajectories
suggests that measures derived from the trajectories in
the image plane account well for the perceptual metrics in
the absence of viewpoint changes. In the presence of
viewpoint changes, such measures did not reproduce the
perceptual metrics for the task that required observers to
ignore the view angle. Likewise, distance measures
derived from the three-dimensional trajectories did not
capture the properties of the perceptual metrics because
the recovered configurations faithfully represented the
view angle, contrary to the psychophysical data. However,
such distances captured the perceptual metrics well with
appropriate pooling over multiple view directions. In the
analysis of Experiment 2, such pooling was modeled by
embedding the three-dimensional stimulus configuration

in the morph weight/view space into a two-dimensional
physical space, resulting in an excellent reproduction of
the perceptual metrics.
Integration of information over multiple views is a

common element of many theories for the recognition of
three-dimensional objects (Edelman, 1999; Perrett &
Oram, 1998; Riesenhuber & Poggio, 1999) and may be
relevant also for motion recognition (Giese & Poggio,
2003). Whether the recognition of body movements is
based on the pooling of view-based two-dimensional
representations or on the reconstruction of the full three-
dimensional geometry (Aggarwal & Cai, 1999; Marr &
Vaina, 1982; O’Rourke & Badler, 1980; Webb &
Aggarwal, 1982) is unclear. Electrophysiological record-
ings have revealed biological motion-selective neurons in
the STS that show view-dependence (Jellema & Perrett,
2006; Puce & Perrett, 2003). In addition, several psycho-
physical studies show view dependence of biological
motion recognition (e.g., Bülthoff, Bülthoff, & Sinha,
1998; Jacobs & Shiffrar, 2005; Jokisch, Daum, & Troje,
2006; Troje, 2002), and it has been shown that the two-
dimensional information in known views of actions can
even override stereoscopically provided veridical depth
information (Bülthoff et al., 1998). Yet, the available data
seem insufficient to determine conclusively how two- vs.
three-dimensional cues are integrated in biological motion
and action recognition.
In the current studies, the best approximations of the

perceptual metrics were obtained with physical distances
that aligned the trajectories by time warping. This
suggests that the perceptual system might include an
efficient mechanism that compensates for timing differ-
ences between action patterns. Such mechanisms can be
realized with relatively simple neural circuits (Giese &
Poggio, 2003; Hopfield & Brody, 2001), and would
contribute substantially to the robustness of action
recognition since they result in generalization between
actions with slightly different timings. Sequence align-
ment by time warping and related techniques are central
in many engineered systems for the recognition of
speech (Rabiner & Juang, 1993) and in computer vision
algorithms for action recognition (e.g., Bobick, 1997;
Veeraraghavan, Roy-Chowdhury, & Chellappa, 2005;
Yacoob & Black, 1999). An interesting interpretation of
the robustness against time warping is motivated by recent
results in motor control that suggest a separate control of
the spatial path and the timing of arm movements (Biess,
Liebermann, & Flash, 2007). The visual system might
thus have learned to categorize movements with the same
path but different timings.
Apart from time alignment, the spatial differences in the

physical distance measure (2) were critical for the
reproduction of the perceptual metrics. A substantial
influence of the spatial structure on the recognition of
properties from biological motion is consistent with other
studies, e.g., on person identification, that varied the
amount of available shape and dynamic information (e.g.,
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Troje, Westhoff, & Lavrov, 2005; Westhoff & Troje,
2007). In these studies, an influence of dynamic cues, like
gait speed or the timing (parameterized by the phases of a
Fourier representation) was also found. Effects of timing
and spatial information were also found in studies varying
the expressiveness of facial and body movements by
spatial and temporal exaggeration (Hill & Pollick, 2000;
Pollick, Fidopiastis, & Braden, 2001). In addition, move-
ment speed has been shown to influence the accuracy of
the perception of structure and identity (Barclay, Cutting,
& Kozlowski, 1978; Beintema, Oleksiak, & van Wezel,
2006; Jacobs, Pinto, & Shiffrar, 2004), and is an important
determinant for the expression of emotion by movements
(Pollick, Paterson, et al., 2001; Sawada, Suda, & Ishii,
2003).
The minimal impact of overall timing differences in our

experiments might be explained by the normalization of
the total duration of the movements in our stimuli. This
manipulation largely eliminates the information provided
by the average movement speed. The remaining timing
differences between the three prototypical locomotion
patterns might be too small for the perceptual system to
extract reliable information. Another study shows that
subjects can learn to categorize motion patterns based just
on their timing, keeping the spatial information constant
by time warping (Li et al., 2007). In these experiments a
substantial amount of time warping had to be applied in
order to make the stimuli distinguishable for the partic-
ipants. This indicates that the visual system might be
relatively insensitive to overall timing changes that affect
all parts of a moving figure synchronously.
In contrast to such low sensitivity to overall timing

changes, the visual system does appear to be highly tuned
to detect relative timing changes between different parts
of a moving figure. For example, scrambling the phases of
the individual dots of a point-light walker abolishes
recognition of biological motion patterns (Bertenthal &
Pinto, 1994). Such relative timing changes are not
adequately modeled by time warping, and thus mainly
affect the spatial difference term in Equation 4. For future
studies, it seems an interesting question to study system-
atically the dependence of the perceptual metric on
changes of the global vs. relative timing.
Finally, one might ask if our results also have

implications for the ongoing debate as to whether bio-
logical motion recognition is based on form or motion
features. Some psychophysical experiments suggest that
local motion information might be central in the recog-
nition of biological motion (Casile & Giese, 2005;
Mather, Radford, & West, 1992; Thurman & Grossman,
2008), and several computational models show the
feasibility of biological motion recognition from motion
features (Giese & Poggio, 2003; Hoffman & Flinchbaugh,
1982; Little & Boyd, 1998; Webb & Aggarwal, 1982). At
the same time, it is obvious that normal action stimuli, and
even stick figures, contain substantial amounts of form
information that can be exploited for recognizing action

from body shapes (Todd, 1983). Many models have been
proposed that accomplish action recognition by recogniz-
ing temporal sequences of body shapes, either using three-
dimensional shape models or two-dimensional form
templates (e.g., Chen & Lee, 1992; Giese & Poggio,
2003; Hogg, 1983; Lange & Lappe, 2006; Marr & Vaina,
1982; O’Rourke & Badler, 1980; Rohr, 1994). It has been
proposed that biological motion recognition integrates
both motion and form information potentially at the level
of the superior temporal sulcus patterns (Giese & Poggio,
2003; Peuskens, Vanrie, Verfaillie, & Orban, 2005). This
view has been challenged by the alternative hypothesis
that biological motion recognition exploits exclusively
form information, local motion information being essen-
tially irrelevant except for segmentation (Lange & Lappe,
2006). This alternative view seems difficult to reconcile
with recent experiments demonstrating biological motion
recognition from stimuli that prevent the extraction of
form information from individual frames (Singer &
Sheinberg, 2008), and the fact that the most informative
features for the detection of point-light walkers seem to
coincide with dominant motion features, rather than with
the most informative body shapes (Casile & Giese, 2005;
Thurman & Grossman, 2008). However, it reiterates the
importance of the question how form and motion features
influence the perceptual metric.
Can we say anything about this question based on the

results discussed in this paper? The joint trajectories, on
which our physical metric is based, specify both, form and
local motion information, and both could thus have
contributed to perceptual similarity judgments. As we
did not apply specific methods for degrading either type of
information, it seems difficult to draw strong conclusions
their relative influence from our data. We should note,
however, that we did find very similar results for stick-
figure and point-light stimuli, even though these might be
expected to weight form and motion features quite
differently. In addition, neural modeling suggests that
invariance against time warping and speed variations can
be accounted for by mechanisms based on form, or based
on local motion features (Giese & Poggio, 2003). While
the methodology discussed in this paper might not be
optimal for exploring this broader issue, it might be an
interesting idea for future research to combine methods
for the investigation of the perceptual metrics with
specific techniques for varying the information conveyed
by form and motion features (e.g., Beintema & Lappe,
2002; Beintema et al., 2006; Casile & Giese, 2005; Singer
& Sheinberg, 2008).
More generally, we note that precise neural mechanisms

that implement distance computation and time alignment
and the neural level remain to be uncovered. Neuro-
physiological studies (e.g., Vangeneugden, Pollick, &
Vogels, 2006) and functional imaging studies might
benefit from the present methods for the analysis of
perceptual and physical metrics for spatio-temporal
patterns.
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Appendix A

The recovered configurations in perceptual and physical
space were aligned with the configuration in morphing
space by a Procrustes transformation. Let X be the matrix
of positions of the recovered configuration and Y be
corresponding points in morphing space, where the
coordinates of each point are given by the corresponding
row of the matrix. The orthonormal Procrustes trans-
formation determines a linear transformation defined by
the scaling factor s and the orthonormal matrix T with
TVT = I that minimizes the error function:

Lðs;TÞ ¼ min
T;s

jjY j sXT jjF; ðA1Þ

where ªª ªªF is the Frobenius norm. It can be shown
(Borg & Groenen, 1997) that this optimum is given by
the matrix T = U VV. The last two matrices are defined by
the singular value decomposition YVX = V @ UVwith the
diagonal matrix @ and two orthonormal matrices fulfilling
UVU = I and VVV = I.
For Experiment 2, the recovered three-dimensional

configurations had to be aligned with a three-dimensional
configuration in the stimulus space that was defined by the
two-dimensional space of morphing weights and the view
angle. Morphing weights and view angles are different
physical dimensions that are related to each other by a
scaling factor that is unknown a priori. An alignment
using the classical Procrustes transformation that assumes
equal weights of all dimensions would not be appropriate
in this case. Instead we estimated the relative scaling of
morphing weights and view-angle dimension together
with the other parameters of the Procrustes transform.
For this purpose, we minimized an error function of the
form

Lðs1; s2;TÞ ¼ min
T jjYjX

s1I 0

0V s2

2

4

3

5ITjj
F

; ðA2Þ

with two separate scaling factors. This problem has no
closed-form solution. We used an iterative procedure
that combines a line search for the ratio + = (s1/s2) with
the solution of an orthonormal Procrustes problem for +
fixed:

Lðs1;T Þ ¼ min
T;s1 jjYj s1X

I 0

0V +

2

4

3

5ITjj
F

¼ min
T

jjYj s1Xe I TjjF: ðA3Þ

This problem has the same form as Equation A1 and can
be solved by singular value decomposition. The solution

of this combined optimization problem defines a Pro-
crustes transformation matrix is orthogonal but not
othonormal.
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